Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators
Authors:
René Dáger, Víctor Navarro and Mihaela Negreanu
Journal:
Quart. Appl. Math. 79 (2021), 367-382
MSC (2010):
Primary 35K57, 35K59, 35B45, 35B50, 92D25, 92D40
DOI:
https://doi.org/10.1090/qam/1583
Published electronically:
October 14, 2020
MathSciNet review:
4246497
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This paper deals with a nonlinear system of reaction-diffusion partial differential equations modelling the evolution of a prey-predator biological system with chemotaxis. The system is constituted by three coupled equations: a fully parabolic chemotaxis system describing the behavior of the active predators and preys and an ordinary equation, describing the dynamics of the dormant predators, coupled to it. Chemotaxis in this context affects the active predators so that they move towards the regions where the density of resting eggs (dormant predators) is higher. Under suitable assumptions on the initial data and the coefficients of the system, the global-in-time existence of classical solutions is proved in any space dimension. Besides, numerical simulations are performed to illustrate the behavior of the solutions of the system. The theoretical and numerical findings show that the model considered here can provide very interesting and complex dynamics.
References
- N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), no. 8, 827–868. MR 537465, DOI https://doi.org/10.1080/03605307908820113
- Herbert Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13–75. MR 1014726
- Herbert Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992) Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126. MR 1242579, DOI https://doi.org/10.1007/978-3-663-11336-2_1
- Alexander D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. With a biography of the author by Elena P. Kryukova, Yegor A. Bazykin and Dmitry A. Bazykin; Edited and with a foreword by Alexander I. Khibnik and Bernd Krauskopf. MR 1635219
- N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci. 25 (2015), no. 9, 1663–1763. MR 3351175, DOI https://doi.org/10.1142/S021820251550044X
- R. Dáger, V. Navarro, and M. Negreanu, Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis, C. R. Mathématique 358 (1) 103–108, (2020).
- M. Gyllstrom and L. A. Hansson, Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling, Aquat. Sci. 66 274, (2004).
- Dirk Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103–165. MR 2013508
- Dirk Horstmann and Michael Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), no. 1, 52–107. MR 2146345, DOI https://doi.org/10.1016/j.jde.2004.10.022
- Ansgar Jüngel, Diffusive and nondiffusive population models, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2010, pp. 397–425. MR 2744707, DOI https://doi.org/10.1007/978-0-8176-4946-3_15
- H. K. Khalil, Nonlinear systems, Prentice Hall, 2Ed, New Jersey, 1996.
- Evelyn F. Keller and Lee A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399–415. MR 3925816, DOI https://doi.org/10.1016/0022-5193%2870%2990092-5
- E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol. 30 225–234, (1971).
- Masataka Kuwamura, Turing instabilities in prey-predator systems with dormancy of predators, J. Math. Biol. 71 (2015), no. 1, 125–149. MR 3345964, DOI https://doi.org/10.1007/s00285-014-0816-5
- Masataka Kuwamura and Takefumi Nakazawa, Dormancy of predators dependent on the rate of variation in prey density, SIAM J. Appl. Math. 71 (2011), no. 1, 169–179. MR 2776832, DOI https://doi.org/10.1137/100781985
- Masataka Kuwamura, Takefumi Nakazawa, and Toshiyuki Ogawa, A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment, J. Math. Biol. 58 (2009), no. 3, 459–479. MR 2470198, DOI https://doi.org/10.1007/s00285-008-0203-1
- Ping Liu, Junping Shi, and Zhi-An Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 10, 2597–2625. MR 3124754, DOI https://doi.org/10.3934/dcdsb.2013.18.2597
- Masaaki Mizukami and Tomomi Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations 261 (2016), no. 5, 2650–2669. MR 3507983, DOI https://doi.org/10.1016/j.jde.2016.05.008
- J. D. Murray, Mathematical biology. I, 3rd ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002. An introduction. MR 1908418
- T. Nakazawa, M. Kuwamura and N. Yamamura, Implications of resting eggs of zooplankton for the paradox of enrichment, Popul. Ecol. 53 341–350, (2011).
- Mihaela Negreanu and J. Ignacio Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations 258 (2015), no. 5, 1592–1617. MR 3295594, DOI https://doi.org/10.1016/j.jde.2014.11.009
- Mihaela Negreanu and J. Ignacio Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal. 46 (2014), no. 6, 3761–3781. MR 3277217, DOI https://doi.org/10.1137/140971853
- M. Negreanu and J. I. Tello, Global existence and asymptotic behavior of solutions to a predator-prey chemotaxis system with two chemicals, J. Math. Anal. Appl. 474 (2019), no. 2, 1116–1131. MR 3926158, DOI https://doi.org/10.1016/j.jmaa.2019.02.007
- Mihaela Negreanu and J. Ignacio Tello, On a parabolic-ODE system of chemotaxis, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 2, 279–292. MR 4043694, DOI https://doi.org/10.3934/dcdss.2020016
- Mihaela Negreanu, J. Ignacio Tello, and Antonio M. Vargas, A note on a periodic parabolic-ODE chemotaxis system, Appl. Math. Lett. 106 (2020), 106351, 6. MR 4082034, DOI https://doi.org/10.1016/j.aml.2020.106351
- Clifford S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338. MR 81586, DOI https://doi.org/10.1007/bf02476407
- M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator–prey interaction, Amer. Nat. 97 (1963), 209–223.
- Nanako Shigesada, Kohkichi Kawasaki, and Ei Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), no. 1, 83–99. MR 540951, DOI https://doi.org/10.1016/0022-5193%2879%2990258-3
- J. Ignacio Tello and Dariusz Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci. 26 (2016), no. 11, 2129–2162. MR 3556642, DOI https://doi.org/10.1142/S0218202516400108
- Xiaoli Wang, Wendi Wang, and Guohong Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci. 38 (2015), no. 3, 431–443. MR 3302884, DOI https://doi.org/10.1002/mma.3079
- Stephen A. Williams and Pao Liu Chow, Nonlinear reaction-diffusion models for interacting populations, J. Math. Anal. Appl. 62 (1978), no. 1, 157–169. MR 481547, DOI https://doi.org/10.1016/0022-247X%2878%2990227-5
- Sainan Wu, Junping Shi, and Boying Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations 260 (2016), no. 7, 5847–5874. MR 3456817, DOI https://doi.org/10.1016/j.jde.2015.12.024
- Sainan Wu, Jinfeng Wang, and Junping Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci. 28 (2018), no. 11, 2275–2312. MR 3864869, DOI https://doi.org/10.1142/S0218202518400158
References
- N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations 4 (1979), no. 8, 827–868. MR 537465, DOI https://doi.org/10.1080/03605307908820113
- Herbert Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13–75. MR 1014726
- Herbert Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992) Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126. MR 1242579, DOI https://doi.org/10.1007/978-3-663-11336-2_1
- Alexander D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. With a biography of the author by Elena P. Kryukova, Yegor A. Bazykin and Dmitry A. Bazykin; Edited and with a foreword by Alexander I. Khibnik and Bernd Krauskopf. MR 1635219
- N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci. 25 (2015), no. 9, 1663–1763. MR 3351175, DOI https://doi.org/10.1142/S021820251550044X
- R. Dáger, V. Navarro, and M. Negreanu, Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis, C. R. Mathématique 358 (1) 103–108, (2020).
- M. Gyllstrom and L. A. Hansson, Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling, Aquat. Sci. 66 274, (2004).
- Dirk Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103–165. MR 2013508
- Dirk Horstmann and Michael Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), no. 1, 52–107. MR 2146345, DOI https://doi.org/10.1016/j.jde.2004.10.022
- Ansgar Jüngel, Diffusive and nondiffusive population models, Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2010, pp. 397–425. MR 2744707, DOI https://doi.org/10.1007/978-0-8176-4946-3_15
- H. K. Khalil, Nonlinear systems, Prentice Hall, 2Ed, New Jersey, 1996.
- Evelyn F. Keller and Lee A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399–415. MR 3925816, DOI https://doi.org/10.1016/0022-5193%2870%2990092-5
- E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol. 30 225–234, (1971).
- Masataka Kuwamura, Turing instabilities in prey-predator systems with dormancy of predators, J. Math. Biol. 71 (2015), no. 1, 125–149. MR 3345964, DOI https://doi.org/10.1007/s00285-014-0816-5
- Masataka Kuwamura and Takefumi Nakazawa, Dormancy of predators dependent on the rate of variation in prey density, SIAM J. Appl. Math. 71 (2011), no. 1, 169–179. MR 2776832, DOI https://doi.org/10.1137/100781985
- Masataka Kuwamura, Takefumi Nakazawa, and Toshiyuki Ogawa, A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment, J. Math. Biol. 58 (2009), no. 3, 459–479. MR 2470198, DOI https://doi.org/10.1007/s00285-008-0203-1
- Ping Liu, Junping Shi, and Zhi-An Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 10, 2597–2625. MR 3124754, DOI https://doi.org/10.3934/dcdsb.2013.18.2597
- Masaaki Mizukami and Tomomi Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations 261 (2016), no. 5, 2650–2669. MR 3507983, DOI https://doi.org/10.1016/j.jde.2016.05.008
- J. D. Murray, Mathematical biology. I: An introduction, 3rd ed., Interdisciplinary Applied Mathematics, vol. 17, Springer-Verlag, New York, 2002. MR 1908418
- T. Nakazawa, M. Kuwamura and N. Yamamura, Implications of resting eggs of zooplankton for the paradox of enrichment, Popul. Ecol. 53 341–350, (2011).
- Mihaela Negreanu and J. Ignacio Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations 258 (2015), no. 5, 1592–1617. MR 3295594, DOI https://doi.org/10.1016/j.jde.2014.11.009
- Mihaela Negreanu and J. Ignacio Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal. 46 (2014), no. 6, 3761–3781. MR 3277217, DOI https://doi.org/10.1137/140971853
- M. Negreanu and J. I. Tello, Global existence and asymptotic behavior of solutions to a predator-prey chemotaxis system with two chemicals, J. Math. Anal. Appl. 474 (2019), no. 2, 1116–1131. MR 3926158, DOI https://doi.org/10.1016/j.jmaa.2019.02.007
- Mihaela Negreanu and J. Ignacio Tello, On a parabolic-ODE system of chemotaxis, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 2, 279–292. MR 4043694, DOI https://doi.org/10.3934/dcdss.2020016
- Mihaela Negreanu, J. Ignacio Tello, and Antonio M. Vargas, A note on a periodic parabolic-ODE chemotaxis system, Appl. Math. Lett. 106 (2020), 106351, 6. MR 4082034, DOI https://doi.org/10.1016/j.aml.2020.106351
- Clifford S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338. MR 81586, DOI https://doi.org/10.1007/bf02476407
- M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator–prey interaction, Amer. Nat. 97 (1963), 209–223.
- Nanako Shigesada, Kohkichi Kawasaki, and Ei Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), no. 1, 83–99. MR 540951, DOI https://doi.org/10.1016/0022-5193%2879%2990258-3
- J. Ignacio Tello and Dariusz Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci. 26 (2016), no. 11, 2129–2162. MR 3556642, DOI https://doi.org/10.1142/S0218202516400108
- Xiaoli Wang, Wendi Wang, and Guohong Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci. 38 (2015), no. 3, 431–443. MR 3302884, DOI https://doi.org/10.1002/mma.3079
- Stephen A. Williams and Pao Liu Chow, Nonlinear reaction-diffusion models for interacting populations, J. Math. Anal. Appl. 62 (1978), no. 1, 157–169. MR 481547, DOI https://doi.org/10.1016/0022-247X%2878%2990227-5
- Sainan Wu, Junping Shi, and Boying Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations 260 (2016), no. 7, 5847–5874. MR 3456817, DOI https://doi.org/10.1016/j.jde.2015.12.024
- Sainan Wu, Jinfeng Wang, and Junping Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci. 28 (2018), no. 11, 2275–2312. MR 3864869, DOI https://doi.org/10.1142/S0218202518400158
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
35K57,
35K59,
35B45,
35B50,
92D25,
92D40
Retrieve articles in all journals
with MSC (2010):
35K57,
35K59,
35B45,
35B50,
92D25,
92D40
Additional Information
René Dáger
Affiliation:
Departamento Matemática Aplicada, Universidad Politécnica de Madrid, 28040 Madrid, Spain
ORCID:
0000-0003-3280-2828
Email:
rene.dager@upm.es
Víctor Navarro
Affiliation:
Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
Email:
vinavarr@ucm.es
Mihaela Negreanu
Affiliation:
Departamento de Análisis Matemático y Matemática Aplicada, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
MR Author ID:
726367
ORCID:
0000-0003-0533-3464
Email:
negreanu@mat.ucm.es
Received by editor(s):
March 30, 2020
Received by editor(s) in revised form:
August 16, 2020
Published electronically:
October 14, 2020
Additional Notes:
This work was supported by Project MTM2017-83391-P DGICT Spain
Article copyright:
© Copyright 2020
Brown University