Complete solvability of the inertial spin model with an averaged spin
Authors:
Hyungjin Huh and Dohyun Kim
Journal:
Quart. Appl. Math. 80 (2022), 53-67
MSC (2020):
Primary 34C15; Secondary 34D06, 34C40
DOI:
https://doi.org/10.1090/qam/1601
Published electronically:
October 14, 2021
MathSciNet review:
4360549
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study the inertial spin model which consists of two variables: velocity as a mechanical observable and spin as an internal variable. In this paper, we slightly modified the original inertial spin model where the spin in the dynamics of the velocity is replaced by the average of spins. Moreover, by introducing two external control functions (rotation control and alignment control), we show the emergence of velocity and spin alignments mainly depends on these control functions. Finally, we perform numerical simulations that support and complement our theoretical results.
References
- D. Benedetto, P. Buttà, and E. Caglioti, Some aspects of the inertial spin model for flocks and related kinetic equations, Math. Models Methods Appl. Sci. 30 (2020), no. 10, 1987–2022. MR 4164108, DOI 10.1142/S0218202520400151
- J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature 211 (1966), 562–564.
- José A. Carrillo, Young-Pil Choi, Claudia Totzeck, and Oliver Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci. 28 (2018), no. 6, 1037–1066. MR 3804923, DOI 10.1142/S0218202518500276
- José A. Carrillo, Shi Jin, Lei Li, and Yuhua Zhu, A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var. 27 (2021), no. suppl., Paper No. S5, 22. MR 4222159, DOI 10.1051/cocv/2020046
- Andrea Cavagna, Lorenzo Del Castello, Irene Giardina et al., Flocking and turning: a new model for self-organized collective motion, J. Stat. Phys. 158 (2015), no. 3, 601–627. MR 3304344, DOI 10.1007/s10955-014-1119-3
- Dongpyo Chi, Sun-Ho Choi, and Seung-Yeal Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys. 55 (2014), no. 5, 052703, 18. MR 3390625, DOI 10.1063/1.4878117
- Junghee Cho, Seung-Yeal Ha, Feimin Huang, Chunyin Jin, and Dongnam Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci. 26 (2016), no. 6, 1191–1218. MR 3484572, DOI 10.1142/S0218202516500287
- Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007), no. 5, 852–862. MR 2324245, DOI 10.1109/TAC.2007.895842
- T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty, A synchronized quorum of genetic clocks, Nature 463 (2010), 326–330.
- Seung-Yeal Ha, Doheon Kim, Dohyun Kim, and Woojoo Shim, Flocking dynamics of the inertial spin model with a multiplicative communication weight, J. Nonlinear Sci. 29 (2019), no. 4, 1301–1342. MR 3993171, DOI 10.1007/s00332-018-9518-2
- Seung-Yeal Ha, Hansol Park, Tommaso Ruggeri, and Woojoo Shim, Emergent behaviors of thermodynamic Kuramoto ensemble on a regular ring lattice, J. Stat. Phys. 181 (2020), no. 3, 917–943. MR 4160916, DOI 10.1007/s10955-020-02611-2
- Seung-Yeal Ha and Tommaso Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1397–1425. MR 3594359, DOI 10.1007/s00205-016-1062-3
- H. Huh and D. Kim, Emergence of velocity alignment for the inertial spin model with the spin-velocity interaction, Preprint.
- S. M. Hung and S. N. Givigi, A q-learning approach to flocking with UAVs in a stochastic environment, IEEE Trans. Cybern. 47 (2017), 186–197.
- Yoshiki Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975) Springer, Berlin, 1975, pp. 420–422. Lecture Notes in Phys., 39. MR 0676492
- G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding non-equilibrium thermodynamics, Springer-Verlag, Berlin, 2008. Foundations, applications, frontiers. MR 2450226, DOI 10.1007/978-3-540-74252-4
- M. A. Lohe, Non-abelian Kuramoto models and synchronization, J. Phys. A 42 (2009), no. 39, 395101, 25. MR 2539317, DOI 10.1088/1751-8113/42/39/395101
- Johan Markdahl, Johan Thunberg, and Jorge Gonçalves, Almost global consensus on the $n$-sphere, IEEE Trans. Automat. Control 63 (2018), no. 6, 1664–1675. MR 3807655, DOI 10.1109/tac.2017.2752799
- R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control (2006), 5060–5066.
- L. Perea, P. Elosegui, and G. Gomez, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control 32 (2009), 527–537.
- Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), no. 6, 1226–1229. MR 3363421, DOI 10.1103/PhysRevLett.75.1226
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967), 15–42.
- Jiandong Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Phys. Lett. A 377 (2013), no. 41, 2939–2943. MR 3108680, DOI 10.1016/j.physleta.2013.09.010
References
- D. Benedetto, P. Buttà, and E. Caglioti, Some aspects of the inertial spin model for flocks and related kinetic equations, Math. Models Methods Appl. Sci. 30 (2020), no. 10, 1987–2022. MR 4164108, DOI 10.1142/S0218202520400151
- J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature 211 (1966), 562–564.
- José A. Carrillo, Young-Pil Choi, Claudia Totzeck, and Oliver Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci. 28 (2018), no. 6, 1037–1066. MR 3804923, DOI 10.1142/S0218202518500276
- José A. Carrillo, Shi Jin, Lei Li, and Yuhua Zhu, A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var. 27 (2021), no. suppl., Paper No. S5, 22. MR 4222159, DOI 10.1051/cocv/2020046
- Andrea Cavagna, Lorenzo Del Castello, Irene Giardina, T. Grigera, A. Jelic, S. Melillo, T. Mora, L. Parisi, E. Silvestri, M. Viale, and A. M. Walczak, Flocking and turning: a new model for self-organized collective motion, J. Stat. Phys. 158 (2015), no. 3, 601–627. MR 3304344, DOI 10.1007/s10955-014-1119-3
- Dongpyo Chi, Sun-Ho Choi, and Seung-Yeal Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys. 55 (2014), no. 5, 052703, 18. MR 3390625, DOI 10.1063/1.4878117
- Junghee Cho, Seung-Yeal Ha, Feimin Huang, Chunyin Jin, and Dongnam Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci. 26 (2016), no. 6, 1191–1218. MR 3484572, DOI 10.1142/S0218202516500287
- Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007), no. 5, 852–862. MR 2324245, DOI 10.1109/TAC.2007.895842
- T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty, A synchronized quorum of genetic clocks, Nature 463 (2010), 326–330.
- Seung-Yeal Ha, Doheon Kim, Dohyun Kim, and Woojoo Shim, Flocking dynamics of the inertial spin model with a multiplicative communication weight, J. Nonlinear Sci. 29 (2019), no. 4, 1301–1342. MR 3993171, DOI 10.1007/s00332-018-9518-2
- Seung-Yeal Ha, Hansol Park, Tommaso Ruggeri, and Woojoo Shim, Emergent behaviors of thermodynamic Kuramoto ensemble on a regular ring lattice, J. Stat. Phys. 181 (2020), no. 3, 917–943. MR 4160916, DOI 10.1007/s10955-020-02611-2
- Seung-Yeal Ha and Tommaso Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1397–1425. MR 3594359, DOI 10.1007/s00205-016-1062-3
- H. Huh and D. Kim, Emergence of velocity alignment for the inertial spin model with the spin-velocity interaction, Preprint.
- S. M. Hung and S. N. Givigi, A q-learning approach to flocking with UAVs in a stochastic environment, IEEE Trans. Cybern. 47 (2017), 186–197.
- Yoshiki Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975) Springer, Berlin, 1975, pp. 420–422. Lecture Notes in Phys., 39. MR 0676492
- G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding non-equilibrium thermodynamics, Springer-Verlag, Berlin, 2008. Foundations, applications, frontiers. MR 2450226, DOI 10.1007/978-3-540-74252-4
- M. A. Lohe, Non-abelian Kuramoto models and synchronization, J. Phys. A 42 (2009), no. 39, 395101, 25. MR 2539317, DOI 10.1088/1751-8113/42/39/395101
- Johan Markdahl, Johan Thunberg, and Jorge Gonçalves, Almost global consensus on the $n$-sphere, IEEE Trans. Automat. Control 63 (2018), no. 6, 1664–1675. MR 3807655, DOI 10.1109/tac.2017.2752799
- R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control (2006), 5060–5066.
- L. Perea, P. Elosegui, and G. Gomez, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control 32 (2009), 527–537.
- Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), no. 6, 1226–1229. MR 3363421, DOI 10.1103/PhysRevLett.75.1226
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967), 15–42.
- Jiandong Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Phys. Lett. A 377 (2013), no. 41, 2939–2943. MR 3108680, DOI 10.1016/j.physleta.2013.09.010
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
34C15,
34D06,
34C40
Retrieve articles in all journals
with MSC (2020):
34C15,
34D06,
34C40
Additional Information
Hyungjin Huh
Affiliation:
Department of Mathematics, Chung-Ang University, Seoul 06974, Republic of Korea
MR Author ID:
725994
ORCID:
0000-0001-9844-845X
Email:
huh@cau.ac.kr
Dohyun Kim
Affiliation:
School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul 02844, Republic of Korea
MR Author ID:
858181
Email:
dohyunkim@sungshin.ac.kr
Keywords:
Cucker-Smale model,
flocking,
inertial spin model,
swarm sphere model,
synchronization
Received by editor(s):
March 28, 2021
Received by editor(s) in revised form:
September 5, 2021
Published electronically:
October 14, 2021
Additional Notes:
The first author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (2020R1F1A1A01072197)
The work of the second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2021R1F1A1055929) and the Sungshin Women’s University Research Grant H20210070.
Article copyright:
© Copyright 2021
Brown University