Traveling water waves — the ebb and flow of two centuries
Authors:
Susanna V. Haziot, Vera Mikyoung Hur, Walter A. Strauss, J. F. Toland, Erik Wahlén, Samuel Walsh and Miles H. Wheeler
Journal:
Quart. Appl. Math. 80 (2022), 317-401
MSC (2020):
Primary 35Q35, 35Q31, 76B15, 76B25, 76B47
DOI:
https://doi.org/10.1090/qam/1614
Published electronically:
March 14, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This survey covers the mathematical theory of steady water waves with an emphasis on topics that are at the forefront of current research. These areas include: variational characterizations of traveling water waves; analytical and numerical studies of periodic waves with critical layers that may overhang; existence, nonexistence, and qualitative theory of solitary waves and fronts; traveling waves with localized vorticity or density stratification; and waves in three dimensions.
References
- Mark J. Ablowitz and Harvey Segur, On the evolution of packets of water waves, J. Fluid Mech. 92 (1979), no. 4, 691–715. MR 544892, DOI 10.1017/S0022112079000835
- Benjamin F. Akers and Jonah A. Reeger, Three-dimensional overturned traveling water waves, Wave Motion 68 (2017), 210–217. MR 3576428, DOI 10.1016/j.wavemoti.2016.10.001
- David M. Ambrose, Walter A. Strauss, and J. Douglas Wright, Global bifurcation theory for periodic traveling interfacial gravity-capillary waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 4, 1081–1101. MR 3519533, DOI 10.1016/j.anihpc.2015.03.005
- Charles J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 3, 441–499. MR 785621
- C. J. Amick, Bounds for water waves, Arch. Rational Mech. Anal. 99 (1987), no. 2, 91–114. MR 886932, DOI 10.1007/BF00275873
- C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math. 148 (1982), 193–214. MR 666110, DOI 10.1007/BF02392728
- C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A 303 (1981), no. 1481, 633–669. MR 647410, DOI 10.1098/rsta.1981.0231
- C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal. 76 (1981), no. 1, 9–95. MR 629699, DOI 10.1007/BF00250799
- C. J. Amick and J. F. Toland, The limiting form of internal waves, Proc. Roy. Soc. London Ser. A 394 (1984), no. 1807, 329–344. MR 763506
- C. J. Amick and J. F. Toland, Solitary waves with surface tension. I. Trajectories homoclinic to periodic orbits in four dimensions, Arch. Rational Mech. Anal. 118 (1992), no. 1, 37–69. MR 1151926, DOI 10.1007/BF00375691
- C. J. Amick and R. E. L. Turner, A global theory of internal solitary waves in two-fluid systems, Trans. Amer. Math. Soc. 298 (1986), no. 2, 431–484. MR 860375, DOI 10.1090/S0002-9947-1986-0860375-3
- C. J. Amick and R. E. L. Turner, Small internal waves in two-fluid systems, Arch. Rational Mech. Anal. 108 (1989), no. 2, 111–139. MR 1011554, DOI 10.1007/BF01053459
- Vladimir Arnol′d, Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris 261 (1965), 17–20 (French). MR 180949
- V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361 (French). MR 202082, DOI 10.5802/aif.233
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. MR 1612569, DOI 10.1007/b97593
- A. I. Aptekareva and N. G. Afendikovaa, About the works of K. I. Babenko in the field of mechanics and applied mathematics (on the 100th anniversary of his birth), Mechanics of Solids 55 (7) (2020), 919–925. Russian text: Prikladnaya Matematika i Mekhanika 84 (1) (2020), 3–12.
- K. I. Babenko, Some remarks on the theory of surface waves of finite amplitude, Dokl. Akad. Nauk SSSR 294 (1987), no. 5, 1033–1037 (Russian). MR 898306
- G. S. Bagri and M. D. Groves, A spatial dynamics theory for doubly periodic travelling gravity-capillary surface waves on water of infinite depth, J. Dynam. Differential Equations 27 (2015), no. 3-4, 343–370. MR 3435116, DOI 10.1007/s10884-013-9346-x
- Pietro Baldi, Massimiliano Berti, Emanuele Haus, and Riccardo Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. Math. 214 (2018), no. 2, 739–911. MR 3867631, DOI 10.1007/s00222-018-0812-2
- A. M. Balk, A Lagrangian for water waves, Phys. Fluids 8 (1996), no. 2, 416–420. MR 1371522, DOI 10.1063/1.868795
- Cristian Barbarosie, Representation of divergence-free vector fields, Quart. Appl. Math. 69 (2011), no. 2, 309–316. MR 2814529, DOI 10.1090/S0033-569X-2011-01215-2
- J. Thomas Beale, The existence of solitary water waves, Comm. Pure Appl. Math. 30 (1977), no. 4, 373–389. MR 445136, DOI 10.1002/cpa.3160300402
- T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A 269 (1971), 587–643. MR 446075, DOI 10.1098/rsta.1971.0053
- T. B. Benjamin, Gravity currents and related phenomena, J. Fluid Mech. 31 (1968), no. 2, 209–248.
- T. Brooke Benjamin, Impulse, flow force and variational principles, IMA J. Appl. Math. 32 (1984), no. 1-3, 3–68. MR 740456, DOI 10.1093/imamat/32.1-3.3
- D. J. Benney and G. Roskes, Wave instabilities, Stud. Appl. Math. 48 (1969), 377–385.
- J. L. Bona, D. K. Bose, and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9) 62 (1983), no. 4, 389–439 (1984). MR 735931
- M. J. Boussinesq, Essai sur la théorie des eaux courantes, Mém. Acad. Sci. Inst. F. (2) 23 (1877), 1–68.
- Thomas J. Bridges and Alexander Mielke, A proof of the Benjamin-Feir instability, Arch. Rational Mech. Anal. 133 (1995), no. 2, 145–198. MR 1367360, DOI 10.1007/BF00376815
- B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation, Arch. Ration. Mech. Anal. 173 (2004), no. 1, 25–68. MR 2073504, DOI 10.1007/s00205-004-0310-0
- Boris Buffoni, Edward Norman Dancer, and John Francis Toland, Sur les ondes de Stokes et une conjecture de Levi-Civita, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 11, 1265–1268 (French, with English and French summaries). MR 1649134, DOI 10.1016/S0764-4442(98)80176-6
- B. Buffoni, E. N. Dancer, and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal. 152 (2000), no. 3, 207–240. MR 1764945, DOI 10.1007/s002050000086
- B. Buffoni, E. N. Dancer, and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal. 152 (2000), no. 3, 241–271. MR 1764946, DOI 10.1007/s002050000087
- B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory, Arch. Ration. Mech. Anal. 146 (1999), no. 3, 183–220. MR 1720395, DOI 10.1007/s002050050141
- B. Buffoni, M. D. Groves, S. M. Sun, and E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves, J. Differential Equations 254 (2013), no. 3, 1006–1096. MR 2997362, DOI 10.1016/j.jde.2012.10.007
- Boris Buffoni, Mark D. Groves, and Erik Wahlén, A variational reduction and the existence of a fully localised solitary wave for the three-dimensional water-wave problem with weak surface tension, Arch. Ration. Mech. Anal. 228 (2018), no. 3, 773–820. MR 3780138, DOI 10.1007/s00205-017-1205-1
- B. Buffoni, M. D. Groves, and E. Wahlén, Fully localised three-dimensional gravity-capillary solitary waves on water of infinite-depth, preprint, arXiv:2108.05973, 2021.
- B. Buffoni, É. Séré, and J. F. Toland, Surface water waves as saddle points of the energy, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 199–220. MR 1986319, DOI 10.1007/s00526-002-0166-9
- B. Buffoni, É. Séré, and J. F. Toland, Minimization methods for quasi-linear problems with an application to periodic water waves, SIAM J. Math. Anal. 36 (2005), no. 4, 1080–1094. MR 2139201, DOI 10.1137/S0036141003432766
- Boris Buffoni and John Francis Toland, Dual free boundaries for Stokes waves, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 73–78 (English, with English and French summaries). MR 1805631, DOI 10.1016/S0764-4442(00)01761-4
- Boris Buffoni and John Toland, Analytic theory of global bifurcation, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003. An introduction. MR 1956130, DOI 10.1515/9781400884339
- Oliver Bühler, Jalal Shatah, Samuel Walsh, and Chongchun Zeng, On the wind generation of water waves, Arch. Ration. Mech. Anal. 222 (2016), no. 2, 827–878. MR 3544318, DOI 10.1007/s00205-016-1012-0
- Robert B. Burckel, An introduction to classical complex analysis. Vol. 1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 555733, DOI 10.1007/978-3-0348-9374-9
- Luis A. Caffarelli, David Jerison, and Carlos E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2) 155 (2002), no. 2, 369–404. MR 1906591, DOI 10.2307/3062121
- Daomin Cao, Norman E. Dancer, Ezzat S. Noussair, and Shunsen Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems 2 (1996), no. 2, 221–236. MR 1382508, DOI 10.3934/dcds.1996.2.221
- A. R. Champneys, Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems, Nonlinearity 14 (2001), no. 1, 87–112. MR 1808625, DOI 10.1088/0951-7715/14/1/305
- G. A. Chandler and I. G. Graham, The computation of water waves modelled by Nekrasov’s equation, SIAM J. Numer. Anal. 30 (1993), no. 4, 1041–1065. MR 1231326, DOI 10.1137/0730054
- Shu-Ming Chang, Stephen Gustafson, Kenji Nakanishi, and Tai-Peng Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070–1111. MR 2368894, DOI 10.1137/050648389
- B. Chen and P. G. Saffman, Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math. 62 (1980), no. 1, 1–21. MR 557677, DOI 10.1002/sapm19806211
- Robin Ming Chen and Samuel Walsh, Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal. 219 (2016), no. 2, 741–792. MR 3437862, DOI 10.1007/s00205-015-0906-6
- R. M. Chen and S. Walsh, Orbital stability of internal waves, preprint, arXiv:2102.13590, 2021, to appear in Commun. Math. Phys., DOI:10.1007/s00220-022-04332-x.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Existence and qualitative theory for stratified solitary water waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 517–576. MR 3765551, DOI 10.1016/j.anihpc.2017.06.003
- R. M. Chen, S. Walsh, and M. H. Wheeler, Center manifolds without a phase space for quasilinear problems in elasticity, biology, and hydrodynamics, Nonlinearity 35 (2022), no. 4, 1927–1985, DOI 10.1088/1361-6544/ac5096.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Existence, nonexistence, and asymptotics of deep water solitary waves with localized vorticity, Arch. Ration. Mech. Anal. 234 (2019), no. 2, 595–633. MR 3995048, DOI 10.1007/s00205-019-01399-0
- R. M. Chen, S. Walsh, and M. H. Wheeler, Global bifurcation for monotone fronts of elliptic equations, preprint, arXiv:2005.00651, 2020.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Large-amplitude internal fronts in two-fluid systems, C. R. Math. Acad. Sci. Paris 358 (2020), no. 9-10, 1073–1083 (English, with English and French summaries). MR 4196778, DOI 10.5802/crmath.128
- Rolci Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Comm. Partial Differential Equations 17 (1992), no. 5-6, 967–988. MR 1177301, DOI 10.1080/03605309208820872
- Rolci Cipolatti, On the instability of ground states for a Davey-Stewartson system, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), no. 1, 85–104 (English, with English and French summaries). MR 1208793
- Adrian Constantin and Joachim Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011), no. 1, 559–568. MR 2753609, DOI 10.4007/annals.2011.173.1.12
- Adrian Constantin and Walter Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 (2004), no. 4, 481–527. MR 2027299, DOI 10.1002/cpa.3046
- Adrian Constantin and Walter Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math. 63 (2010), no. 4, 533–557. MR 2604871, DOI 10.1002/cpa.20299
- Adrian Constantin and Walter Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal. 202 (2011), no. 1, 133–175. MR 2835865, DOI 10.1007/s00205-011-0412-4
- Adrian Constantin, Walter Strauss, and Eugen Vărvărucă, Global bifurcation of steady gravity water waves with critical layers, Acta Math. 217 (2016), no. 2, 195–262. MR 3689941, DOI 10.1007/s11511-017-0144-x
- Adrian Constantin and Eugen Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation, Arch. Ration. Mech. Anal. 199 (2011), no. 1, 33–67. MR 2754336, DOI 10.1007/s00205-010-0314-x
- D. Córdoba and E. Di Iorio, Existence of gravity-capillary crapper waves with concentrated vorticity, preprint, arXiv:2106.15923, 2021.
- Walter Craig, Non-existence of solitary water waves in three dimensions, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (2002), no. 1799, 2127–2135. Recent developments in the mathematical theory of water waves (Oberwolfach, 2001). MR 1949966, DOI 10.1098/rsta.2002.1065
- W. Craig, P. Guyenne, and C. Sulem, Water waves over a random bottom, J. Fluid Mech. 640 (2009), 79–107. MR 2565938, DOI 10.1017/S0022112009991248
- Walter Craig and David P. Nicholls, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal. 32 (2000), no. 2, 323–359. MR 1781220, DOI 10.1137/S0036141099354181
- Walter Craig and David P. Nicholls, Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids 21 (2002), no. 6, 615–641. MR 1947187, DOI 10.1016/S0997-7546(02)01207-4
- W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108 (1993), no. 1, 73–83. MR 1239970, DOI 10.1006/jcph.1993.1164
- Walter Craig and Peter Sternberg, Symmetry of solitary waves, Comm. Partial Differential Equations 13 (1988), no. 5, 603–633. MR 919444, DOI 10.1080/03605308808820554
- Alex D. D. Craik, The origins of water wave theory, Annual review of fluid mechanics. Vol. 36, Annu. Rev. Fluid Mech., vol. 36, Annual Reviews, Palo Alto, CA, 2004, pp. 1–28. MR 2062306, DOI 10.1146/annurev.fluid.36.050802.122118
- Alex D. D. Craik, George Gabriel Stokes on water wave theory, Annual review of fluid mechanics. Vol. 37, Annu. Rev. Fluid Mech., vol. 37, Annual Reviews, Palo Alto, CA, 2005, pp. 23–42. MR 2115337, DOI 10.1146/annurev.fluid.37.061903.175836
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- G. D. Crapper, An exact solution for progressive capillary waves of arbitrary amplitude, J. Fluid Mech. 2 (1957), 532–540. MR 91075, DOI 10.1017/S0022112057000348
- E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc. (3) 26 (1973), 359–384. MR 322615, DOI 10.1112/plms/s3-26.2.359
- E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc. (3) 27 (1973), 747–765. MR 375019, DOI 10.1112/plms/s3-27.4.747
- Olivier Darrigol, The spirited horse, the engineer, and the mathematician: water waves in nineteenth-century hydrodynamics, Arch. Hist. Exact Sci. 58 (2003), no. 1, 21–95. MR 2020055, DOI 10.1007/s00407-003-0070-5
- A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101–110. MR 349126, DOI 10.1098/rspa.1974.0076
- A. de Bouard and J. C. Saut, Remarks on the stability of generalized KP solitary waves, Mathematical problems in the theory of water waves (Luminy, 1995) Contemp. Math., vol. 200, Amer. Math. Soc., Providence, RI, 1996, pp. 75–84. MR 1410501, DOI 10.1090/conm/200/02510
- Anne de Bouard and Jean-Claude Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 211–236 (English, with English and French summaries). MR 1441393, DOI 10.1016/S0294-1449(97)80145-X
- Shengfu Deng and Shu-Ming Sun, Three-dimensional gravity-capillary waves on water—small surface tension case, Phys. D 238 (2009), no. 17, 1735–1751. MR 2574421, DOI 10.1016/j.physd.2009.05.012
- Shengfu Deng and Shu-Ming Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal. 42 (2010), no. 6, 2721–2761. MR 2745790, DOI 10.1137/09077922X
- Yu Deng, Alexandru D. Ionescu, Benoît Pausader, and Fabio Pusateri, Global solutions of the gravity-capillary water-wave system in three dimensions, Acta Math. 219 (2017), no. 2, 213–402. MR 3784694, DOI 10.4310/ACTA.2017.v219.n2.a1
- F. Dias and J.-M. Vanden-Broeck, On internal fronts, J. Fluid Mech. 479 (2003), 145–154. MR 2011822, DOI 10.1017/S0022112002003609
- Frédéric Dias and Gérard Iooss, Water-waves as a spatial dynamical system, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 443–499. MR 1984157, DOI 10.1016/S1874-5792(03)80012-5
- Frédéric Dias and Christian Kharif, Nonlinear gravity and capillary-gravity waves, Annual review of fluid mechanics, Vol. 31, Annu. Rev. Fluid Mech., vol. 31, Annual Reviews, Palo Alto, CA, 1999, pp. 301–346. MR 1670945, DOI 10.1146/annurev.fluid.31.1.301
- V. D. Djordjević and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 (1977), no. 4, 703–714. MR 443555, DOI 10.1017/S0022112077000408
- M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie, NUMDAM, [place of publication not identified], 1934 (French). MR 3533020
- M.-L. Dubreil-Jacotin, Sur les theoremes d’existence relatifs aux ondes permanentes periodiques a deux dimensions dans les liquides heterogenes, J. Math. Pures Appl. 16 (1937), no. 9, 43–67.
- A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A 221 (1996), no. 1, 73–79.
- S. A. Dyachenko, P. M. Lushnikov, and A. O. Korotkevich, The complex singularity of a Stokes wave, JETP Lett. 98 (2013), no. 11, 767–771.
- S. A. Dyachenko, P. M. Lushnikov, and A. O. Korotkevich, Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Padé approximation, Stud. Appl. Math. 137 (2016), no. 4, 419–472. MR 3570991, DOI 10.1111/sapm.12128
- Sergey A. Dyachenko and Vera Mikyoung Hur, Stokes waves with constant vorticity: I. Numerical computation, Stud. Appl. Math. 142 (2019), no. 2, 162–189. MR 3915685, DOI 10.1111/sapm.12250
- Sergey A. Dyachenko and Vera Mikyoung Hur, Stokes waves with constant vorticity: folds, gaps and fluid bubbles, J. Fluid Mech. 878 (2019), 502–521. MR 4010456, DOI 10.1017/jfm.2019.634
- S. A. Dyachenko and V. M. Hur, Stokes waves in a constant vorticity flow, Nonlinear Water Waves, Tutorials, Schools, and Workshops in the Mathematical Sciences, Birkhäuser, Basel, 2019, 18 pp.
- S. A. Dyachenko, V. M. Hur, and D. A. Silantyev, Almost extreme waves, preprint, 2021.
- Mats Ehrnström and Mark D. Groves, Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation, Nonlinearity 31 (2018), no. 12, 5351–5384. MR 3871845, DOI 10.1088/1361-6544/aadf3f
- M. Ehrnström, S. Walsh, and C. Zeng, Smooth stationary water waves with exponentially localized vorticity, J. Eur. Math. Soc. (JEMS) (2020), to appear, DOI 10.4171/jems/1204.
- Alberto Enciso and Daniel Peralta-Salas, Beltrami fields with a nonconstant proportionality factor are rare, Arch. Ration. Mech. Anal. 220 (2016), no. 1, 243–260. MR 3458163, DOI 10.1007/s00205-015-0931-5
- Alberto Enciso and Daniel Peralta-Salas, Existence of knotted vortex structures in stationary solutions of the Euler equations, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2018, pp. 133–153. MR 3887764
- A. Enciso, D. Peralta-Salas, and Á. Romaniega, Beltrami fields exhibit knots and chaos almost surely, preprint, arXiv:2006.15033, 2020.
- Joachim Escher, Patrik Knopf, Christina Lienstromberg, and Bogdan-Vasile Matioc, Stratified periodic water waves with singular density gradients, Ann. Mat. Pura Appl. (4) 199 (2020), no. 5, 1923–1959. MR 4142857, DOI 10.1007/s10231-020-00950-1
- Joachim Escher, Anca-Voichita Matioc, and Bogdan-Vasile Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations 251 (2011), no. 10, 2932–2949. MR 2831719, DOI 10.1016/j.jde.2011.03.023
- Grégory Faye and Arnd Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5843–5885. MR 3803149, DOI 10.1090/tran/7190
- I. G. Filippov, Solution of the problem of the motion of a vortex under the surface of a fluid, for Froude numbers near unity, J. Appl. Math. Mech. 24 (1960), 698–716. MR 0128208, DOI 10.1016/0021-8928(60)90176-3
- I. G. Filippov, On the motion of a vortex below the surface of a liquid, J. Appl. Math. Mech. 25 (1961), 357–365. MR 0151069, DOI 10.1016/0021-8928(61)90070-3
- K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Comm. Pure Appl. Math. 7 (1954), 517–550. MR 65317, DOI 10.1002/cpa.3160070305
- Robert A. Fuchs, On the theory of short-crested oscillatory waves, Gravity Waves, National Bureau of Standards Circular 521, U.S. Government Printing Office, Washington, D.C., 1952, pp. 187–200. MR 0055094
- Thierry Gallay, Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal. 200 (2011), no. 2, 445–490. MR 2787587, DOI 10.1007/s00205-010-0362-2
- P. Germain, N. Masmoudi, and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2) 175 (2012), no. 2, 691–754. MR 2993751, DOI 10.4007/annals.2012.175.2.6
- Olivier Glass, Alexandre Munnier, and Franck Sueur, Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid, Invent. Math. 214 (2018), no. 1, 171–287. MR 3858400, DOI 10.1007/s00222-018-0802-4
- Harold Grad, Mathematical problems arising in plasma physics, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 105–113. MR 0421280
- M. D. Groves, Three-dimensional travelling gravity-capillary water waves, GAMM-Mitt. 30 (2007), no. 1, 8–43. MR 2324393, DOI 10.1002/gamm.200790013
- M. D. Groves and M. Haragus, A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci. 13 (2003), no. 4, 397–447. MR 1992382, DOI 10.1007/s00332-003-0530-8
- M. D. Groves and J. Horn, A variational formulation for steady surface water waves on a Beltrami flow, Proc. A. 476 (2020), no. 2234, 20190495, 20. MR 4088976, DOI 10.1098/rspa.2019.0495
- M. D. Groves and A. Mielke, A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 83–136. MR 1820296, DOI 10.1017/S0308210500000809
- M. D. Groves and S.-M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem, Arch. Ration. Mech. Anal. 188 (2008), no. 1, 1–91. MR 2379653, DOI 10.1007/s00205-007-0085-1
- M. D. Groves, S. M. Sun, and E. Wahlén, A dimension-breaking phenomenon for water waves with weak surface tension, Arch. Ration. Mech. Anal. 220 (2016), no. 2, 747–807. MR 3461361, DOI 10.1007/s00205-015-0941-3
- M. D. Groves, Steady water waves, J. Nonlinear Math. Phys. 11 (2004), no. 4, 435–460. MR 2097656, DOI 10.2991/jnmp.2004.11.4.2
- Mariana Haragus, Transverse dynamics of two-dimensional gravity-capillary periodic water waves, J. Dynam. Differential Equations 27 (2015), no. 3-4, 683–703. MR 3435127, DOI 10.1007/s10884-013-9336-z
- Mariana Haragus and Gérard Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. MR 2759609, DOI 10.1007/978-0-85729-112-7
- Susanna V. Haziot, Stratified large-amplitude steady periodic water waves with critical layers, Comm. Math. Phys. 381 (2021), no. 2, 765–797. MR 4207457, DOI 10.1007/s00220-020-03892-0
- H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858), 25–55 (German). MR 1579057, DOI 10.1515/crll.1858.55.25
- David Henry and Anca-Vocihita Matioc, Global bifurcation of capillary–gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 775–786. MR 3233756, DOI 10.1017/S0308210512001990
- Dan J. Hill, David J. B. Lloyd, and Matthew R. Turner, Localised radial patterns on the free surface of a ferrofluid, J. Nonlinear Sci. 31 (2021), no. 5, Paper No. 79, 99. MR 4292778, DOI 10.1007/s00332-021-09719-z
- Vera Mikyoung Hur, Global bifurcation theory of deep-water waves with vorticity, SIAM J. Math. Anal. 37 (2006), no. 5, 1482–1521. MR 2215274, DOI 10.1137/040621168
- Vera Mikyoung Hur, Stokes waves with vorticity, J. Anal. Math. 113 (2011), 331–386. MR 2788362, DOI 10.1007/s11854-011-0010-2
- Vera Mikyoung Hur and Jean-Marc Vanden-Broeck, A new application of Crapper’s exact solution to waves in constant vorticity flows, Eur. J. Mech. B Fluids 83 (2020), 0–4. MR 4102022, DOI 10.1016/j.euromechflu.2020.04.015
- Vera Mikyoung Hur and Miles H. Wheeler, Exact free surfaces in constant vorticity flows, J. Fluid Mech. 896 (2020), R1, 10. MR 4111654, DOI 10.1017/jfm.2020.390
- V. M. Hur and M. H. Wheeler, Overhanging and touching waves in constant vorticity flows, preprint, 2021.
- Gérard Iooss and Pavel Plotnikov, Existence of multimodal standing gravity waves, J. Math. Fluid Mech. 7 (2005), no. suppl. 3, S349–S364. MR 2168247, DOI 10.1007/s00021-005-0164-8
- Gérard Iooss and Pavel Plotnikov, Multimodal standing gravity waves: a completely resonant system, J. Math. Fluid Mech. 7 (2005), no. suppl. 1, S110–S126. MR 2126133, DOI 10.1007/s00021-004-0128-4
- Gérard Iooss and Pavel Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 789–880. MR 2796133, DOI 10.1007/s00205-010-0372-0
- Gérard Iooss and Pavel I. Plotnikov, Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc. 200 (2009), no. 940, viii+128. MR 2529006, DOI 10.1090/memo/0940
- G. Iooss, P. I. Plotnikov, and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 (2005), no. 3, 367–478. MR 2187619, DOI 10.1007/s00205-005-0381-6
- Guillaume James, Small amplitude steady internal waves in stratified fluids, Ann. Univ. Ferrara Sez. VII (N.S.) 43 (1997), 65–119 (1998) (English, with English and Italian summaries). MR 1686749, DOI 10.1007/BF02837229
- Guillaume James, Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Ration. Mech. Anal. 160 (2001), no. 1, 41–90. MR 1864121, DOI 10.1007/s002050100160
- M. A. Johnson, T. Truong, and M. H. Wheeler, Solitary waves in a Whitham equation with small surface tension, Stud. Appl. Math. 148 (2022), no. 2, 773–812.
- B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), 539–541 (English, Russian original).
- G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 137–157. MR 502787, DOI 10.1017/S0305004100054372
- Boguk Kim and T. R. Akylas, On gravity-capillary lumps, J. Fluid Mech. 540 (2005), 337–351. MR 2263130, DOI 10.1017/S0022112005005823
- K. Kirchgässner and K. Lankers, Structure of permanent waves in density-stratified media, Meccanica 28 (1993), 269–276.
- Klaus Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations 45 (1982), no. 1, 113–127. MR 662490, DOI 10.1016/0022-0396(82)90058-4
- G. R. Kirchhoff, Vorlesungen über mathematische physik: mechanik, vol. 1, Teubner, 1876.
- P. Kirrmann, Reduktion nichtlinearer elliptischer systeme in zylindergebeiten unter verwendung von optimaler regularität in hölder-räumen, Ph.D. Thesis, Universität Stuttgart, 1991.
- C. Klein and J.-C. Saut, Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations, J. Nonlinear Sci. 22 (2012), no. 5, 763–811. MR 2982052, DOI 10.1007/s00332-012-9127-4
- Vladimir Kozlov, Evgeniy Lokharu, and Miles H. Wheeler, Nonexistence of subcritical solitary waves, Arch. Ration. Mech. Anal. 241 (2021), no. 1, 535–552. MR 4271966, DOI 10.1007/s00205-021-01659-y
- Ju. P. Krasovskiĭ, On the theory of steady-state waves of finite amplitude, Ž. Vyčisl. Mat i Mat. Fiz. 1 (1961), 836–855 (Russian). MR 138284
- N. G. Kuznetsov, A tale of two Nekrasov equations, arXiv:2009.01754, 2020.
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- O. Laget and F. Dias, Numerical computation of capillary-gravity interfacial solitary waves, J. Fluid Mech. 349 (1997), 221–251. MR 1480072, DOI 10.1017/S0022112097006861
- Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
- Kevin G. Lamb, Conjugate flows for a three-layer fluid, Phys. Fluids 12 (2000), no. 9, 2169–2185. MR 1780436, DOI 10.1063/1.1287652
- Katharina Lankers and Gero Friesecke, Fast, large-amplitude solitary waves in the $2$D Euler equations for stratified fluids, Nonlinear Anal. 29 (1997), no. 9, 1061–1078. MR 1460439, DOI 10.1016/S0362-546X(96)00089-2
- David Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005), no. 3, 605–654. MR 2138139, DOI 10.1090/S0894-0347-05-00484-4
- David Lannes, A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 481–567. MR 3035985, DOI 10.1007/s00205-012-0604-6
- David Lannes, The water waves problem, Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics. MR 3060183, DOI 10.1090/surv/188
- David Lannes, On the dynamics of floating structures, Ann. PDE 3 (2017), no. 1, Paper No. 11, 81. MR 3645931, DOI 10.1007/s40818-017-0029-5
- M. A. Lavrent′ev, I. On the theory of long waves. II. A contribution to the theory of long waves, Amer. Math. Soc. Translation 1954 (1954), no. 102, 53. MR 0061952
- Hung Le, Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind, Discrete Contin. Dyn. Syst. 38 (2018), no. 7, 3357–3385. MR 3809086, DOI 10.3934/dcds.2018144
- Hung Le, On the existence and instability of solitary water waves with a finite dipole, SIAM J. Math. Anal. 51 (2019), no. 5, 4074–4104. MR 4019191, DOI 10.1137/18M1231638
- T. Levi-Civita, Determinazione rigorosa delle onde irrotazionali periodiche in acqua profonda, Rend. Accad. Lincei 33 (1924), 141–150.
- Yanyan Li and Louis Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1445–1490. MR 1639159, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI 10.1016/0022-0396(88)90147-7
- Zhiwu Lin, On linear instability of 2D solitary water waves, Int. Math. Res. Not. IMRN 7 (2009), 1247–1303. MR 2495304, DOI 10.1093/imrn/rnn158
- Yong Liu and Juncheng Wei, Nondegeneracy, Morse index and orbital stability of the KP-I lump solution, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389. MR 4011698, DOI 10.1007/s00205-019-01413-5
- Yue Liu and Xiao-Ping Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys. 183 (1997), no. 2, 253–266. MR 1461958, DOI 10.1007/BF02506406
- E. Lokharu, D. S. Seth, and E. Wahlén, An existence theory for small-amplitude doubly periodic water waves with vorticity, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 607–637. MR 4134147, DOI 10.1007/s00205-020-01550-2
- E. Lokharu and E. Wahlén, A variational principle for three-dimensional water waves over Beltrami flows, Nonlinear Anal. 184 (2019), 193–209. MR 3921103, DOI 10.1016/j.na.2019.01.028
- Evgeniy Lokharu, On bounds for steady waves with negative vorticity, J. Math. Fluid Mech. 23 (2021), no. 2, Paper No. 37, 11. MR 4228659, DOI 10.1007/s00021-021-00567-1
- E. Lokharu, A sharp version of the Benjamin and Lighthill conjecture for steady waves with vorticity, preprint, arXiv:2011.14605, 2020.
- Eric Lombardi, Oscillatory integrals and phenomena beyond all algebraic orders, Lecture Notes in Mathematics, vol. 1741, Springer-Verlag, Berlin, 2000. With applications to homoclinic orbits in reversible systems. MR 1770093, DOI 10.1007/BFb0104102
- M. S. Longuet-Higgins and M. J. H. Fox, Theory of the almost-highest wave: the inner solution, J. Fluid Mech. 80 (1977), no. 4, 721–741. MR 452143, DOI 10.1017/S0022112077002444
- M. S. Longuet-Higgins and M. J. H. Fox, Theory of the almost-highest wave. II. Matching and analytic extension, J. Fluid Mech. 85 (1978), no. 4, 769–786. MR 502858, DOI 10.1017/S0022112078000920
- M. S. Longuet-Higgins, Some new relations between Stokes’s coefficients in the theory of gravity waves, J. Inst. Math. Appl. 22 (1978), no. 3, 261–273. MR 516545, DOI 10.1093/imamat/22.3.261
- Dietrich Lortz, Über die Existenz toroidaler magnetohydrostatischer Gleichgewichte ohne Rotationstransformation, Z. Angew. Math. Phys. 21 (1970), 196–211 (German, with English summary). MR 261852, DOI 10.1007/BF01590644
- Pavel M. Lushnikov, Structure and location of branch point singularities for Stokes waves on deep water, J. Fluid Mech. 800 (2016), 557–594. MR 3521330, DOI 10.1017/jfm.2016.405
- Pavel M. Lushnikov, Sergey A. Dyachenko, and Denis A. Silantyev, New conformal mapping for adaptive resolving of the complex singularities of Stokes wave, Proc. A. 473 (2017), no. 2202, 20170198, 19. MR 3672665, DOI 10.1098/rspa.2017.0198
- N. I. Makarenko, Smooth bore in a two-layer fluid, Free boundary problems in continuum mechanics (Novosibirsk, 1991) Internat. Ser. Numer. Math., vol. 106, Birkhäuser, Basel, 1992, pp. 195–204. MR 1229538
- N. I. Makarenko, Conjugate flows and smooth bores in a weakly stratified fluid, Prikl. Mekh. Tekhn. Fiz. 40 (1999), no. 2, 69–78 (Russian, with Russian summary); English transl., J. Appl. Mech. Tech. Phys. 40 (1999), no. 2, 249–257. MR 1711960, DOI 10.1007/BF02468521
- S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A 63 (1977), no. 3, 205–206.
- Carlo Marchioro and Mario Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys. 154 (1993), no. 1, 49–61. MR 1220946, DOI 10.1007/BF02096831
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- C. I. Martin, Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity, Phys. of Fluids 30 (2018), no. 10, 107102.
- J. B. McLeod, The Froude number for solitary waves, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 193–197. MR 751191, DOI 10.1017/S0308210500031978
- J. B. McLeod, The Stokes and Krasovskii conjectures for the wave of greatest height, Stud. Appl. Math. 98 (1997), no. 4, 311–333. MR 1446239, DOI 10.1111/1467-9590.00051
- A. Mielke, P. Holmes, and O. O’Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differential Equations 4 (1992), no. 1, 95–126. MR 1150399, DOI 10.1007/BF01048157
- Alexander Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci. 10 (1988), no. 1, 51–66. MR 929221, DOI 10.1002/mma.1670100105
- Alexander Mielke, Homoclinic and heteroclinic solutions in two-phase flow, Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994) Adv. Ser. Nonlinear Dynam., vol. 7, World Sci. Publ., River Edge, NJ, 1995, pp. 353–362. MR 1685879
- John W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech. 3 (1957), 185–204. MR 91692, DOI 10.1017/S0022112057000567
- John W. Miles, On the generation of surfaces waves by shear flows. II, J. Fluid Mech. 6 (1959), 568–582. MR 108951, DOI 10.1017/S0022112059000830
- John W. Miles, Solitary waves, Annual review of fluid mechanics, Vol. 12, Annual Reviews, Palo Alto, Calif., 1980, pp. 11–43. MR 565388
- K. Nakayama and K. G. Lamb, Breathers in a three-layer fluid, J. Fluid Mech. 903 (2020), A40, 20. MR 4157455, DOI 10.1017/jfm.2020.653
- A. I. Nekrasov, On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3 (1921).
- H. Q. Nguyen and W. A. Strauss, Proof of modulational instability of Stokes waves in deep water, Comm. Pure Appl. Math. (2021).
- Wei-Ming Ni and Izumi Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819–851. MR 1115095, DOI 10.1002/cpa.3160440705
- Wei-Ming Ni, Izumi Takagi, and Juncheng Wei, On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: intermediate solutions, Duke Math. J. 94 (1998), no. 3, 597–618. MR 1639546, DOI 10.1215/S0012-7094-98-09424-8
- Wei-Ming Ni and Juncheng Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), no. 7, 731–768. MR 1342381, DOI 10.1002/cpa.3160480704
- David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 6, 1411–1433. MR 1869643, DOI 10.1017/S0308210500001463
- David P. Nicholls and Fernando Reitich, Stable, high-order computation of traveling water waves in three dimensions, Eur. J. Mech. B Fluids 25 (2006), no. 4, 406–424. MR 2241379, DOI 10.1016/j.euromechflu.2005.11.003
- Dag Viktor Nilsson, Internal gravity-capillary solitary waves in finite depth, Math. Methods Appl. Sci. 40 (2017), no. 4, 1053–1080. MR 3610717, DOI 10.1002/mma.4036
- Dag Nilsson, Three-dimensional internal gravity-capillary waves in finite depth, Math. Methods Appl. Sci. 42 (2019), no. 12, 4113–4145. MR 3978643, DOI 10.1002/mma.5635
- G. C. Papanicolaou, C. Sulem, P.-L. Sulem, and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Phys. D 72 (1994), no. 1-2, 61–86. MR 1270855, DOI 10.1016/0167-2789(94)90167-8
- Robert L. Pego and Shu-Ming Sun, Asymptotic linear stability of solitary water waves, Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1161–1216. MR 3544325, DOI 10.1007/s00205-016-1021-z
- D. Pelinovsky and Y. Stepanyants, New multisoliton solutions of the Kadomtsev-Petviashvili equation, JETP Lett. 57 (1993), 24–28.
- P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves, Dokl. Akad. Nauk SSSR 269 (1983), no. 1, 80–83 (Russian). MR 699357
- P. I. Plotnikov, Nonuniqueness of solutions of a problem on solitary waves, and bifurcations of critical points of smooth functionals, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 2, 339–366 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 2, 333–357. MR 1133302, DOI 10.1070/IM1992v038n02ABEH002202
- P. I. Plotnikov and J. F. Toland, Convexity of Stokes waves of extreme form, Arch. Ration. Mech. Anal. 171 (2004), no. 3, 349–416. MR 2038344, DOI 10.1007/s00205-003-0292-3
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- E. I. Părău, J.-M. Vanden-Broeck, and M. J. Cooker, Nonlinear three-dimensional gravity-capillary solitary waves, J. Fluid Mech. 536 (2005), 99–105. MR 2263898, DOI 10.1017/S0022112005005136
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- John Reeder and Marvin Shinbrot, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal. 5 (1981), no. 3, 303–323. MR 607813, DOI 10.1016/0362-546X(81)90035-3
- Ali Rouhi and Jon Wright, Hamiltonian formulation for the motion of vortices in the presence of a free surface for ideal flow, Phys. Rev. E (3) 48 (1993), no. 3, 1850–1865. MR 1377918, DOI 10.1103/PhysRevE.48.1850
- Per-Olav Rusås and John Grue, Solitary waves and conjugate flows in a three-layer fluid, Eur. J. Mech. B Fluids 21 (2002), no. 2, 185–206. MR 1933937, DOI 10.1016/S0997-7546(01)01163-3
- J. S. Russell, Report on waves, 14th Meeting of the British Association for the Advancement of Science, vol. 311–390, 1844.
- Guido Schneider and C. Eugene Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), no. 12, 1475–1535. MR 1780702, DOI 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
- D. S. Seth, K. Varholm, and E. Wahlén, Symmetric doubly periodic gravity-capillary waves with small vorticity, preprint.
- Eugene Shargorodsky, An estimate for the Morse index of a Stokes wave, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 41–59. MR 3054598, DOI 10.1007/s00205-013-0614-z
- E. Shargorodsky and J. F. Toland, A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, 37–52 (English, with English and French summaries). MR 1958161, DOI 10.1016/S0294-1449(02)00006-9
- E. Shargorodsky and J. F. Toland, Riemann-Hilbert theory for problems with vanishing coefficients that arise in nonlinear hydrodynamics, J. Funct. Anal. 197 (2003), no. 1, 283–300. MR 1957684, DOI 10.1016/S0022-1236(02)00097-6
- E. Shargorodsky and J. F. Toland, Bernoulli free-boundary problems, Mem. Amer. Math. Soc. 196 (2008), no. 914, ISBN: 978-0-8218-4189-1.
- Jalal Shatah, Samuel Walsh, and Chongchun Zeng, Travelling water waves with compactly supported vorticity, Nonlinearity 26 (2013), no. 6, 1529–1564. MR 3053431, DOI 10.1088/0951-7715/26/6/1529
- Jalal Shatah and Chongchun Zeng, Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 653–705. MR 2763036, DOI 10.1007/s00205-010-0335-5
- J. A. Simmen and P. G. Saffman, Steady deep-water waves on a linear shear current, Stud. Appl. Math. 73 (1985), no. 1, 35–57. MR 797557, DOI 10.1002/sapm198573135
- Daniel Sinambela, Large-amplitude solitary waves in two-layer density stratified water, SIAM J. Math. Anal. 53 (2021), no. 4, 4812–4864. MR 4305169, DOI 10.1137/20M1383537
- L. N. Sretenskiĭ, Spatial problem of determination of steady waves of finite amplitude, Doklady Akad. Nauk SSSR (N.S.) 89 (1953), 25–28 (Russian). MR 0056403
- Victor P. Starr, Momentum and energy integrals for gravity waves of finite height, J. Marine Res. 6 (1947), 175–193. MR 25371
- G. G. Stokes, On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8 (1847), 441–455.
- G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, vol. 1, Cambridge University Press, 1880, pp. 314–326.
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365, DOI 10.1007/BF01626517
- D. J. Struik, Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie, Math. Ann. 95 (1926), no. 1, 595–634 (French). MR 1512296, DOI 10.1007/BF01206629
- Qingtang Su, Long time behavior of 2D water waves with point vortices, Comm. Math. Phys. 380 (2020), no. 3, 1173–1266. MR 4179726, DOI 10.1007/s00220-020-03885-z
- S. M. Sun, Solitary internal waves in continuously stratified fluids of great depth, Phys. D 166 (2002), no. 1-2, 76–103. MR 1913747, DOI 10.1016/S0167-2789(02)00424-4
- Tien Yu Sun, Three-dimensional steady water waves generated by partially localized pressure disturbances, SIAM J. Math. Anal. 24 (1993), no. 5, 1153–1178. MR 1234010, DOI 10.1137/0524067
- A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988), 281–302. MR 985439, DOI 10.1017/S0022112088002423
- A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988), 281–302. MR 985439, DOI 10.1017/S0022112088002423
- A. M. Ter-Krikorov, Exact solution of the problem of the motion of a vortex under the surface of a liquid, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 177–200 (Russian). MR 0108145
- A. M. Ter-Krikorov, Théorie exacte des ondes longues stationnaires dans un liquide hétérogène, J. Mécanique 2 (1963), 351–376 (French). MR 160400
- J. F. Toland, Stokes Waves, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 7 (1) (1996), 1–48 & 8 (2), 413–414.
- J. F. Toland, Stokes waves in Hardy spaces and as distributions, J. Math. Pures Appl. (9) 79 (2000), no. 9, 901–917 (English, with English and French summaries). MR 1792729, DOI 10.1016/S0021-7824(00)00172-0
- J. F. Toland, On a pseudo-differential equation for Stokes waves, Arch. Ration. Mech. Anal. 162 (2002), no. 2, 179–189. MR 1897380, DOI 10.1007/s002050200195
- J. F. Toland and G. Iooss, Riemann-Hilbert and variational structure for standing waves, Far East J. Appl. Math. 15 (2004), no. 3, 459–488. MR 2108570
- T. Truong, E. Wahlén, and M. H. Wheeler, Global bifurcation of solitary waves for the Whitham equation, Math. Ann. (2021).
- R. E. L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 4, 513–573. MR 656000
- R. E. L. Turner, A variational approach to surface solitary waves, J. Differential Equations 55 (1984), no. 3, 401–438. MR 766131, DOI 10.1016/0022-0396(84)90077-9
- Kristoffer Varholm, Solitary gravity-capillary water waves with point vortices, Discrete Contin. Dyn. Syst. 36 (2016), no. 7, 3927–3959. MR 3485858, DOI 10.3934/dcds.2016.36.3927
- Kristoffer Varholm, Global bifurcation of waves with multiple critical layers, SIAM J. Math. Anal. 52 (2020), no. 5, 5066–5089. MR 4164492, DOI 10.1137/19M1274845
- Kristoffer Varholm, Erik Wahlén, and Samuel Walsh, On the stability of solitary water waves with a point vortex, Comm. Pure Appl. Math. 73 (2020), no. 12, 2634–2684. MR 4164269, DOI 10.1002/cpa.21891
- Theodore von Kármán, The engineer grapples with non-linear problems, Bull. Amer. Math. Soc. 46 (1940), 615–683. MR 3131, DOI 10.1090/S0002-9904-1940-07266-0
- Erik Wahlén, Steady water waves with a critical layer, J. Differential Equations 246 (2009), no. 6, 2468–2483. MR 2498849, DOI 10.1016/j.jde.2008.10.005
- E. Wahlén, Non-existence of three-dimensional travelling water waves with constant non-zero vorticity, J. Fluid Mech. 746 (2014), R2, 7. MR 3868583, DOI 10.1017/jfm.2014.131
- Samuel Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal. 41 (2009), no. 3, 1054–1105. MR 2529956, DOI 10.1137/080721583
- S. Walsh, Steady stratified periodic gravity waves with surface tension I: Local bifurcation, Discrete Contin. Dyn. Syst. Ser. A 34 (2014), no. 8, 3287–3315.
- S. Walsh, Steady stratified periodic gravity waves with surface tension II: Global bifurcation, Discrete Contin. Dyn. Syst. Ser. A 34 (2014), no. 8, 3241–3285.
- Samuel Walsh, Oliver Bühler, and Jalal Shatah, Steady water waves in the presence of wind, SIAM J. Math. Anal. 45 (2013), no. 4, 2182–2227. MR 3073648, DOI 10.1137/120880124
- Ling-Jun Wang, Small-amplitude solitary and generalized solitary traveling waves in a gravity two-layer fluid with vorticity, Nonlinear Anal. 150 (2017), 159–193. MR 3584939, DOI 10.1016/j.na.2016.11.012
- X. P. Wang, M. J. Ablowitz, and H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Phys. D 78 (1994), no. 3-4, 241–265. MR 1302410, DOI 10.1016/0167-2789(94)90118-X
- Xuecheng Wang, Global solution for the 3D gravity water waves system above a flat bottom, Adv. Math. 346 (2019), 805–886. MR 3914181, DOI 10.1016/j.aim.2019.02.020
- Zhan Wang and Paul A. Milewski, Dynamics of gravity-capillary solitary waves in deep water, J. Fluid Mech. 708 (2012), 480–501. MR 2975453, DOI 10.1017/jfm.2012.320
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Miles H. Wheeler, Large-amplitude solitary water waves with vorticity, SIAM J. Math. Anal. 45 (2013), no. 5, 2937–2994. MR 3106477, DOI 10.1137/120891460
- Miles H. Wheeler, Solitary water waves of large amplitude generated by surface pressure, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 1131–1187. MR 3375547, DOI 10.1007/s00205-015-0877-7
- Miles H. Wheeler, Integral and asymptotic properties of solitary waves in deep water, Comm. Pure Appl. Math. 71 (2018), no. 10, 1941–1956. MR 3861071, DOI 10.1002/cpa.21786
- Miles H. Wheeler, On stratified water waves with critical layers and Coriolis forces, Discrete Contin. Dyn. Syst. 39 (2019), no. 8, 4747–4770. MR 3986308, DOI 10.3934/dcds.2019193
- Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math. 130 (1997), no. 1, 39–72. MR 1471885, DOI 10.1007/s002220050177
- Sijue Wu, Global wellposedness of the 3-D full water wave problem, Invent. Math. 184 (2011), no. 1, 125–220. MR 2782254, DOI 10.1007/s00222-010-0288-1
- M. Yanowitch, Gravity waves in a heterogeneous incompressible fluid, Comm. Pure Appl. Math. 15 (1962), 45–61. MR 165792, DOI 10.1002/cpa.3160150104
- V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190–194.
References
- Mark J. Ablowitz and Harvey Segur, On the evolution of packets of water waves, J. Fluid Mech. 92 (1979), no. 4, 691–715. MR 544892, DOI 10.1017/S0022112079000835
- Benjamin F. Akers and Jonah A. Reeger, Three-dimensional overturned traveling water waves, Wave Motion 68 (2017), 210–217. MR 3576428, DOI 10.1016/j.wavemoti.2016.10.001
- David M. Ambrose, Walter A. Strauss, and J. Douglas Wright, Global bifurcation theory for periodic traveling interfacial gravity-capillary waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 4, 1081–1101. MR 3519533, DOI 10.1016/j.anihpc.2015.03.005
- Charles J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 3, 441–499. MR 785621
- C. J. Amick, Bounds for water waves, Arch. Rational Mech. Anal. 99 (1987), no. 2, 91–114. MR 886932, DOI 10.1007/BF00275873
- C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math. 148 (1982), 193–214. MR 666110, DOI 10.1007/BF02392728
- C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A 303 (1981), no. 1481, 633–669. MR 647410, DOI 10.1098/rsta.1981.0231
- C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal. 76 (1981), no. 1, 9–95. MR 629699, DOI 10.1007/BF00250799
- C. J. Amick and J. F. Toland, The limiting form of internal waves, Proc. Roy. Soc. London Ser. A 394 (1984), no. 1807, 329–344. MR 763506
- C. J. Amick and J. F. Toland, Solitary waves with surface tension. I. Trajectories homoclinic to periodic orbits in four dimensions, Arch. Rational Mech. Anal. 118 (1992), no. 1, 37–69. MR 1151926, DOI 10.1007/BF00375691
- C. J. Amick and R. E. L. Turner, A global theory of internal solitary waves in two-fluid systems, Trans. Amer. Math. Soc. 298 (1986), no. 2, 431–484. MR 860375, DOI 10.2307/2000631
- C. J. Amick and R. E. L. Turner, Small internal waves in two-fluid systems, Arch. Rational Mech. Anal. 108 (1989), no. 2, 111–139. MR 1011554 (90h:76037)
- Vladimir Arnol′d, Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris 261 (1965), 17–20 (French). MR 180949
- V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361 (French). MR 202082
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. MR 1612569
- A. I. Aptekareva and N. G. Afendikovaa, About the works of K. I. Babenko in the field of mechanics and applied mathematics (on the 100th anniversary of his birth), Mechanics of Solids 55 (7) (2020), 919–925. Russian text: Prikladnaya Matematika i Mekhanika 84 (1) (2020), 3–12.
- K. I. Babenko, Some remarks on the theory of surface waves of finite amplitude, Dokl. Akad. Nauk SSSR 294 (1987), no. 5, 1033–1037 (Russian). MR 898306
- G. S. Bagri and M. D. Groves, A spatial dynamics theory for doubly periodic travelling gravity-capillary surface waves on water of infinite depth, J. Dynam. Differential Equations 27 (2015), no. 3-4, 343–370. MR 3435116, DOI 10.1007/s10884-013-9346-x
- Pietro Baldi, Massimiliano Berti, Emanuele Haus, and Riccardo Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. Math. 214 (2018), no. 2, 739–911. MR 3867631, DOI 10.1007/s00222-018-0812-2
- A. M. Balk, A Lagrangian for water waves, Phys. Fluids 8 (1996), no. 2, 416–420. MR 1371522, DOI 10.1063/1.868795
- Cristian Barbarosie, Representation of divergence-free vector fields, Quart. Appl. Math. 69 (2011), no. 2, 309–316. MR 2814529, DOI 10.1090/S0033-569X-2011-01215-2
- J. Thomas Beale, The existence of solitary water waves, Comm. Pure Appl. Math. 30 (1977), no. 4, 373–389. MR 445136, DOI 10.1002/cpa.3160300402
- T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A 269 (1971), 587–643. MR 446075, DOI 10.1098/rsta.1971.0053
- T. B. Benjamin, Gravity currents and related phenomena, J. Fluid Mech. 31 (1968), no. 2, 209–248.
- T. Brooke Benjamin, Impulse, flow force and variational principles, IMA J. Appl. Math. 32 (1984), no. 1-3, 3–68. MR 740456, DOI 10.1093/imamat/32.1-3.3
- D. J. Benney and G. Roskes, Wave instabilities, Stud. Appl. Math. 48 (1969), 377–385.
- J. L. Bona, D. K. Bose, and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9) 62 (1983), no. 4, 389–439 (1984). MR 735931
- M. J. Boussinesq, Essai sur la théorie des eaux courantes, Mém. Acad. Sci. Inst. F. (2) 23 (1877), 1–68.
- Thomas J. Bridges and Alexander Mielke, A proof of the Benjamin-Feir instability, Arch. Rational Mech. Anal. 133 (1995), no. 2, 145–198. MR 1367360, DOI 10.1007/BF00376815
- B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation, Arch. Ration. Mech. Anal. 173 (2004), no. 1, 25–68. MR 2073504, DOI 10.1007/s00205-004-0310-0
- Boris Buffoni, Edward Norman Dancer, and John Francis Toland, Sur les ondes de Stokes et une conjecture de Levi-Civita, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 11, 1265–1268 (French, with English and French summaries). MR 1649134, DOI 10.1016/S0764-4442(98)80176-6
- B. Buffoni, E. N. Dancer, and J. F. Toland, The regularity and local bifurcation of steady periodic water waves, Arch. Ration. Mech. Anal. 152 (2000), no. 3, 207–240. MR 1764945, DOI 10.1007/s002050000086
- B. Buffoni, E. N. Dancer, and J. F. Toland, The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal. 152 (2000), no. 3, 241–271. MR 1764946, DOI 10.1007/s002050000087
- B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory, Arch. Ration. Mech. Anal. 146 (1999), no. 3, 183–220. MR 1720395, DOI 10.1007/s002050050141
- B. Buffoni, M. D. Groves, S. M. Sun, and E. Wahlén, Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves, J. Differential Equations 254 (2013), no. 3, 1006–1096. MR 2997362, DOI 10.1016/j.jde.2012.10.007
- Boris Buffoni, Mark D. Groves, and Erik Wahlén, A variational reduction and the existence of a fully localised solitary wave for the three-dimensional water-wave problem with weak surface tension, Arch. Ration. Mech. Anal. 228 (2018), no. 3, 773–820. MR 3780138, DOI 10.1007/s00205-017-1205-1
- B. Buffoni, M. D. Groves, and E. Wahlén, Fully localised three-dimensional gravity-capillary solitary waves on water of infinite-depth, preprint, arXiv:2108.05973, 2021.
- B. Buffoni, É. Séré, and J. F. Toland, Surface water waves as saddle points of the energy, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 199–220. MR 1986319, DOI 10.1007/s00526-002-0166-9
- B. Buffoni, É. Séré, and J. F. Toland, Minimization methods for quasi-linear problems with an application to periodic water waves, SIAM J. Math. Anal. 36 (2005), no. 4, 1080–1094. MR 2139201, DOI 10.1137/S0036141003432766
- Boris Buffoni and John Francis Toland, Dual free boundaries for Stokes waves, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 73–78 (English, with English and French summaries). MR 1805631, DOI 10.1016/S0764-4442(00)01761-4
- Boris Buffoni and John Toland, Analytic theory of global bifurcation, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003. An introduction. MR 1956130, DOI 10.1515/9781400884339
- Oliver Bühler, Jalal Shatah, Samuel Walsh, and Chongchun Zeng, On the wind generation of water waves, Arch. Ration. Mech. Anal. 222 (2016), no. 2, 827–878. MR 3544318, DOI 10.1007/s00205-016-1012-0
- Robert B. Burckel, An introduction to classical complex analysis. Vol. 1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 555733
- Luis A. Caffarelli, David Jerison, and Carlos E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2) 155 (2002), no. 2, 369–404. MR 1906591, DOI 10.2307/3062121
- Daomin Cao, Norman E. Dancer, Ezzat S. Noussair, and Shunsen Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems 2 (1996), no. 2, 221–236. MR 1382508, DOI 10.3934/dcds.1996.2.221
- A. R. Champneys, Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems, Nonlinearity 14 (2001), no. 1, 87–112. MR 1808625, DOI 10.1088/0951-7715/14/1/305
- G. A. Chandler and I. G. Graham, The computation of water waves modelled by Nekrasov’s equation, SIAM J. Numer. Anal. 30 (1993), no. 4, 1041–1065. MR 1231326, DOI 10.1137/0730054
- Shu-Ming Chang, Stephen Gustafson, Kenji Nakanishi, and Tai-Peng Tsai, Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070–1111. MR 2368894, DOI 10.1137/050648389
- B. Chen and P. G. Saffman, Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math. 62 (1980), no. 1, 1–21. MR 557677, DOI 10.1002/sapm19806211
- Robin Ming Chen and Samuel Walsh, Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal. 219 (2016), no. 2, 741–792. MR 3437862, DOI 10.1007/s00205-015-0906-6
- R. M. Chen and S. Walsh, Orbital stability of internal waves, preprint, arXiv:2102.13590, 2021, to appear in Commun. Math. Phys., DOI:10.1007/s00220-022-04332-x.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Existence and qualitative theory for stratified solitary water waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 2, 517–576. MR 3765551, DOI 10.1016/j.anihpc.2017.06.003
- R. M. Chen, S. Walsh, and M. H. Wheeler, Center manifolds without a phase space for quasilinear problems in elasticity, biology, and hydrodynamics, Nonlinearity 35 (2022), no. 4, 1927–1985, DOI 10.1088/1361-6544/ac5096.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Existence, nonexistence, and asymptotics of deep water solitary waves with localized vorticity, Arch. Ration. Mech. Anal. 234 (2019), no. 2, 595–633. MR 3995048, DOI 10.1007/s00205-019-01399-0
- R. M. Chen, S. Walsh, and M. H. Wheeler, Global bifurcation for monotone fronts of elliptic equations, preprint, arXiv:2005.00651, 2020.
- Robin Ming Chen, Samuel Walsh, and Miles H. Wheeler, Large-amplitude internal fronts in two-fluid systems, C. R. Math. Acad. Sci. Paris 358 (2020), no. 9-10, 1073–1083 (English, with English and French summaries). MR 4196778, DOI 10.5802/crmath.128
- Rolci Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Comm. Partial Differential Equations 17 (1992), no. 5-6, 967–988. MR 1177301, DOI 10.1080/03605309208820872
- Rolci Cipolatti, On the instability of ground states for a Davey-Stewartson system, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), no. 1, 85–104 (English, with English and French summaries). MR 1208793
- Adrian Constantin and Joachim Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011), no. 1, 559–568. MR 2753609, DOI 10.4007/annals.2011.173.1.12
- Adrian Constantin and Walter Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 (2004), no. 4, 481–527. MR 2027299, DOI 10.1002/cpa.3046
- Adrian Constantin and Walter Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math. 63 (2010), no. 4, 533–557. MR 2604871, DOI 10.1002/cpa.20299
- Adrian Constantin and Walter Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal. 202 (2011), no. 1, 133–175. MR 2835865, DOI 10.1007/s00205-011-0412-4
- Adrian Constantin, Walter Strauss, and Eugen Vărvărucă, Global bifurcation of steady gravity water waves with critical layers, Acta Math. 217 (2016), no. 2, 195–262. MR 3689941, DOI 10.1007/s11511-017-0144-x
- Adrian Constantin and Eugen Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation, Arch. Ration. Mech. Anal. 199 (2011), no. 1, 33–67. MR 2754336, DOI 10.1007/s00205-010-0314-x
- D. Córdoba and E. Di Iorio, Existence of gravity-capillary crapper waves with concentrated vorticity, preprint, arXiv:2106.15923, 2021.
- Walter Craig, Non-existence of solitary water waves in three dimensions, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (2002), no. 1799, 2127–2135. Recent developments in the mathematical theory of water waves (Oberwolfach, 2001). MR 1949966, DOI 10.1098/rsta.2002.1065
- W. Craig, P. Guyenne, and C. Sulem, Water waves over a random bottom, J. Fluid Mech. 640 (2009), 79–107. MR 2565938, DOI 10.1017/S0022112009991248
- Walter Craig and David P. Nicholls, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal. 32 (2000), no. 2, 323–359. MR 1781220, DOI 10.1137/S0036141099354181
- Walter Craig and David P. Nicholls, Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids 21 (2002), no. 6, 615–641. MR 1947187, DOI 10.1016/S0997-7546(02)01207-4
- W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108 (1993), no. 1, 73–83. MR 1239970, DOI 10.1006/jcph.1993.1164
- Walter Craig and Peter Sternberg, Symmetry of solitary waves, Comm. Partial Differential Equations 13 (1988), no. 5, 603–633. MR 919444, DOI 10.1080/03605308808820554
- Alex D. D. Craik, The origins of water wave theory, Annual review of fluid mechanics. Vol. 36, Annu. Rev. Fluid Mech., vol. 36, Annual Reviews, Palo Alto, CA, 2004, pp. 1–28. MR 2062306, DOI 10.1146/annurev.fluid.36.050802.122118
- Alex D. D. Craik, George Gabriel Stokes on water wave theory, Annual review of fluid mechanics. Vol. 37, Annu. Rev. Fluid Mech., vol. 37, Annual Reviews, Palo Alto, CA, 2005, pp. 23–42. MR 2115337, DOI 10.1146/annurev.fluid.37.061903.175836
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- G. D. Crapper, An exact solution for progressive capillary waves of arbitrary amplitude, J. Fluid Mech. 2 (1957), 532–540. MR 91075, DOI 10.1017/S0022112057000348
- E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc. (3) 26 (1973), 359–384. MR 322615, DOI 10.1112/plms/s3-26.2.359
- E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. London Math. Soc. (3) 27 (1973), 747–765. MR 375019, DOI 10.1112/plms/s3-27.4.747
- Olivier Darrigol, The spirited horse, the engineer, and the mathematician: water waves in nineteenth-century hydrodynamics, Arch. Hist. Exact Sci. 58 (2003), no. 1, 21–95. MR 2020055, DOI 10.1007/s00407-003-0070-5
- A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101–110. MR 349126, DOI 10.1098/rspa.1974.0076
- A. de Bouard and J. C. Saut, Remarks on the stability of generalized KP solitary waves, Mathematical problems in the theory of water waves (Luminy, 1995) Contemp. Math., vol. 200, Amer. Math. Soc., Providence, RI, 1996, pp. 75–84. MR 1410501, DOI 10.1090/conm/200/02510
- Anne de Bouard and Jean-Claude Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 2, 211–236 (English, with English and French summaries). MR 1441393, DOI 10.1016/S0294-1449(97)80145-X
- Shengfu Deng and Shu-Ming Sun, Three-dimensional gravity-capillary waves on water—small surface tension case, Phys. D 238 (2009), no. 17, 1735–1751. MR 2574421, DOI 10.1016/j.physd.2009.05.012
- Shengfu Deng and Shu-Ming Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal. 42 (2010), no. 6, 2721–2761. MR 2745790, DOI 10.1137/09077922X
- Yu Deng, Alexandru D. Ionescu, Benoît Pausader, and Fabio Pusateri, Global solutions of the gravity-capillary water-wave system in three dimensions, Acta Math. 219 (2017), no. 2, 213–402. MR 3784694, DOI 10.4310/ACTA.2017.v219.n2.a1
- F. Dias and J.-M. Vanden-Broeck, On internal fronts, J. Fluid Mech. 479 (2003), 145–154. MR 2011822, DOI 10.1017/S0022112002003609
- Frédéric Dias and Gérard Iooss, Water-waves as a spatial dynamical system, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 443–499. MR 1984157, DOI 10.1016/S1874-5792(03)80012-5
- Frédéric Dias and Christian Kharif, Nonlinear gravity and capillary-gravity waves, Annual review of fluid mechanics, Vol. 31, Annu. Rev. Fluid Mech., vol. 31, Annual Reviews, Palo Alto, CA, 1999, pp. 301–346. MR 1670945, DOI 10.1146/annurev.fluid.31.1.301
- V. D. Djordjević and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 (1977), no. 4, 703–714. MR 443555, DOI 10.1017/S0022112077000408
- M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie, NUMDAM, [place of publication not identified], 1934 (French). MR 3533020
- M.-L. Dubreil-Jacotin, Sur les theoremes d’existence relatifs aux ondes permanentes periodiques a deux dimensions dans les liquides heterogenes, J. Math. Pures Appl. 16 (1937), no. 9, 43–67.
- A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A 221 (1996), no. 1, 73–79.
- S. A. Dyachenko, P. M. Lushnikov, and A. O. Korotkevich, The complex singularity of a Stokes wave, JETP Lett. 98 (2013), no. 11, 767–771.
- S. A. Dyachenko, P. M. Lushnikov, and A. O. Korotkevich, Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Padé approximation, Stud. Appl. Math. 137 (2016), no. 4, 419–472. MR 3570991, DOI 10.1111/sapm.12128
- Sergey A. Dyachenko and Vera Mikyoung Hur, Stokes waves with constant vorticity: I. Numerical computation, Stud. Appl. Math. 142 (2019), no. 2, 162–189. MR 3915685, DOI 10.1111/sapm.12250
- Sergey A. Dyachenko and Vera Mikyoung Hur, Stokes waves with constant vorticity: folds, gaps and fluid bubbles, J. Fluid Mech. 878 (2019), 502–521. MR 4010456, DOI 10.1017/jfm.2019.634
- S. A. Dyachenko and V. M. Hur, Stokes waves in a constant vorticity flow, Nonlinear Water Waves, Tutorials, Schools, and Workshops in the Mathematical Sciences, Birkhäuser, Basel, 2019, 18 pp.
- S. A. Dyachenko, V. M. Hur, and D. A. Silantyev, Almost extreme waves, preprint, 2021.
- Mats Ehrnström and Mark D. Groves, Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation, Nonlinearity 31 (2018), no. 12, 5351–5384. MR 3871845, DOI 10.1088/1361-6544/aadf3f
- M. Ehrnström, S. Walsh, and C. Zeng, Smooth stationary water waves with exponentially localized vorticity, J. Eur. Math. Soc. (JEMS) (2020), to appear, DOI 10.4171/jems/1204.
- Alberto Enciso and Daniel Peralta-Salas, Beltrami fields with a nonconstant proportionality factor are rare, Arch. Ration. Mech. Anal. 220 (2016), no. 1, 243–260. MR 3458163, DOI 10.1007/s00205-015-0931-5
- Alberto Enciso and Daniel Peralta-Salas, Existence of knotted vortex structures in stationary solutions of the Euler equations, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2018, pp. 133–153. MR 3887764
- A. Enciso, D. Peralta-Salas, and Á. Romaniega, Beltrami fields exhibit knots and chaos almost surely, preprint, arXiv:2006.15033, 2020.
- Joachim Escher, Patrik Knopf, Christina Lienstromberg, and Bogdan-Vasile Matioc, Stratified periodic water waves with singular density gradients, Ann. Mat. Pura Appl. (4) 199 (2020), no. 5, 1923–1959. MR 4142857, DOI 10.1007/s10231-020-00950-1
- Joachim Escher, Anca-Voichita Matioc, and Bogdan-Vasile Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations 251 (2011), no. 10, 2932–2949. MR 2831719, DOI 10.1016/j.jde.2011.03.023
- Grégory Faye and Arnd Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc. 370 (2018), no. 8, 5843–5885. MR 3803149, DOI 10.1090/tran/7190
- I. G. Filippov, Solution of the problem of the motion of a vortex under the surface of a fluid, for Froude numbers near unity, J. Appl. Math. Mech. 24 (1960), 698–716. MR 0128208, DOI 10.1016/0021-8928(60)90176-3
- I. G. Filippov, On the motion of a vortex below the surface of a liquid, J. Appl. Math. Mech. 25 (1961), 357–365. MR 0151069
- K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Comm. Pure Appl. Math. 7 (1954), 517–550. MR 65317, DOI 10.1002/cpa.3160070305
- Robert A. Fuchs, On the theory of short-crested oscillatory waves, Gravity Waves, National Bureau of Standards Circular 521, U.S. Government Printing Office, Washington, D.C., 1952, pp. 187–200. MR 0055094
- Thierry Gallay, Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal. 200 (2011), no. 2, 445–490. MR 2787587, DOI 10.1007/s00205-010-0362-2
- P. Germain, N. Masmoudi, and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2) 175 (2012), no. 2, 691–754. MR 2993751, DOI 10.4007/annals.2012.175.2.6
- Olivier Glass, Alexandre Munnier, and Franck Sueur, Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid, Invent. Math. 214 (2018), no. 1, 171–287. MR 3858400, DOI 10.1007/s00222-018-0802-4
- Harold Grad, Mathematical problems arising in plasma physics, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 105–113. MR 0421280
- M. D. Groves, Three-dimensional travelling gravity-capillary water waves, GAMM-Mitt. 30 (2007), no. 1, 8–43. MR 2324393, DOI 10.1002/gamm.200790013
- M. D. Groves and M. Haragus, A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci. 13 (2003), no. 4, 397–447. MR 1992382, DOI 10.1007/s00332-003-0530-8
- M. D. Groves and J. Horn, A variational formulation for steady surface water waves on a Beltrami flow, Proc. A. 476 (2020), no. 2234, 20190495, 20. MR 4088976, DOI 10.1098/rspa.2019.0495
- M. D. Groves and A. Mielke, A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 83–136. MR 1820296, DOI 10.1017/S0308210500000809
- M. D. Groves and S.-M. Sun, Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem, Arch. Ration. Mech. Anal. 188 (2008), no. 1, 1–91. MR 2379653, DOI 10.1007/s00205-007-0085-1
- M. D. Groves, S. M. Sun, and E. Wahlén, A dimension-breaking phenomenon for water waves with weak surface tension, Arch. Ration. Mech. Anal. 220 (2016), no. 2, 747–807. MR 3461361, DOI 10.1007/s00205-015-0941-3
- M. D. Groves, Steady water waves, J. Nonlinear Math. Phys. 11 (2004), no. 4, 435–460. MR 2097656, DOI 10.2991/jnmp.2004.11.4.2
- Mariana Haragus, Transverse dynamics of two-dimensional gravity-capillary periodic water waves, J. Dynam. Differential Equations 27 (2015), no. 3-4, 683–703. MR 3435127, DOI 10.1007/s10884-013-9336-z
- Mariana Haragus and Gérard Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. MR 2759609, DOI 10.1007/978-0-85729-112-7
- Susanna V. Haziot, Stratified large-amplitude steady periodic water waves with critical layers, Comm. Math. Phys. 381 (2021), no. 2, 765–797. MR 4207457, DOI 10.1007/s00220-020-03892-0
- H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858), 25–55 (German). MR 1579057, DOI 10.1515/crll.1858.55.25
- David Henry and Anca-Vocihita Matioc, Global bifurcation of capillary–gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 775–786. MR 3233756, DOI 10.1017/S0308210512001990
- Dan J. Hill, David J. B. Lloyd, and Matthew R. Turner, Localised radial patterns on the free surface of a ferrofluid, J. Nonlinear Sci. 31 (2021), no. 5, Paper No. 79, 99. MR 4292778, DOI 10.1007/s00332-021-09719-z
- Vera Mikyoung Hur, Global bifurcation theory of deep-water waves with vorticity, SIAM J. Math. Anal. 37 (2006), no. 5, 1482–1521. MR 2215274, DOI 10.1137/040621168
- Vera Mikyoung Hur, Stokes waves with vorticity, J. Anal. Math. 113 (2011), 331–386. MR 2788362, DOI 10.1007/s11854-011-0010-2
- Vera Mikyoung Hur and Jean-Marc Vanden-Broeck, A new application of Crapper’s exact solution to waves in constant vorticity flows, Eur. J. Mech. B Fluids 83 (2020), 0–4. MR 4102022, DOI 10.1016/j.euromechflu.2020.04.015
- Vera Mikyoung Hur and Miles H. Wheeler, Exact free surfaces in constant vorticity flows, J. Fluid Mech. 896 (2020), R1, 10. MR 4111654, DOI 10.1017/jfm.2020.390
- V. M. Hur and M. H. Wheeler, Overhanging and touching waves in constant vorticity flows, preprint, 2021.
- Gérard Iooss and Pavel Plotnikov, Existence of multimodal standing gravity waves, J. Math. Fluid Mech. 7 (2005), no. suppl. 3, S349–S364. MR 2168247, DOI 10.1007/s00021-005-0164-8
- Gérard Iooss and Pavel Plotnikov, Multimodal standing gravity waves: a completely resonant system, J. Math. Fluid Mech. 7 (2005), no. suppl. 1, S110–S126. MR 2126133, DOI 10.1007/s00021-004-0128-4
- Gérard Iooss and Pavel Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 789–880. MR 2796133, DOI 10.1007/s00205-010-0372-0
- Gérard Iooss and Pavel I. Plotnikov, Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc. 200 (2009), no. 940, viii+128. MR 2529006, DOI 10.1090/memo/0940
- G. Iooss, P. I. Plotnikov, and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 (2005), no. 3, 367–478. MR 2187619, DOI 10.1007/s00205-005-0381-6
- Guillaume James, Small amplitude steady internal waves in stratified fluids, Ann. Univ. Ferrara Sez. VII (N.S.) 43 (1997), 65–119 (1998) (English, with English and Italian summaries). MR 1686749
- Guillaume James, Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Ration. Mech. Anal. 160 (2001), no. 1, 41–90. MR 1864121, DOI 10.1007/s002050100160
- M. A. Johnson, T. Truong, and M. H. Wheeler, Solitary waves in a Whitham equation with small surface tension, Stud. Appl. Math. 148 (2022), no. 2, 773–812.
- B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), 539–541 (English, Russian original).
- G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 137–157. MR 502787, DOI 10.1017/S0305004100054372
- Boguk Kim and T. R. Akylas, On gravity-capillary lumps, J. Fluid Mech. 540 (2005), 337–351. MR 2263130, DOI 10.1017/S0022112005005823
- K. Kirchgässner and K. Lankers, Structure of permanent waves in density-stratified media, Meccanica 28 (1993), 269–276.
- Klaus Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations 45 (1982), no. 1, 113–127. MR 662490, DOI 10.1016/0022-0396(82)90058-4
- G. R. Kirchhoff, Vorlesungen über mathematische physik: mechanik, vol. 1, Teubner, 1876.
- P. Kirrmann, Reduktion nichtlinearer elliptischer systeme in zylindergebeiten unter verwendung von optimaler regularität in hölder-räumen, Ph.D. Thesis, Universität Stuttgart, 1991.
- C. Klein and J.-C. Saut, Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations, J. Nonlinear Sci. 22 (2012), no. 5, 763–811. MR 2982052, DOI 10.1007/s00332-012-9127-4
- Vladimir Kozlov, Evgeniy Lokharu, and Miles H. Wheeler, Nonexistence of subcritical solitary waves, Arch. Ration. Mech. Anal. 241 (2021), no. 1, 535–552. MR 4271966, DOI 10.1007/s00205-021-01659-y
- Ju. P. Krasovskiĭ, On the theory of steady-state waves of finite amplitude, Ž. Vyčisl. Mat i Mat. Fiz. 1 (1961), 836–855 (Russian). MR 138284
- N. G. Kuznetsov, A tale of two Nekrasov equations, arXiv:2009.01754, 2020.
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in ${\mathbf {R}}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- O. Laget and F. Dias, Numerical computation of capillary-gravity interfacial solitary waves, J. Fluid Mech. 349 (1997), 221–251. MR 1480072, DOI 10.1017/S0022112097006861
- Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
- Kevin G. Lamb, Conjugate flows for a three-layer fluid, Phys. Fluids 12 (2000), no. 9, 2169–2185. MR 1780436, DOI 10.1063/1.1287652
- Katharina Lankers and Gero Friesecke, Fast, large-amplitude solitary waves in the $2$D Euler equations for stratified fluids, Nonlinear Anal. 29 (1997), no. 9, 1061–1078. MR 1460439, DOI 10.1016/S0362-546X(96)00089-2
- David Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005), no. 3, 605–654. MR 2138139, DOI 10.1090/S0894-0347-05-00484-4
- D. Lannes, A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 481–567. MR 3035985
- David Lannes, The water waves problem, Mathematical Surveys and Monographs, vol. 188, American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics. MR 3060183, DOI 10.1090/surv/188
- David Lannes, On the dynamics of floating structures, Ann. PDE 3 (2017), no. 1, Paper No. 11, 81. MR 3645931, DOI 10.1007/s40818-017-0029-5
- M. A. Lavrent′ev, I. On the theory of long waves. II. A contribution to the theory of long waves, Amer. Math. Soc. Translation 1954 (1954), no. 102, 53. MR 0061952
- Hung Le, Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind, Discrete Contin. Dyn. Syst. 38 (2018), no. 7, 3357–3385. MR 3809086, DOI 10.3934/dcds.2018144
- Hung Le, On the existence and instability of solitary water waves with a finite dipole, SIAM J. Math. Anal. 51 (2019), no. 5, 4074–4104. MR 4019191, DOI 10.1137/18M1231638
- T. Levi-Civita, Determinazione rigorosa delle onde irrotazionali periodiche in acqua profonda, Rend. Accad. Lincei 33 (1924), 141–150.
- Yanyan Li and Louis Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1445–1490. MR 1639159, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12$\langle$1445::AID-CPA9$\rangle$3.3.CO;2-Q
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI 10.1016/0022-0396(88)90147-7
- Zhiwu Lin, On linear instability of 2D solitary water waves, Int. Math. Res. Not. IMRN 7 (2009), 1247–1303. MR 2495304, DOI 10.1093/imrn/rnn158
- Yong Liu and Juncheng Wei, Nondegeneracy, Morse index and orbital stability of the KP-I lump solution, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389. MR 4011698, DOI 10.1007/s00205-019-01413-5
- Yue Liu and Xiao-Ping Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys. 183 (1997), no. 2, 253–266. MR 1461958, DOI 10.1007/BF02506406
- E. Lokharu, D. S. Seth, and E. Wahlén, An existence theory for small-amplitude doubly periodic water waves with vorticity, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 607–637. MR 4134147, DOI 10.1007/s00205-020-01550-2
- E. Lokharu and E. Wahlén, A variational principle for three-dimensional water waves over Beltrami flows, Nonlinear Anal. 184 (2019), 193–209. MR 3921103, DOI 10.1016/j.na.2019.01.028
- Evgeniy Lokharu, On bounds for steady waves with negative vorticity, J. Math. Fluid Mech. 23 (2021), no. 2, Paper No. 37, 11. MR 4228659, DOI 10.1007/s00021-021-00567-1
- E. Lokharu, A sharp version of the Benjamin and Lighthill conjecture for steady waves with vorticity, preprint, arXiv:2011.14605, 2020.
- Eric Lombardi, Oscillatory integrals and phenomena beyond all algebraic orders, Lecture Notes in Mathematics, vol. 1741, Springer-Verlag, Berlin, 2000. With applications to homoclinic orbits in reversible systems. MR 1770093, DOI 10.1007/BFb0104102
- M. S. Longuet-Higgins and M. J. H. Fox, Theory of the almost-highest wave: the inner solution, J. Fluid Mech. 80 (1977), no. 4, 721–741. MR 452143, DOI 10.1017/S0022112077002444
- M. S. Longuet-Higgins and M. J. H. Fox, Theory of the almost-highest wave. II. Matching and analytic extension, J. Fluid Mech. 85 (1978), no. 4, 769–786. MR 502858, DOI 10.1017/S0022112078000920
- M. S. Longuet-Higgins, Some new relations between Stokes’s coefficients in the theory of gravity waves, J. Inst. Math. Appl. 22 (1978), no. 3, 261–273. MR 516545
- Dietrich Lortz, Über die Existenz toroidaler magnetohydrostatischer Gleichgewichte ohne Rotationstransformation, Z. Angew. Math. Phys. 21 (1970), 196–211 (German, with English summary). MR 261852, DOI 10.1007/BF01590644
- Pavel M. Lushnikov, Structure and location of branch point singularities for Stokes waves on deep water, J. Fluid Mech. 800 (2016), 557–594. MR 3521330, DOI 10.1017/jfm.2016.405
- Pavel M. Lushnikov, Sergey A. Dyachenko, and Denis A. Silantyev, New conformal mapping for adaptive resolving of the complex singularities of Stokes wave, Proc. A. 473 (2017), no. 2202, 20170198, 19. MR 3672665, DOI 10.1098/rspa.2017.0198
- N. I. Makarenko, Smooth bore in a two-layer fluid, Free boundary problems in continuum mechanics (Novosibirsk, 1991) Internat. Ser. Numer. Math., vol. 106, Birkhäuser, Basel, 1992, pp. 195–204. MR 1229538
- N. I. Makarenko, Conjugate flows and smooth bores in a weakly stratified fluid, Prikl. Mekh. Tekhn. Fiz. 40 (1999), no. 2, 69–78 (Russian, with Russian summary); English transl., J. Appl. Mech. Tech. Phys. 40 (1999), no. 2, 249–257. MR 1711960, DOI 10.1007/BF02468521
- S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A 63 (1977), no. 3, 205–206.
- Carlo Marchioro and Mario Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys. 154 (1993), no. 1, 49–61. MR 1220946
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- C. I. Martin, Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity, Phys. of Fluids 30 (2018), no. 10, 107102.
- J. B. McLeod, The Froude number for solitary waves, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 193–197. MR 751191, DOI 10.1017/S0308210500031978
- J. B. McLeod, The Stokes and Krasovskiĭconjectures for the wave of greatest height, Stud. Appl. Math. 98 (1997), no. 4, 311–333. MR 1446239, DOI 10.1111/1467-9590.00051
- A. Mielke, P. Holmes, and O. O’Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differential Equations 4 (1992), no. 1, 95–126. MR 1150399, DOI 10.1007/BF01048157
- Alexander Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci. 10 (1988), no. 1, 51–66. MR 929221, DOI 10.1002/mma.1670100105
- Alexander Mielke, Homoclinic and heteroclinic solutions in two-phase flow, Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994) Adv. Ser. Nonlinear Dynam., vol. 7, World Sci. Publ., River Edge, NJ, 1995, pp. 353–362. MR 1685879
- John W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech. 3 (1957), 185–204. MR 91692, DOI 10.1017/S0022112057000567
- John W. Miles, On the generation of surfaces waves by shear flows. II, J. Fluid Mech. 6 (1959), 568–582. MR 108951, DOI 10.1017/S0022112059000830
- John W. Miles, Solitary waves, Annual review of fluid mechanics, Vol. 12, Annual Reviews, Palo Alto, Calif., 1980, pp. 11–43. MR 565388
- K. Nakayama and K. G. Lamb, Breathers in a three-layer fluid, J. Fluid Mech. 903 (2020), A40, 20. MR 4157455, DOI 10.1017/jfm.2020.653
- A. I. Nekrasov, On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3 (1921).
- H. Q. Nguyen and W. A. Strauss, Proof of modulational instability of Stokes waves in deep water, Comm. Pure Appl. Math. (2021).
- Wei-Ming Ni and Izumi Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819–851. MR 1115095, DOI 10.1002/cpa.3160440705
- Wei-Ming Ni, Izumi Takagi, and Juncheng Wei, On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: intermediate solutions, Duke Math. J. 94 (1998), no. 3, 597–618. MR 1639546, DOI 10.1215/S0012-7094-98-09424-8
- Wei-Ming Ni and Juncheng Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), no. 7, 731–768. MR 1342381, DOI 10.1002/cpa.3160480704
- David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 6, 1411–1433. MR 1869643, DOI 10.1017/S0308210500001463
- David P. Nicholls and Fernando Reitich, Stable, high-order computation of traveling water waves in three dimensions, Eur. J. Mech. B Fluids 25 (2006), no. 4, 406–424. MR 2241379, DOI 10.1016/j.euromechflu.2005.11.003
- Dag Viktor Nilsson, Internal gravity-capillary solitary waves in finite depth, Math. Methods Appl. Sci. 40 (2017), no. 4, 1053–1080. MR 3610717, DOI 10.1002/mma.4036
- Dag Nilsson, Three-dimensional internal gravity-capillary waves in finite depth, Math. Methods Appl. Sci. 42 (2019), no. 12, 4113–4145. MR 3978643, DOI 10.1002/mma.5635
- G. C. Papanicolaou, C. Sulem, P.-L. Sulem, and X. P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves, Phys. D 72 (1994), no. 1-2, 61–86. MR 1270855, DOI 10.1016/0167-2789(94)90167-8
- Robert L. Pego and Shu-Ming Sun, Asymptotic linear stability of solitary water waves, Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1161–1216. MR 3544325, DOI 10.1007/s00205-016-1021-z
- D. Pelinovsky and Y. Stepanyants, New multisoliton solutions of the Kadomtsev-Petviashvili equation, JETP Lett. 57 (1993), 24–28.
- P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves, Dokl. Akad. Nauk SSSR 269 (1983), no. 1, 80–83 (Russian). MR 699357
- P. I. Plotnikov, Nonuniqueness of solutions of a problem on solitary waves, and bifurcations of critical points of smooth functionals, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 2, 339–366 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 2, 333–357. MR 1133302, DOI 10.1070/IM1992v038n02ABEH002202
- P. I. Plotnikov and J. F. Toland, Convexity of Stokes waves of extreme form, Arch. Ration. Mech. Anal. 171 (2004), no. 3, 349–416. MR 2038344, DOI 10.1007/s00205-003-0292-3
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- E. I. Părău, J.-M. Vanden-Broeck, and M. J. Cooker, Nonlinear three-dimensional gravity-capillary solitary waves, J. Fluid Mech. 536 (2005), 99–105. MR 2263898, DOI 10.1017/S0022112005005136
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- John Reeder and Marvin Shinbrot, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal. 5 (1981), no. 3, 303–323. MR 607813, DOI 10.1016/0362-546X(81)90035-3
- Ali Rouhi and Jon Wright, Hamiltonian formulation for the motion of vortices in the presence of a free surface for ideal flow, Phys. Rev. E (3) 48 (1993), no. 3, 1850–1865. MR 1377918, DOI 10.1103/PhysRevE.48.1850
- Per-Olav Rusås and John Grue, Solitary waves and conjugate flows in a three-layer fluid, Eur. J. Mech. B Fluids 21 (2002), no. 2, 185–206. MR 1933937, DOI 10.1016/S0997-7546(01)01163-3
- J. S. Russell, Report on waves, 14th Meeting of the British Association for the Advancement of Science, vol. 311–390, 1844.
- Guido Schneider and C. Eugene Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), no. 12, 1475–1535. MR 1780702, DOI 10.1002/1097-0312(200012)53:12$\langle$1475::AID-CPA1$\rangle$3.0.CO;2-V
- D. S. Seth, K. Varholm, and E. Wahlén, Symmetric doubly periodic gravity-capillary waves with small vorticity, preprint.
- Eugene Shargorodsky, An estimate for the Morse index of a Stokes wave, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 41–59. MR 3054598, DOI 10.1007/s00205-013-0614-z
- E. Shargorodsky and J. F. Toland, A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, 37–52 (English, with English and French summaries). MR 1958161, DOI 10.1016/S0294-1449(02)00006-9
- E. Shargorodsky and J. F. Toland, Riemann-Hilbert theory for problems with vanishing coefficients that arise in nonlinear hydrodynamics, J. Funct. Anal. 197 (2003), no. 1, 283–300. MR 1957684, DOI 10.1016/S0022-1236(02)00097-6
- E. Shargorodsky and J. F. Toland, Bernoulli free-boundary problems, Mem. Amer. Math. Soc. 196 (2008), no. 914, ISBN: 978-0-8218-4189-1.
- Jalal Shatah, Samuel Walsh, and Chongchun Zeng, Travelling water waves with compactly supported vorticity, Nonlinearity 26 (2013), no. 6, 1529–1564. MR 3053431, DOI 10.1088/0951-7715/26/6/1529
- Jalal Shatah and Chongchun Zeng, Local well-posedness for fluid interface problems, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 653–705. MR 2763036, DOI 10.1007/s00205-010-0335-5
- J. A. Simmen and P. G. Saffman, Steady deep-water waves on a linear shear current, Stud. Appl. Math. 73 (1985), no. 1, 35–57. MR 797557, DOI 10.1002/sapm198573135
- Daniel Sinambela, Large-amplitude solitary waves in two-layer density stratified water, SIAM J. Math. Anal. 53 (2021), no. 4, 4812–4864. MR 4305169, DOI 10.1137/20M1383537
- L. N. Sretenskiĭ, Spatial problem of determination of steady waves of finite amplitude, Doklady Akad. Nauk SSSR (N.S.) 89 (1953), 25–28 (Russian). MR 0056403
- Victor P. Starr, Momentum and energy integrals for gravity waves of finite height, J. Marine Res. 6 (1947), 175–193. MR 25371
- G. G. Stokes, On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8 (1847), 441–455.
- G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, vol. 1, Cambridge University Press, 1880, pp. 314–326.
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365
- D. J. Struik, Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie, Math. Ann. 95 (1926), no. 1, 595–634 (French). MR 1512296, DOI 10.1007/BF01206629
- Qingtang Su, Long time behavior of 2D water waves with point vortices, Comm. Math. Phys. 380 (2020), no. 3, 1173–1266. MR 4179726, DOI 10.1007/s00220-020-03885-z
- S. M. Sun, Solitary internal waves in continuously stratified fluids of great depth, Phys. D 166 (2002), no. 1-2, 76–103. MR 1913747, DOI 10.1016/S0167-2789(02)00424-4
- Tien Yu Sun, Three-dimensional steady water waves generated by partially localized pressure disturbances, SIAM J. Math. Anal. 24 (1993), no. 5, 1153–1178. MR 1234010, DOI 10.1137/0524067
- A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988), 281–302. MR 985439, DOI 10.1017/S0022112088002423
- A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988), 281–302. MR 985439, DOI 10.1017/S0022112088002423
- A. M. Ter-Krikorov, Exact solution of the problem of the motion of a vortex under the surface of a liquid, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 177–200 (Russian). MR 0108145
- A. M. Ter-Krikorov, Théorie exacte des ondes longues stationnaires dans un liquide hétérogène, J. Mécanique 2 (1963), 351–376 (French). MR 160400
- J. F. Toland, Stokes Waves, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 7 (1) (1996), 1–48 & 8 (2), 413–414.
- J. F. Toland, Stokes waves in Hardy spaces and as distributions, J. Math. Pures Appl. (9) 79 (2000), no. 9, 901–917 (English, with English and French summaries). MR 1792729, DOI 10.1016/S0021-7824(00)00172-0
- J. F. Toland, On a pseudo-differential equation for Stokes waves, Arch. Ration. Mech. Anal. 162 (2002), no. 2, 179–189. MR 1897380, DOI 10.1007/s002050200195
- J. F. Toland and G. Iooss, Riemann-Hilbert and variational structure for standing waves, Far East J. Appl. Math. 15 (2004), no. 3, 459–488. MR 2108570
- T. Truong, E. Wahlén, and M. H. Wheeler, Global bifurcation of solitary waves for the Whitham equation, Math. Ann. (2021).
- R. E. L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 4, 513–573. MR 656000
- R. E. L. Turner, A variational approach to surface solitary waves, J. Differential Equations 55 (1984), no. 3, 401–438. MR 766131, DOI 10.1016/0022-0396(84)90077-9
- Kristoffer Varholm, Solitary gravity-capillary water waves with point vortices, Discrete Contin. Dyn. Syst. 36 (2016), no. 7, 3927–3959. MR 3485858, DOI 10.3934/dcds.2016.36.3927
- Kristoffer Varholm, Global bifurcation of waves with multiple critical layers, SIAM J. Math. Anal. 52 (2020), no. 5, 5066–5089. MR 4164492, DOI 10.1137/19M1274845
- Kristoffer Varholm, Erik Wahlén, and Samuel Walsh, On the stability of solitary water waves with a point vortex, Comm. Pure Appl. Math. 73 (2020), no. 12, 2634–2684. MR 4164269, DOI 10.1002/cpa.21891
- Theodore von Kármán, The engineer grapples with non-linear problems, Bull. Amer. Math. Soc. 46 (1940), 615–683. MR 3131, DOI 10.1090/S0002-9904-1940-07266-0
- Erik Wahlén, Steady water waves with a critical layer, J. Differential Equations 246 (2009), no. 6, 2468–2483. MR 2498849, DOI 10.1016/j.jde.2008.10.005
- E. Wahlén, Non-existence of three-dimensional travelling water waves with constant non-zero vorticity, J. Fluid Mech. 746 (2014), R2, 7. MR 3868583, DOI 10.1017/jfm.2014.131
- Samuel Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal. 41 (2009), no. 3, 1054–1105. MR 2529956, DOI 10.1137/080721583
- S. Walsh, Steady stratified periodic gravity waves with surface tension I: Local bifurcation, Discrete Contin. Dyn. Syst. Ser. A 34 (2014), no. 8, 3287–3315.
- S. Walsh, Steady stratified periodic gravity waves with surface tension II: Global bifurcation, Discrete Contin. Dyn. Syst. Ser. A 34 (2014), no. 8, 3241–3285.
- Samuel Walsh, Oliver Bühler, and Jalal Shatah, Steady water waves in the presence of wind, SIAM J. Math. Anal. 45 (2013), no. 4, 2182–2227. MR 3073648, DOI 10.1137/120880124
- Ling-Jun Wang, Small-amplitude solitary and generalized solitary traveling waves in a gravity two-layer fluid with vorticity, Nonlinear Anal. 150 (2017), 159–193. MR 3584939, DOI 10.1016/j.na.2016.11.012
- X. P. Wang, M. J. Ablowitz, and H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Phys. D 78 (1994), no. 3-4, 241–265. MR 1302410, DOI 10.1016/0167-2789(94)90118-X
- Xuecheng Wang, Global solution for the 3D gravity water waves system above a flat bottom, Adv. Math. 346 (2019), 805–886. MR 3914181, DOI 10.1016/j.aim.2019.02.020
- Zhan Wang and Paul A. Milewski, Dynamics of gravity-capillary solitary waves in deep water, J. Fluid Mech. 708 (2012), 480–501. MR 2975453, DOI 10.1017/jfm.2012.320
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Miles H. Wheeler, Large-amplitude solitary water waves with vorticity, SIAM J. Math. Anal. 45 (2013), no. 5, 2937–2994. MR 3106477, DOI 10.1137/120891460
- Miles H. Wheeler, Solitary water waves of large amplitude generated by surface pressure, Arch. Ration. Mech. Anal. 218 (2015), no. 2, 1131–1187. MR 3375547, DOI 10.1007/s00205-015-0877-7
- Miles H. Wheeler, Integral and asymptotic properties of solitary waves in deep water, Comm. Pure Appl. Math. 71 (2018), no. 10, 1941–1956. MR 3861071, DOI 10.1002/cpa.21786
- Miles H. Wheeler, On stratified water waves with critical layers and Coriolis forces, Discrete Contin. Dyn. Syst. 39 (2019), no. 8, 4747–4770. MR 3986308, DOI 10.3934/dcds.2019193
- Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math. 130 (1997), no. 1, 39–72. MR 1471885, DOI 10.1007/s002220050177
- Sijue Wu, Global wellposedness of the 3-D full water wave problem, Invent. Math. 184 (2011), no. 1, 125–220. MR 2782254, DOI 10.1007/s00222-010-0288-1
- M. Yanowitch, Gravity waves in a heterogeneous incompressible fluid, Comm. Pure Appl. Math. 15 (1962), 45–61. MR 165792, DOI 10.1002/cpa.3160150104
- V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190–194.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35Q35,
35Q31,
76B15,
76B25,
76B47
Retrieve articles in all journals
with MSC (2020):
35Q35,
35Q31,
76B15,
76B25,
76B47
Additional Information
Susanna V. Haziot
Affiliation:
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
MR Author ID:
1235461
ORCID:
0000-0001-5156-8809
Email:
susanna.haziot@univie.ac.at
Vera Mikyoung Hur
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
MR Author ID:
782185
ORCID:
0000-0003-1563-3102
Email:
verahur@math.uiuc.edu
Walter A. Strauss
Affiliation:
Department of Mathematics and Lefschetz Center for Dynamical Systems, Brown University, Providence, Rhode Island 02912
MR Author ID:
168085
Email:
walter_strauss@brown.edu
J. F. Toland
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
MR Author ID:
173135
ORCID:
0000-0002-6551-0998
Email:
masjft@bath.ac.uk
Erik Wahlén
Affiliation:
Centre for Mathematical Sciences, Lund University, P.O. Box 118, 22100 Lund, Sweden
ORCID:
0000-0002-9495-0642
Email:
erik.wahlen@math.lu.se
Samuel Walsh
Affiliation:
Department of Mathematics, University of Missouri, 202 Math Sciences Building, Columbia, Missouri 65211
MR Author ID:
878234
Email:
walshsa@missouri.edu
Miles H. Wheeler
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
MR Author ID:
920346
ORCID:
0000-0002-7286-9587
Email:
mw2319@bath.ac.uk
Received by editor(s):
September 30, 2021
Received by editor(s) in revised form:
January 5, 2022
Published electronically:
March 14, 2022
Additional Notes:
The work of the first author was partially funded by the Austrian Science Fund (FWF), Grant Z 387-N. The work of the second author was partially funded by the NSF through the award DMS-2009981. The work of the third author was partially funded by the NSF through the award DMS-1812436. The work of the fourth author was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 678698) and the Swedish Research Council (grant nos. 621-2012-3753 and 2016-04999)
Article copyright:
© Copyright 2022
Brown University