Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer
Authors:
Vishnu Raveendran, Emilio N. M. Cirillo, Ida de Bonis and Adrian Muntean
Journal:
Quart. Appl. Math. 80 (2022), 157-200
MSC (2020):
Primary 35B27; Secondary 35Q92
DOI:
https://doi.org/10.1090/qam/1607
Published electronically:
December 6, 2021
MathSciNet review:
4360553
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract:
We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) for a population of interacting particles crossing a domain with obstacle.
Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer.
This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces—a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.
References
- E. Acerbi, V. Chiadò Piat, G. Dal Maso, and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal. 18 (1992), no. 5, 481–496. MR 1152723, DOI 10.1016/0362-546X(92)90015-7
- Grégoire Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), no. 6, 1482–1518. MR 1185639, DOI 10.1137/0523084
- Micol Amar, Ida De Bonis, and Giuseppe Riey, Homogenization of elliptic problems involving interfaces and singular data, Nonlinear Anal. 189 (2019), 111562, 28. MR 3980886, DOI 10.1016/j.na.2019.06.021
- Todd Arbogast, Jim Douglas Jr., and Ulrich Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), no. 4, 823–836. MR 1052874, DOI 10.1137/0521046
- Jean-Pierre Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042–5044 (French). MR 152860
- N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media, Mathematics and its Applications (Soviet Series), vol. 36, Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical problems in the mechanics of composite materials; Translated from the Russian by D. Leĭtes. MR 1112788, DOI 10.1007/978-94-009-2247-1
- A. Bhattacharya, M. Gahn, and M. Neuss-Radu, Effective transmission conditions for reaction-diffusion processes in domains separated by thin channels, Applicable Analysis , posted on (2020, doi: https://doi.org/10.1080/00036811.2020.1789599), 1–15., DOI 10.1080/00036811.2020.1789599
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- R. Bunoiu and C. Timofte, Upscaling of a double porosity problem with jumps in thin porous media, Applicable Analysis , posted on (2020, doi:https://doi.org/10.1080/00036811.2020.1854232), 1–18., DOI 10.1080/00036811.2020.1854232
- Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047
- Emilio N. M. Cirillo, Ida de Bonis, Adrian Muntean, and Omar Richardson, Upscaling the interplay between diffusion and polynomial drifts through a composite thin strip with periodic microstructure, Meccanica 55 (2020), no. 11, 2159–2178. MR 4173437, DOI 10.1007/s11012-020-01253-8
- Emilio N. M. Cirillo, Oleh Krehel, Adrian Muntean, Rutger van Santen, and Aditya Sengar, Residence time estimates for asymmetric simple exclusion dynamics on strips, Phys. A 442 (2016), 436–457. MR 3412980, DOI 10.1016/j.physa.2015.09.037
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- E. L. Cussler, Diffusion: mass transfer in fluid systems, Cambridge University Press, 2009., DOI 10.1017/CBO9780511805134
- L. C. Evans, Partial differential equations, Vol. 19, American Mathematical Society, 2010.
- John Fabricius, Elena Miroshnikova, Afonso Tsandzana, and Peter Wall, Pressure-driven flow in thin domains, Asymptot. Anal. 116 (2020), no. 1, 1–26. MR 4044383, DOI 10.3233/asy-191535
- Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, and Adrian Muntean, Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers, Netw. Heterog. Media 9 (2014), no. 4, 709–737. MR 3293173, DOI 10.3934/nhm.2014.9.709
- Markus Gahn, Willi Jäger, and Maria Neuss-Radu, Correctors and error estimates for reaction-diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion, J. Comput. Appl. Math. 383 (2021), Paper No. 113126, 29. MR 4134885, DOI 10.1016/j.cam.2020.113126
- Markus Gahn and Maria Neuss-Radu, Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity, Multiscale Model. Simul. 19 (2021), no. 4, 1573–1600. MR 4332963, DOI 10.1137/21M1390505
- Giambattista Giacomin, Joel L. Lebowitz, and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives, Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 107–152. MR 1661764, DOI 10.1090/surv/064/03
- A. Glitzky, M. Liero, and G. Nika, Dimension reduction of thermistor models for large-area organic light-emitting diodes, Discrete & Continuous Dynamical Systems - S 14 (2020), no. 11, 3953–3971., DOI 10.3934/dcdss.2020460
- E. Haller, Pressure-driven flows in thin and porous domains, Ph.D. Thesis, 2021.
- Weimin Han, The best constant in a trace inequality, J. Math. Anal. Appl. 163 (1992), no. 2, 512–520. MR 1145843, DOI 10.1016/0022-247X(92)90263-D
- James G. Herterich, Qian Xu, Robert W. Field, Dominic Vella, and Ian M. Griffiths, Optimizing the operation of a direct-flow filtration device, J. Engrg. Math. 104 (2017), 195–211. MR 3649535, DOI 10.1007/s10665-016-9879-1
- Dag Lukkassen, Gabriel Nguetseng, and Peter Wall, Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), no. 1, 35–86. MR 1912819
- Sanja Marušić and Eduard Maru ić-Paloka, Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptot. Anal. 23 (2000), no. 1, 23–57. MR 1764338
- C. C. Mei and B. Vernescu, Homogenization methods for multiscale mechanics, World Scientific, 2010., DOI 10.1142/7427
- Adrian Muntean and Maria Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl. 371 (2010), no. 2, 705–718. MR 2670148, DOI 10.1016/j.jmaa.2010.05.056
- A. I. Nazarov and S. I. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces, Math. Methods Appl. Sci. 38 (2015), no. 15, 3195–3207. MR 3400329, DOI 10.1002/mma.3290
- Maria Neuss-Radu and Willi Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal. 39 (2007), no. 3, 687–720. MR 2349863, DOI 10.1137/060665452
- Gabriel Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), no. 3, 608–623. MR 990867, DOI 10.1137/0520043
- Å. Nyflött, L. Axrup, G. Carlsson, L. Järnström, M. Lestelius, E. Moons, and T. Wahlström, Influence of kaolin addition on the dynamics of oxygen mass transport in polyvinyl alcohol dispersion coatings, Nordic Pulp & Paper Research Journal 30 (2015), no. 3, 385–392., DOI 10.3183/npprj-2015-30-03-p385-392
- G. Papanicolau, A. Bensoussan, and J.-L. Lions, Asymptotic Analysis for Periodic Structures, Elsevier, 1978.
- M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences 31 (2008), no. 11, 1257–1282., DOI 10.1002/mma.966
- M. Pokornỳ, Suitable weak solutions to the Navier-Stokes equations and some applications, 2021. https://www2.karlin.mff.cuni.cz/ pokorny/vyuka.html, accessed 28/06/21.
- O. Richardson, O. Lakkis, A. Muntean, and C. Venkataraman, Parallel two-scale finite element implementation of a system with varying microstructures, arXiv 2103.17040 (2021), 1–24.
- Christian Rohde and Lars von Wolff, Homogenization of nonlocal Navier-Stokes-Korteweg equations for compressible liquid-vapor flow in porous media, SIAM J. Math. Anal. 52 (2020), no. 6, 6155–6179. MR 4182904, DOI 10.1137/19M1242434
- M. Starnoni, I. Berre, E. Keilegavlen, and J. M. Nordbotten, Modelling and discretization of flow in porous media with thin, full-tensor permeability inclusions, International Journal for Numerical Methods in Engineering 122 (2021), no. 17, 4730–4750., DOI 10.1002/nme.6744
- P. E. Stelzig, On problems in homogenization and two-scale convergence, Ph.D. Thesis, 2012.
- Vo Anh Khoa and Adrian Muntean, Corrector homogenization estimates for a non-stationary Stokes-Nernst-Planck-Poisson system in perforated domains, Commun. Math. Sci. 17 (2019), no. 3, 705–738. MR 4001480, DOI 10.4310/CMS.2019.v17.n3.a6
References
- E. Acerbi, V. Chiadò Piat, G. Dal Maso, and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal. 18 (1992), no. 5, 481–496. MR 1152723, DOI 10.1016/0362-546X(92)90015-7
- Grégoire Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), no. 6, 1482–1518. MR 1185639, DOI 10.1137/0523084
- Micol Amar, Ida De Bonis, and Giuseppe Riey, Homogenization of elliptic problems involving interfaces and singular data, Nonlinear Anal. 189 (2019), 111562, 28. MR 3980886, DOI 10.1016/j.na.2019.06.021
- Todd Arbogast, Jim Douglas Jr., and Ulrich Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal. 21 (1990), no. 4, 823–836. MR 1052874, DOI 10.1137/0521046
- Jean-Pierre Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042–5044 (French). MR 152860
- N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media, Mathematics and its Applications (Soviet Series), vol. 36, Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical problems in the mechanics of composite materials; Translated from the Russian by D. Leĭtes. MR 1112788, DOI 10.1007/978-94-009-2247-1
- A. Bhattacharya, M. Gahn, and M. Neuss-Radu, Effective transmission conditions for reaction-diffusion processes in domains separated by thin channels, Applicable Analysis (2020, doi: https://doi.org/10.1080/00036811.2020.1789599), 1–15.
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829
- R. Bunoiu and C. Timofte, Upscaling of a double porosity problem with jumps in thin porous media, Applicable Analysis (2020, doi:https://doi.org/10.1080/00036811.2020.1854232), 1–18.
- Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047
- Emilio N. M. Cirillo, Ida de Bonis, Adrian Muntean, and Omar Richardson, Upscaling the interplay between diffusion and polynomial drifts through a composite thin strip with periodic microstructure, Meccanica 55 (2020), no. 11, 2159–2178. MR 4173437, DOI 10.1007/s11012-020-01253-8
- Emilio N. M. Cirillo, Oleh Krehel, Adrian Muntean, Rutger van Santen, and Aditya Sengar, Residence time estimates for asymmetric simple exclusion dynamics on strips, Phys. A 442 (2016), 436–457. MR 3412980, DOI 10.1016/j.physa.2015.09.037
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
- E. L. Cussler, Diffusion: mass transfer in fluid systems, Cambridge University Press, 2009.
- L. C. Evans, Partial differential equations, Vol. 19, American Mathematical Society, 2010.
- John Fabricius, Elena Miroshnikova, Afonso Tsandzana, and Peter Wall, Pressure-driven flow in thin domains, Asymptot. Anal. 116 (2020), no. 1, 1–26. MR 4044383, DOI 10.3233/asy-191535
- Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, and Adrian Muntean, Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers, Netw. Heterog. Media 9 (2014), no. 4, 709–737. MR 3293173, DOI 10.3934/nhm.2014.9.709
- Markus Gahn, Willi Jäger, and Maria Neuss-Radu, Correctors and error estimates for reaction-diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion, J. Comput. Appl. Math. 383 (2021), Paper No. 113126, 29. MR 4134885, DOI 10.1016/j.cam.2020.113126
- Markus Gahn and Maria Neuss-Radu, Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity, Multiscale Model. Simul. 19 (2021), no. 4, 1573–1600. MR 4332963, DOI 10.1137/21M1390505
- Giambattista Giacomin, Joel L. Lebowitz, and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives, Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 107–152. MR 1661764, DOI 10.1090/surv/064/03
- A. Glitzky, M. Liero, and G. Nika, Dimension reduction of thermistor models for large-area organic light-emitting diodes, Discrete & Continuous Dynamical Systems - S 14 (2020), no. 11, 3953–3971.
- E. Haller, Pressure-driven flows in thin and porous domains, Ph.D. Thesis, 2021.
- Weimin Han, The best constant in a trace inequality, J. Math. Anal. Appl. 163 (1992), no. 2, 512–520. MR 1145843, DOI 10.1016/0022-247X(92)90263-D
- James G. Herterich, Qian Xu, Robert W. Field, Dominic Vella, and Ian M. Griffiths, Optimizing the operation of a direct-flow filtration device, J. Engrg. Math. 104 (2017), 195–211. MR 3649535, DOI 10.1007/s10665-016-9879-1
- Dag Lukkassen, Gabriel Nguetseng, and Peter Wall, Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002), no. 1, 35–86. MR 1912819
- Sanja Marušić and Eduard Marušić-Paloka, Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptot. Anal. 23 (2000), no. 1, 23–57. MR 1764338
- C. C. Mei and B. Vernescu, Homogenization methods for multiscale mechanics, World Scientific, 2010.
- Adrian Muntean and Maria Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl. 371 (2010), no. 2, 705–718. MR 2670148, DOI 10.1016/j.jmaa.2010.05.056
- A. I. Nazarov and S. I. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces, Math. Methods Appl. Sci. 38 (2015), no. 15, 3195–3207. MR 3400329, DOI 10.1002/mma.3290
- Maria Neuss-Radu and Willi Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal. 39 (2007), no. 3, 687–720. MR 2349863, DOI 10.1137/060665452
- Gabriel Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), no. 3, 608–623. MR 990867, DOI 10.1137/0520043
- Å. Nyflött, L. Axrup, G. Carlsson, L. Järnström, M. Lestelius, E. Moons, and T. Wahlström, Influence of kaolin addition on the dynamics of oxygen mass transport in polyvinyl alcohol dispersion coatings, Nordic Pulp & Paper Research Journal 30 (2015), no. 3, 385–392.
- G. Papanicolau, A. Bensoussan, and J.-L. Lions, Asymptotic Analysis for Periodic Structures, Elsevier, 1978.
- M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences 31 (2008), no. 11, 1257–1282.
- M. Pokornỳ, Suitable weak solutions to the Navier-Stokes equations and some applications, 2021. https://www2.karlin.mff.cuni.cz/ pokorny/vyuka.html, accessed 28/06/21.
- O. Richardson, O. Lakkis, A. Muntean, and C. Venkataraman, Parallel two-scale finite element implementation of a system with varying microstructures, arXiv 2103.17040 (2021), 1–24.
- Christian Rohde and Lars von Wolff, Homogenization of nonlocal Navier-Stokes-Korteweg equations for compressible liquid-vapor flow in porous media, SIAM J. Math. Anal. 52 (2020), no. 6, 6155–6179. MR 4182904, DOI 10.1137/19M1242434
- M. Starnoni, I. Berre, E. Keilegavlen, and J. M. Nordbotten, Modelling and discretization of flow in porous media with thin, full-tensor permeability inclusions, International Journal for Numerical Methods in Engineering 122 (2021), no. 17, 4730–4750.
- P. E. Stelzig, On problems in homogenization and two-scale convergence, Ph.D. Thesis, 2012.
- Vo Anh Khoa and Adrian Muntean, Corrector homogenization estimates for a non-stationary Stokes-Nernst-Planck-Poisson system in perforated domains, Commun. Math. Sci. 17 (2019), no. 3, 705–738. MR 4001480, DOI 10.4310/CMS.2019.v17.n3.a6
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35B27,
35Q92
Retrieve articles in all journals
with MSC (2020):
35B27,
35Q92
Additional Information
Vishnu Raveendran
Affiliation:
Department of Mathematics and Computer Science, Karlstad University, Sweden
ORCID:
0000-0001-5168-0841
Email:
vishnu.raveendran@kau.se
Emilio N. M. Cirillo
Affiliation:
Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit‘a di Roma, Italy
MR Author ID:
606246
ORCID:
0000-0003-3673-2054
Email:
emilio.cirillo@uniroma1.it
Ida de Bonis
Affiliation:
Università telematica Niccolò Cusano, Rome, Italy
MR Author ID:
1072338
Email:
ida.debonis@unicusano.it
Adrian Muntean
Affiliation:
Department of Mathematics and Computer Science, Karlstad University, Sweden
MR Author ID:
684703
ORCID:
0000-0002-1160-0007
Email:
adrian.muntean@kau.se
Keywords:
Reaction-convection-diffusion equation,
homogenization,
thin layer,
dimension reduction,
Galerkin method,
two scale convergence,
effective transmission condition
Received by editor(s):
July 18, 2021
Received by editor(s) in revised form:
October 26, 2021
Published electronically:
December 6, 2021
Additional Notes:
The work of the first and fourth authors was partly supported by the project “Homogenization and dimension reduction of thin heterogeneous layers”, grant nr. VR 2018-03648 of the Swedish Research Council
Article copyright:
© Copyright 2021
Brown University