Excitation of a layered medium by $N$ sources: Scattering relations, interaction cross sections and physical bounds
Authors:
Andreas Kalogeropoulos and Nikolaos L. Tsitsas
Journal:
Quart. Appl. Math. 79 (2021), 335-356
MSC (2020):
Primary 74J20, 35P25, 78A48
DOI:
https://doi.org/10.1090/qam/1581
Published electronically:
October 13, 2020
MathSciNet review:
4246495
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: A layered medium is excited by $N$ external or internal point sources. Boundary-value problems for the generated acoustic waves are formulated. General scattering and optical theorems are established relating the involved fields and far-field patterns due to groups of sources. Interaction scattering cross sections are defined and associated physical bounds are derived. The large-$N$ behavior of these cross sections is also investigated. Numerical results are presented demonstrating the variations of the interaction cross sections and their physical bounds.
References
- Habib Ammari, Junqing Chen, Zhiming Chen, Darko Volkov, and Han Wang, Detection and classification from electromagnetic induction data, J. Comput. Phys. 301 (2015), 201–217. MR 3402726, DOI https://doi.org/10.1016/j.jcp.2015.08.027
- P. Anderson, R. Ladkin, and I. A. Renfrew, An Autonomous Doppler Sodar Wind Profiling System, Journal of Atmospheric and Oceanic Technology, 22 (2005), 1309–1325.
- C. Athanasiadis, P. A. Martin, A. Spyropoulos, and I. G. Stratis, Scattering relations for point sources: acoustic and electromagnetic waves, J. Math. Phys. 43 (2002), no. 11, 5683–5697. MR 1936544, DOI https://doi.org/10.1063/1.1509089
- Christodoulos Athanasiadis and Nikolaos L. Tsitsas, Scattering theorems for acoustic excitation of a layered obstacle by an interior point source, Stud. Appl. Math. 118 (2007), no. 4, 397–418. MR 2313007, DOI https://doi.org/10.1111/j.1365-2966.2007.00375.x
- Christodoulos Athanasiadis and Nikolaos L. Tsitsas, Electromagnetic scattering theorems for interior dipole excitation of a layered obstacle, Math. Methods Appl. Sci. 30 (2007), no. 12, 1467–1482. MR 2337389, DOI https://doi.org/10.1002/mma.853
- George Dassios, Electric and magnetic activity of the brain in spherical and ellipsoidal geometry, Mathematical modeling in biomedical imaging. I, Lecture Notes in Math., vol. 1983, Springer, Berlin, 2009, pp. 133–202. MR 2581900, DOI https://doi.org/10.1007/978-3-642-03444-2_4
- G. Dassios, A. S. Fokas, and F. Kariotou, On the non-uniqueness of the inverse MEG problem, Inverse Problems 21 (2005), no. 2, L1–L5. MR 2146267, DOI https://doi.org/10.1088/0266-5611/21/2/L01
- G. Dassios and A. S. Fokas, Electro-magneto-encephalography for a three-shell model: dipoles and beyond for the spherical geometry, Inverse Problems 25 (2009), no. 3, 035001, 20. MR 2480171, DOI https://doi.org/10.1088/0266-5611/25/3/035001
- George Dassios and Ralph Kleinman, Low frequency scattering, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1858914
- P. Gas, Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis, Biocybernetics and Biomedical Engineering, 37 (2017), 78–93.
- G. Herold and E. Sarradj, Performance Analysis of Microphone Array Methods, Journal of Sound and Vibration, 401 (2017), 152–168.
- J. L. Hollmann and L. V. Wang, Multiple-source optical diffusion approximation for a multilayer scattering medium, Applied Optics, 46 (2007), 6004–6009.
- Iñigo Liberal, Iñigo Ederra, Ramón Gonzalo, and Richard W. Ziolkowski, Superbackscattering antenna arrays, IEEE Trans. Antennas and Propagation 63 (2015), no. 5, 2011–2021. MR 3354552, DOI https://doi.org/10.1109/TAP.2015.2410787
- Xiaodong Liu, Bo Zhang, and Guanghui Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems 26 (2010), no. 1, 015002, 14. MR 2575347, DOI https://doi.org/10.1088/0266-5611/26/1/015002
- P. A. Martin, Multiple Scattering and Scattering Cross Sections, Journal of the Acoustical Society of America, 143 (2018), 995–1002.
- Roland Potthast, Point sources and multipoles in inverse scattering theory, Chapman & Hall/CRC Research Notes in Mathematics, vol. 427, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1853728
- Arnold Sommerfeld, Partial Differential Equations in Physics, Academic Press, Inc., New York, N. Y., 1949. Translated by Ernst G. Straus. MR 0029463
- Chen-To Tai, Dyadic Green functions in electromagnetic theory, 2nd ed., IEEE Press Series on Electromagnetic Waves, IEEE Press, Piscataway, NJ, 1994. MR 1420621
- Nikolaos L. Tsitsas and Christodoulos Athanasiadis, Point source excitation of a layered sphere: direct and far-field inverse scattering problems, Quart. J. Mech. Appl. Math. 61 (2008), no. 4, 549–580. MR 2448644, DOI https://doi.org/10.1093/qjmam/hbn017
- Victor Twersky, Multiple scattering by arbitrary configurations in three dimensions, J. Mathematical Phys. 3 (1962), 83–91. MR 142299, DOI https://doi.org/10.1063/1.1703791
- K. L. Wong, Design of nonplanar microstript antennas and transmission lines, Wiley, 1999.
- B. Xu, M. Gustafsson, S. Shi, K. Zhao, Z. Ying, and S. He, Radio Frequency Exposure Compliance of Multiple Antennas for Cellular Equipment Based on Semidefinite Relaxation, IEEE Transactions on Electromagnetic Compatibility, 61 (2019), 327–336.
- Katsu Yamatani, Takashi Ohe, and Kohzaburo Ohnaka, An identification method of electric current dipoles in spherically symmetric conductor, J. Comput. Appl. Math. 143 (2002), no. 2, 189–200. MR 1905740, DOI https://doi.org/10.1016/S0377-0427%2801%2900507-6
References
- Habib Ammari, Junqing Chen, Zhiming Chen, Darko Volkov, and Han Wang, Detection and classification from electromagnetic induction data, J. Comput. Phys. 301 (2015), 201–217. MR 3402726, DOI https://doi.org/10.1016/j.jcp.2015.08.027
- P. Anderson, R. Ladkin, and I. A. Renfrew, An Autonomous Doppler Sodar Wind Profiling System, Journal of Atmospheric and Oceanic Technology, 22 (2005), 1309–1325.
- C. Athanasiadis, P. A. Martin, A. Spyropoulos, and I. G. Stratis, Scattering relations for point sources: acoustic and electromagnetic waves, J. Math. Phys. 43 (2002), no. 11, 5683–5697. MR 1936544, DOI https://doi.org/10.1063/1.1509089
- Christodoulos Athanasiadis and Nikolaos L. Tsitsas, Scattering theorems for acoustic excitation of a layered obstacle by an interior point source, Stud. Appl. Math. 118 (2007), no. 4, 397–418. MR 2313007, DOI https://doi.org/10.1111/j.1365-2966.2007.00375.x
- Christodoulos Athanasiadis and Nikolaos L. Tsitsas, Electromagnetic scattering theorems for interior dipole excitation of a layered obstacle, Math. Methods Appl. Sci. 30 (2007), no. 12, 1467–1482. MR 2337389, DOI https://doi.org/10.1002/mma.853
- George Dassios, Electric and magnetic activity of the brain in spherical and ellipsoidal geometry, Mathematical modeling in biomedical imaging. I, Lecture Notes in Math., vol. 1983, Springer, Berlin, 2009, pp. 133–202. MR 2581900, DOI https://doi.org/10.1007/978-3-642-03444-2_4
- G. Dassios, A. S. Fokas, and F. Kariotou, On the non-uniqueness of the inverse MEG problem, Inverse Problems 21 (2005), no. 2, L1–L5. MR 2146267, DOI https://doi.org/10.1088/0266-5611/21/2/L01
- G. Dassios and A. S. Fokas, Electro-magneto-encephalography for a three-shell model: dipoles and beyond for the spherical geometry, Inverse Problems 25 (2009), no. 3, 035001, 20. MR 2480171, DOI https://doi.org/10.1088/0266-5611/25/3/035001
- George Dassios and Ralph Kleinman, Low frequency scattering, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR 1858914
- P. Gas, Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis, Biocybernetics and Biomedical Engineering, 37 (2017), 78–93.
- G. Herold and E. Sarradj, Performance Analysis of Microphone Array Methods, Journal of Sound and Vibration, 401 (2017), 152–168.
- J. L. Hollmann and L. V. Wang, Multiple-source optical diffusion approximation for a multilayer scattering medium, Applied Optics, 46 (2007), 6004–6009.
- Iñigo Liberal, Iñigo Ederra, Ramón Gonzalo, and Richard W. Ziolkowski, Superbackscattering antenna arrays, IEEE Trans. Antennas and Propagation 63 (2015), no. 5, 2011–2021. MR 3354552, DOI https://doi.org/10.1109/TAP.2015.2410787
- Xiaodong Liu, Bo Zhang, and Guanghui Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems 26 (2010), no. 1, 015002, 14. MR 2575347, DOI https://doi.org/10.1088/0266-5611/26/1/015002
- P. A. Martin, Multiple Scattering and Scattering Cross Sections, Journal of the Acoustical Society of America, 143 (2018), 995–1002.
- Roland Potthast, Point sources and multipoles in inverse scattering theory, Chapman & Hall/CRC Research Notes in Mathematics, vol. 427, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1853728
- Arnold Sommerfeld, Partial Differential Equations in Physics, Academic Press, Inc., New York, N. Y., 1949. Translated by Ernst G. Straus. MR 0029463
- Chen-To Tai, Dyadic Green functions in electromagnetic theory, 2nd ed., IEEE Press Series on Electromagnetic Waves, IEEE Press, Piscataway, NJ, 1994. MR 1420621
- Nikolaos L. Tsitsas and Christodoulos Athanasiadis, Point source excitation of a layered sphere: direct and far-field inverse scattering problems, Quart. J. Mech. Appl. Math. 61 (2008), no. 4, 549–580. MR 2448644, DOI https://doi.org/10.1093/qjmam/hbn017
- Victor Twersky, Multiple scattering by arbitrary configurations in three dimensions, J. Mathematical Phys. 3 (1962), 83–91. MR 142299, DOI https://doi.org/10.1063/1.1703791
- K. L. Wong, Design of nonplanar microstript antennas and transmission lines, Wiley, 1999.
- B. Xu, M. Gustafsson, S. Shi, K. Zhao, Z. Ying, and S. He, Radio Frequency Exposure Compliance of Multiple Antennas for Cellular Equipment Based on Semidefinite Relaxation, IEEE Transactions on Electromagnetic Compatibility, 61 (2019), 327–336.
- Katsu Yamatani, Takashi Ohe, and Kohzaburo Ohnaka, An identification method of electric current dipoles in spherically symmetric conductor, J. Comput. Appl. Math. 143 (2002), no. 2, 189–200. MR 1905740, DOI https://doi.org/10.1016/S0377-0427%2801%2900507-6
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
74J20,
35P25,
78A48
Retrieve articles in all journals
with MSC (2020):
74J20,
35P25,
78A48
Additional Information
Andreas Kalogeropoulos
Affiliation:
School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
ORCID:
0000-0001-6526-5606
Email:
akaloger@csd.auth.gr
Nikolaos L. Tsitsas
Affiliation:
School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
MR Author ID:
779168
ORCID:
0000-0003-1409-2631
Email:
ntsitsas@csd.auth.gr
Keywords:
Acoustic scattering,
cross sections,
layered medium,
physical bounds,
point sources
Received by editor(s):
June 4, 2020
Received by editor(s) in revised form:
July 21, 2020
Published electronically:
October 13, 2020
Article copyright:
© Copyright 2020
Brown University