Differential equations of quantum mechanics
Author:
I. M. Sigal
Journal:
Quart. Appl. Math. 80 (2022), 451-480
MSC (2020):
Primary 35Q41, 81Q99, 81U24, 35Q56, 35Q70; Secondary 81V10
DOI:
https://doi.org/10.1090/qam/1611
Published electronically:
March 22, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We review very briefly the main mathematical structures and results in some important areas of Quantum Mechanics involving PDEs and formulate open problems.
References
- Abdelmalek Abdesselam, The ground state energy of the massless spin-boson model, Ann. Henri Poincaré 12 (2011), no. 7, 1321–1347. MR 2846670, DOI 10.1007/s00023-011-0103-6
- Abdelmalek Abdesselam and David Hasler, Analyticity of the ground state energy for massless Nelson models, Comm. Math. Phys. 310 (2012), no. 2, 511–536. MR 2890307, DOI 10.1007/s00220-011-1407-6
- Amandine Aftalion, Vortices in Bose-Einstein condensates, Progress in Nonlinear Differential Equations and their Applications, vol. 67, Birkhäuser Boston, Inc., Boston, MA, 2006. MR 2228356, DOI 10.1007/0-8176-4492-X
- A. Aftalion, X. Blanc, and R. L. Jerrard, Supersolid crystals under rotation and sphere packing problems, Nonlinearity 22 (2009), 1589–1614.
- A. Aftalion, P. Mason, and J. Wei, Vortex peak interaction and lattice shape in rotating two-component condensates, Phys. Rev. A 85 (2012), 033614.
- Amandine Aftalion, Benedetta Noris, and Christos Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation, Comm. Math. Phys. 336 (2015), no. 2, 509–579. MR 3322380, DOI 10.1007/s00220-014-2281-9
- Amandine Aftalion and Etienne Sandier, Vortex patterns and sheets in segregated two component Bose-Einstein condensates, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 19, 38. MR 4040628, DOI 10.1007/s00526-019-1637-6
- Amandine Aftalion and Sylvia Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $H_{c_2}$, Selecta Math. (N.S.) 13 (2007), no. 2, 183–202. MR 2361092, DOI 10.1007/s00029-007-0043-7
- Amandine Aftalion and Christos Sourdis, Interface layer of a two-component Bose-Einstein condensate, Commun. Contemp. Math. 19 (2017), no. 5, 1650052, 46. MR 3670791, DOI 10.1142/S0219199716500528
- Stan Alama, Lia Bronsard, and Etienne Sandier, On the shape of interlayer vortices in the Lawrence-Doniach model, Trans. Amer. Math. Soc. 360 (2008), no. 1, 1–34. MR 2341992, DOI 10.1090/S0002-9947-07-04188-8
- Stan Alama, Lia Bronsard, and Etienne Sandier, Periodic minimizers of the anisotropic Ginzburg-Landau model, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 399–417. MR 2551137, DOI 10.1007/s00526-009-0234-5
- Yaniv Almog and Bernard Helffer, Global stability of the normal state of superconductors in the presence of a strong electric current, Comm. Math. Phys. 330 (2014), no. 3, 1021–1094. MR 3227506, DOI 10.1007/s00220-014-1970-8
- Yaniv Almog, Bernard Helffer, and Xing-Bin Pan, Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1183–1217. MR 3003262, DOI 10.1090/S0002-9947-2012-05572-3
- Benjamin Louis Alvarez and Jérémy Faupin, Scattering theory for mathematical models of the weak interaction, Rev. Math. Phys. 32 (2020), no. 1, 2050002, 80. MR 4059133, DOI 10.1142/S0129055X20500026
- Benjamin Alvarez, Jérémy Faupin, and Jean-Claude Guillot, Hamiltonian models of interacting fermion fields in quantum field theory, Lett. Math. Phys. 109 (2019), no. 11, 2403–2437. MR 4019993, DOI 10.1007/s11005-019-01193-9
- Arnaud Anantharaman and Eric Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 6, 2425–2455. MR 2569902, DOI 10.1016/j.anihpc.2009.06.003
- Ioannis Anapolitanos and Mathieu Lewin, Compactness of molecular reaction paths in quantum mechanics, Arch. Ration. Mech. Anal. 236 (2020), no. 2, 505–576. MR 4072678, DOI 10.1007/s00205-019-01475-5
- Ioannis Anapolitanos and Israel Michael Sigal, Long-range behavior of the van der Waals force, Comm. Pure Appl. Math. 70 (2017), no. 9, 1633–1671. MR 3684306, DOI 10.1002/cpa.21695
- Asao Arai, A new asymptotic perturbation theory with applications to models of massless quantum fields, Ann. Henri Poincaré 15 (2014), no. 6, 1145–1170. MR 3205748, DOI 10.1007/s00023-013-0271-7
- Asao Arai, Mathematical analysis of quantum fields—historical survey and a new asymptotic perturbation theory [translation of 3700430], Sugaku Expositions 34 (2021), no. 1, 93–121. MR 4252515, DOI 10.1090/suga/459
- Asao Arai, Masao Hirokawa, and Fumio Hiroshima, On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff, J. Funct. Anal. 168 (1999), no. 2, 470–497. MR 1719225, DOI 10.1006/jfan.1999.3472
- J. Arbunich, F. Pusateri, I. M. Sigal, and A. Soffer, Maximal speed of quantum propagation, Lett. Math. Phys. 111 (2021), no. 3, Paper No. 62, 16. MR 4254070, DOI 10.1007/s11005-021-01397-y
- Claude-Alain Pillet, Quantum dynamical systems, Open quantum systems. I, Lecture Notes in Math., vol. 1880, Springer, Berlin, 2006, pp. 107–182. MR 2248983, DOI 10.1007/3-540-33922-1_{4}
- J. E. Avron, Adiabatic quantum transport, Mesoscopic Quantum Physics, E. Akkermans et al., eds., Les Houches, 1994.
- J. E. Avron, M. Fraas, and G. M. Graf, Adiabatic response for Lindblad dynamics, J. Stat. Phys. 148 (2012), no. 5, 800–823. MR 2972856, DOI 10.1007/s10955-012-0550-6
- Hassen Aydi and Etienne Sandier, Vortex analysis of the periodic Ginzburg-Landau model, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 4, 1223–1236 (English, with English and French summaries). MR 2542722, DOI 10.1016/j.anihpc.2008.09.004
- V. Bach, Mass renormalization in non-relativistic quantum electrodynamics, Lecture Notes of the Les Houches Summer School, vol. 95, 2011.
- Volker Bach, Miguel Ballesteros, and Jürg Fröhlich, Continuous renormalization group analysis of spectral problems in quantum field theory, J. Funct. Anal. 268 (2015), no. 4, 749–823. MR 3296580, DOI 10.1016/j.jfa.2014.10.022
- Volker Bach, Miguel Ballesteros, Diego Iniesta, and Alessandro Pizzo, A new method of construction of resonances that applies to critical models, J. Funct. Anal. 280 (2021), no. 6, Paper No. 108818, 39. MR 4190583, DOI 10.1016/j.jfa.2020.108818
- Volker Bach, Miguel Ballesteros, Martin Könenberg, and Lars Menrath, Existence of ground state eigenvalues for the spin-boson model with critical infrared divergence and multiscale analysis, J. Math. Anal. Appl. 453 (2017), no. 2, 773–797. MR 3648258, DOI 10.1016/j.jmaa.2017.03.075
- Volker Bach, Miguel Ballesteros, and Lars Menrath, A new approach to continuous multi-scale analysis in nonrelativistic QED: ground states and photon number bounds for the spin-boson model with critical infrared singularity, J. Evol. Equ. 18 (2018), no. 2, 715–754. MR 3820420, DOI 10.1007/s00028-017-0417-z
- Volker Bach, Miguel Ballesteros, and Alessandro Pizzo, Existence and construction of resonances for atoms coupled to the quantized radiation field, Adv. Math. 314 (2017), 540–572. MR 3658724, DOI 10.1016/j.aim.2017.04.029
- V. Bach, S. Breteaux, T. Chen, J. Fröhlich, and I. M. Sigal, The time-dependent Hartree-Fock-Bogoliubov equations for bosons, arXiv:1602.05171v2.
- Volker Bach, Sébastien Breteaux, Hans Konrad Knörr, and Edmund Menge, Generalization of Lieb’s variational principle to Bogoliubov-Hartree-Fock theory, J. Math. Phys. 55 (2014), no. 1, 012101, 22. MR 3390418, DOI 10.1063/1.4853875
- Volker Bach, Thomas Chen, Jürg Fröhlich, and Israel Michael Sigal, The renormalized electron mass in non-relativistic quantum electrodynamics, J. Funct. Anal. 243 (2007), no. 2, 426–535. MR 2289695, DOI 10.1016/j.jfa.2006.09.017
- Volker Bach, Jürg Fröhlich, and Alessandro Pizzo, Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field, Adv. Math. 220 (2009), no. 4, 1023–1074. MR 2483715, DOI 10.1016/j.aim.2008.10.006
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Quantum electrodynamics of confined nonrelativistic particles, Adv. Math. 137 (1998), no. 2, 299–395. MR 1639713, DOI 10.1006/aima.1998.1734
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Renormalization group analysis of spectral problems in quantum field theory, Adv. Math. 137 (1998), no. 2, 205–298. MR 1639709, DOI 10.1006/aima.1998.1733
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Comm. Math. Phys. 207 (1999), no. 2, 249–290. MR 1724854, DOI 10.1007/s002200050726
- S. Bachmann, D.-A. Deckert, and A. Pizzo, The mass shell of the Nelson model without cut-offs, J. Funct. Anal. 263 (2012), no. 5, 1224–1282. MR 2943729, DOI 10.1016/j.jfa.2012.04.021
- Miguel Ballesteros, Jérémy Faupin, Jürg Fröhlich, and Baptiste Schubnel, Quantum electrodynamics of atomic resonances, Comm. Math. Phys. 337 (2015), no. 2, 633–680. MR 3339159, DOI 10.1007/s00220-015-2319-7
- Miguel Ballesteros, Dirk-André Deckert, Jérémy Faupin, and Felix Hänle, One-boson scattering processes in the massive spin-boson model, J. Math. Anal. Appl. 489 (2020), no. 1, 124094, 44. MR 4087255, DOI 10.1016/j.jmaa.2020.124094
- Miguel Ballesteros, Dirk-André Deckert, and Felix Hänle, Analyticity of resonances and eigenvalues and spectral properties of the massless spin-boson model, J. Funct. Anal. 276 (2019), no. 8, 2524–2581. MR 3926124, DOI 10.1016/j.jfa.2019.02.008
- Miguel Ballesteros, Dirk-André Deckert, and Felix Hänle, One-boson scattering processes in the massless Spin-Boson model—A non-perturbative formula, Adv. Math. 371 (2020), 107248, 26. MR 4116099, DOI 10.1016/j.aim.2020.107248
- Dario Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1823–1865. MR 3739193, DOI 10.1090/tran/7135
- Dario Bambusi, Benoît Grébert, Alberto Maspero, and Didier Robert, Reducibility of the quantum harmonic oscillator in $d$-dimensions with polynomial time-dependent perturbation, Anal. PDE 11 (2018), no. 3, 775–799. MR 3738262, DOI 10.2140/apde.2018.11.775
- Dario Bambusi, Benoît Grébert, Alberto Maspero, and Didier Robert, Growth of Sobolev norms for abstract linear Schrödinger equations, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 2, 557–583. MR 4195741, DOI 10.4171/jems/1017
- D. Bambusi, B. Langella, and R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori, arXiv:2012.02654, 2020.
- Jean-Marie Barbaroux, Jérémy Faupin, and Jean-Claude Guillot, Local decay for weak interactions with massless particles, J. Spectr. Theory 9 (2019), no. 2, 453–512. MR 3950659, DOI 10.4171/JST/253
- Niels Benedikter, Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer, Correlation energy of a weakly interacting Fermi gas, Invent. Math. 225 (2021), no. 3, 885–979. MR 4296352, DOI 10.1007/s00222-021-01041-5
- Niels Benedikter, Marcello Porta, and Benjamin Schlein, Effective evolution equations from quantum dynamics, SpringerBriefs in Mathematical Physics, vol. 7, Springer, Cham, 2016. MR 3382225, DOI 10.1007/978-3-319-24898-1
- Niels Benedikter, Jérémy Sok, and Jan Philip Solovej, The Dirac-Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations, Ann. Henri Poincaré 19 (2018), no. 4, 1167–1214. MR 3775154, DOI 10.1007/s00023-018-0644-z
- Marius Beceanu and Avy Soffer, Large outgoing solutions to supercritical wave equations, Int. Math. Res. Not. IMRN 20 (2018), 6201–6253. MR 3872322, DOI 10.1093/imrn/rnx050
- M. Berti and A. Maspero, Long time dynamics of Schrödinger and wave equations on flat tori, J. Differential Equations 267 (2019), no. 2, 1167–1200. MR 3957984, DOI 10.1016/j.jde.2019.02.004
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538, DOI 10.1007/978-1-4612-0287-5
- P. Blue and A. Soffer, Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates, Adv. Differential Equations 8 (2003), no. 5, 595–614. MR 1972492
- P. Blue and A. Soffer, Phase space analysis on some black hole manifolds, J. Funct. Anal. 256 (2009), no. 1, 1–90. MR 2475417, DOI 10.1016/j.jfa.2008.10.004
- Jean-François Bony, Jérémy Faupin, and Israel Michael Sigal, Maximal velocity of photons in non-relativistic QED, Adv. Math. 231 (2012), no. 5, 3054–3078. MR 2970473, DOI 10.1016/j.aim.2012.07.019
- Philippe Briet and André Martinez, Molecular dynamics at an energy-level crossing, J. Differential Equations 267 (2019), no. 10, 5662–5700. MR 3996782, DOI 10.1016/j.jde.2019.06.004
- J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett. 7 (2000), no. 2-3, 329–342. MR 1764326, DOI 10.4310/MRL.2000.v7.n3.a7
- Éric Cancès, Salma Lahbabi, and Mathieu Lewin, Mean-field models for disordered crystals, J. Math. Pures Appl. (9) 100 (2013), no. 2, 241–274. MR 3073215, DOI 10.1016/j.matpur.2012.12.003
- Eric Cancès and Nahia Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014), no. 9, 1999–2033. MR 3247069, DOI 10.1088/0951-7715/27/9/1999
- Eric Cancès and L. Ridgway Scott, Van der Waals interactions between two hydrogen atoms: the Slater-Kirkwood method revisited, SIAM J. Math. Anal. 50 (2018), no. 1, 381–410. MR 3749384, DOI 10.1137/15M1021878
- E. Cancès, R. Coyaud, and L. R. Scott, Van der Waals interactions between two hydrogen atoms: The next orders, arXiv:2007.04227v1, 2021.
- E. Cancès, G. Stoltz, and M. Lewin, The electronic ground-state energy problem: a new reduced density matrix approach, J. Chem. Phys. 125 (2006), 064101.
- Isabelle Catto and Christian Hainzl, Self-energy of one electron in non-relativistic QED, J. Funct. Anal. 207 (2004), no. 1, 68–110. MR 2027637, DOI 10.1016/S0022-1236(03)00064-8
- Thomas Chen, Infrared renormalization in non-relativistic QED and scaling criticality, J. Funct. Anal. 254 (2008), no. 10, 2555–2647. MR 2406687, DOI 10.1016/j.jfa.2008.01.001
- T. Chen, J. Faupin, J. Fröhlich, and I. M. Sigal, Local decay in non-relativistic QED, Comm. Math. Phys. 309 (2012), no. 2, 543–582. MR 2864803, DOI 10.1007/s00220-011-1339-1
- Thomas Chen and Jürg Fröhlich, Coherent infrared representations in non-relativistic QED, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 25–45. MR 2310197, DOI 10.1090/pspum/076.1/2310197
- Thomas Chen, Jürg Fröhlich, and Alessandro Pizzo, Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm, Comm. Math. Phys. 294 (2010), no. 3, 761–825. MR 2585987, DOI 10.1007/s00220-009-0950-x
- Thomas Chen, Jürg Fröhlich, and Alessandro Pizzo, Infraparticle scattering states in nonrelativistic quantum electrodynamics. II. Mass shell properties, J. Math. Phys. 50 (2009), no. 1, 012103, 34. MR 2492583, DOI 10.1063/1.3000088
- I. Chenn, R. L. Frank, Ch. Hainzl, and I. M. Sigal, On derivation of the Ginzburg-Landau model, in preparation, 2021.
- Ilias Chenn and I. M. Sigal, On effective PDEs of quantum physics, New tools for nonlinear PDEs and application, Trends Math., Birkhäuser/Springer, Cham, 2019, pp. 1–47. MR 4011362, DOI 10.1007/978-3-030-10937-0_{1}
- Ilias Chenn and I. M. Sigal, Vortex lattices and the Bogoliubov–de Gennes equations, Adv. Math. 380 (2021), Paper No. 107546, 53. MR 4203494, DOI 10.1016/j.aim.2020.107546
- M. R. Christiansen, Ch. Hainzl, and Phan Thành Nam, The random phase approximation for interacting fermi gases in the mean-field regime, arXiv:2106.11161v1, 2021.
- J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Internat. Math. Res. Notices 7 (1998), 333–358. MR 1623410, DOI 10.1155/S1073792898000221
- M. Correggi, R. Duboscq, D. Lundholm, and N. Rougerie, Vortex patterns in the almost-bosonic anyon gas, EPL 126 (2019), 20005.
- Michele Correggi, Marco Falconi, and Marco Olivieri, Magnetic Schrödinger operators as the quasi-classical limit of Pauli-Fierz-type models, J. Spectr. Theory 9 (2019), no. 4, 1287–1325. MR 4033522, DOI 10.4171/jst/277
- Michele Correggi, Douglas Lundholm, and Nicolas Rougerie, Local density approximation for the almost-bosonic anyon gas, Anal. PDE 10 (2017), no. 5, 1169–1200. MR 3668588, DOI 10.2140/apde.2017.10.1169
- M. Correggi and N. Rougerie, On the Ginzburg-Landau functional in the surface superconductivity regime, Comm. Math. Phys. 332 (2014), no. 3, 1297–1343. MR 3262627, DOI 10.1007/s00220-014-2095-9
- Michele Correggi and Nicolas Rougerie, Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime, Arch. Ration. Mech. Anal. 219 (2016), no. 1, 553–606. MR 3437856, DOI 10.1007/s00205-015-0900-z
- Michele Correggi and Nicolas Rougerie, Effects of boundary curvature on surface superconductivity, Lett. Math. Phys. 106 (2016), no. 4, 445–467. MR 3474896, DOI 10.1007/s11005-016-0824-z
- M. Correggi, N. Rougerie, and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate, Comm. Math. Phys. 303 (2011), no. 2, 451–508. MR 2782622, DOI 10.1007/s00220-011-1202-4
- Scipio Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, Dispersive nonlinear problems in mathematical physics, Quad. Mat., vol. 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 21–57. MR 2231327
- Scipio Cuccagna and Masaya Maeda, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 5, 1693–1716. MR 4228957, DOI 10.3934/dcdss.2020450
- H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger operators, Springer, 1987.
- Thomas Norman Dam and Jacob Schach Møller, Asymptotics in spin-boson type models, Comm. Math. Phys. 374 (2020), no. 3, 1389–1415. MR 4076078, DOI 10.1007/s00220-020-03685-5
- Stephan De Bièvre, Peter D. Hislop, and I. M. Sigal, Scattering theory for the wave equation on noncompact manifolds, Rev. Math. Phys. 4 (1992), no. 4, 575–618. MR 1197551, DOI 10.1142/S0129055X92000236
- S. De Bièvre and D. W. Pravica, Spectral analysis for optical fibres and stratified fluids. I. The limiting absorption principle, J. Funct. Anal. 98 (1991), no. 2, 404–436. MR 1111576, DOI 10.1016/0022-1236(91)90085-J
- S. De Bièvre and D. W. Pravica, Spectral analysis for optical fibres and stratified fluids. II. Absence of eigenvalues, Comm. Partial Differential Equations 17 (1992), no. 1-2, 69–97. MR 1151257, DOI 10.1080/03605309208820835
- Jürg Fröhlich and Alessandro Pizzo, On the absence of excited eigenstates of atoms in QED, Comm. Math. Phys. 286 (2009), no. 3, 803–836. MR 2472018, DOI 10.1007/s00220-008-0704-1
- W. De Roeck, J. Fröhlich, and A. Pizzo, Quantum Brownian motion in a simple model system, Comm. Math. Phys. 293 (2010), no. 2, 361–398. MR 2563788, DOI 10.1007/s00220-009-0924-z
- Jürg Fröhlich and Alessandro Pizzo, Renormalized electron mass in nonrelativistic QED, Comm. Math. Phys. 294 (2010), no. 2, 439–470. MR 2579462, DOI 10.1007/s00220-009-0960-8
- W. De Roeck, M. Griesemer, and A. Kupiainen, Asymptotic completeness for the massless spin-boson model, Adv. Math. 268 (2015), 62–84. MR 3276589, DOI 10.1016/j.aim.2014.09.012
- Wojciech De Roeck and Antti Kupiainen, Approach to ground state and time-independent photon bound for massless spin-boson models, Ann. Henri Poincaré 14 (2013), no. 2, 253–311. MR 3028040, DOI 10.1007/s00023-012-0190-z
- Dirk-André Deckert, Jürg Fröhlich, Peter Pickl, and Alessandro Pizzo, Effective dynamics of a tracer particle interacting with an ideal Bose gas, Comm. Math. Phys. 328 (2014), no. 2, 597–624. MR 3199994, DOI 10.1007/s00220-014-1987-z
- D-A. Deckert, J. Fröhlich, P. Pickl, and A. Pizzo, Dynamics of sound waves in an interacting Bose gas, Adv. Math. 293 (2016), 275–323. MR 3474323, DOI 10.1016/j.aim.2016.02.001
- P. Deift and B. Simon, A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math. 30 (1977), no. 5, 573–583. MR 459397, DOI 10.1002/cpa.3160300504
- Jan Dereziński, Asymptotic completeness of long-range $N$-body quantum systems, Ann. of Math. (2) 138 (1993), no. 2, 427–476. MR 1240577, DOI 10.2307/2946615
- Jan Dereziński and Christian Gérard, Scattering theory of classical and quantum $N$-particle systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1459161, DOI 10.1007/978-3-662-03403-3
- J. Dereziński and C. Gérard, Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (1999), no. 4, 383–450. MR 1682684, DOI 10.1142/S0129055X99000155
- A. Deuchert, Ch. Hainzl, and M. Schaub, Microscopic derivation of Ginzburg-Landau theory and the BCS critical temperature shift in a weak homogeneous magnetic field, arXiv:2105.05623v2, 2021.
- Andreas Deuchert and Robert Seiringer, Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature, Arch. Ration. Mech. Anal. 236 (2020), no. 3, 1217–1271. MR 4076065, DOI 10.1007/s00205-020-01489-4
- M. Disertori, W. Kirsch, A. Klein, F. Klopp, and V. Rivasseau, Random Schrödinger Operators, Panoramas et Syntheses 25, AMS, 2008.
- Roland Donninger, Wilhelm Schlag, and Avy Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta, Adv. Math. 226 (2011), no. 1, 484–540. MR 2735767, DOI 10.1016/j.aim.2010.06.026
- Roland Donninger, Wilhelm Schlag, and Avy Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), no. 1, 51–86. MR 2864787, DOI 10.1007/s00220-011-1393-8
- Geneviève Dusson, Israel Michael Sigal, and Benjamin Stamm, The Feshbach-Schur map and perturbation theory, Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume, EMS Ser. Congr. Rep., EMS Press, Berlin, [2021] ©2021, pp. 65–88. MR 4331808, DOI 10.4171/ECR/18-1/5
- Wojciech Dybalski and Jacob Schach Møller, The translation invariant massive Nelson model: III. Asymptotic completeness below the two-boson threshold, Ann. Henri Poincaré 16 (2015), no. 11, 2603–2693. MR 3411743, DOI 10.1007/s00023-014-0384-7
- W. Dybalski and A. Pizzo, Coulomb scattering in the massless Nelson model I. Foundations of two-electron scattering, J. Stat. Phys. 154 (2014), no. 1-2, 543–587. MR 3162553, DOI 10.1007/s10955-013-0857-y
- Wojciech Dybalski and Alessandro Pizzo, Coulomb scattering in the massless Nelson model III: ground state wave functions and non-commutative recurrence relations, Ann. Henri Poincaré 19 (2018), no. 2, 463–514. MR 3748299, DOI 10.1007/s00023-017-0642-6
- Wojciech Dybalski and Alessandro Pizzo, Coulomb scattering in the massless Nelson model II. Regularity of ground states, Rev. Math. Phys. 31 (2019), no. 3, 1950010, 127. MR 3924848, DOI 10.1142/S0129055X19500107
- Weinan E and Jianfeng Lu, Electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model, Comm. Pure Appl. Math. 63 (2010), no. 11, 1432–1468. MR 2683390, DOI 10.1002/cpa.20330
- Weinan E and Jianfeng Lu, The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 407–433. MR 2763029, DOI 10.1007/s00205-010-0339-1
- Weinan E and Jianfeng Lu, The Kohn-Sham equation for deformed crystals, Mem. Amer. Math. Soc. 221 (2013), no. 1040, vi+97. MR 3057835, DOI 10.1090/S0065-9266-2012-00659-9
- Weinan E, Jianfeng Lu, and Xu Yang, Effective Maxwell equations from time-dependent density functional theory, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 2, 339–368. MR 2754040, DOI 10.1007/s10114-011-0555-0
- Volker Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 39–176. MR 824987, DOI 10.1007/BFb0080332
- Jérémy Faupin and Israel Michael Sigal, On Rayleigh scattering in non-relativistic quantum electrodynamics, Comm. Math. Phys. 328 (2014), no. 3, 1199–1254. MR 3201223, DOI 10.1007/s00220-014-1883-6
- Jérémy Faupin and Israel Michael Sigal, Minimal photon velocity bounds in non-relativistic quantum electrodynamics, J. Stat. Phys. 154 (2014), no. 1-2, 58–90. MR 3162533, DOI 10.1007/s10955-013-0862-1
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- Charles Fefferman, Addendum to: “The $N$-body problem in quantum mechanics”, Comm. Pure Appl. Math. 40 (1987), no. 4, 523. MR 890175, DOI 10.1002/cpa.3160400406
- C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, Ann. PDE 2 (2016), no. 2, Art. 12, 80. MR 3595458, DOI 10.1007/s40818-016-0015-3
- C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Topologically protected states in one-dimensional systems, Mem. Amer. Math. Soc. 247 (2017), no. 1173, vii+118. MR 3633291, DOI 10.1090/memo/1173
- C. L. Fefferman and M. I. Weinstein, Continuum Schroedinger operators for sharply terminated graphene-like structures, Comm. Math. Phys. 380 (2020), no. 2, 853–945. MR 4170293, DOI 10.1007/s00220-020-03868-0
- E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4 (1932), 87–132.
- S. Fournais and B. Helffer, On the Ginzburg-Landau critical field in three dimensions, Comm. Pure Appl. Math. 62 (2009), no. 2, 215–241. MR 2468609, DOI 10.1002/cpa.20247
- Søren Fournais and Bernard Helffer, Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser Boston, Inc., Boston, MA, 2010. MR 2662319, DOI 10.1007/978-0-8176-4797-1
- S. Fournais and B. Helffer, Bulk superconductivity in Type II superconductors near the second critical field, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 2, 461–470. MR 2608948, DOI 10.4171/JEMS/205
- Søren Fournais, Bernard Helffer, and Mikael Persson, Superconductivity between $H_{C_2}$ and $H_{C_3}$, J. Spectr. Theory 1 (2011), no. 3, 273–298. MR 2831754, DOI 10.4171/JST/12
- Søren Fournais and Ayman Kachmar, Nucleation of bulk superconductivity close to critical magnetic field, Adv. Math. 226 (2011), no. 2, 1213–1258. MR 2737783, DOI 10.1016/j.aim.2010.08.004
- Søren Fournais and Ayman Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional Part I: Bulk regime, Comm. Partial Differential Equations 38 (2013), no. 2, 339–383. MR 3009083, DOI 10.1080/03605302.2012.717156
- Rupert L. Frank, Christian Hainzl, and Edwin Langmann, The BCS critical temperature in a weak homogeneous magnetic field, J. Spectr. Theory 9 (2019), no. 3, 1005–1062. MR 4003549, DOI 10.4171/JST/270
- Rupert L. Frank, Christian Hainzl, Robert Seiringer, and Jan Philip Solovej, Microscopic derivation of Ginzburg-Landau theory, J. Amer. Math. Soc. 25 (2012), no. 3, 667–713. MR 2904570, DOI 10.1090/S0894-0347-2012-00735-8
- Rupert L. Frank, Christian Hainzl, Benjamin Schlein, and Robert Seiringer, Incompatibility of time-dependent Bogoliubov-de-Gennes and Ginzburg-Landau equations, Lett. Math. Phys. 106 (2016), no. 7, 913–923. MR 3513288, DOI 10.1007/s11005-016-0847-5
- Rupert L. Frank, Christian Hainzl, Robert Seiringer, and Jan Philip Solovej, The external field dependence of the BCS critical temperature, Comm. Math. Phys. 342 (2016), no. 1, 189–216. MR 3455149, DOI 10.1007/s00220-015-2526-2
- Rupert L. Frank and Marius Lemm, Multi-component Ginzburg-Landau theory: microscopic derivation and examples, Ann. Henri Poincaré 17 (2016), no. 9, 2285–2340. MR 3535864, DOI 10.1007/s00023-016-0473-x
- Rupert L. Frank, Phan Thành Nam, and Hanne Van Den Bosch, The maximal excess charge in Müller density-matrix-functional theory, Ann. Henri Poincaré 19 (2018), no. 9, 2839–2867. MR 3844478, DOI 10.1007/s00023-018-0695-1
- Rupert L. Frank, Phan Thành Nam, and Hanne Van Den Bosch, A short proof of the ionization conjecture in Müller theory, Mathematical problems in quantum physics, Contemp. Math., vol. 717, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 1–12. MR 3869129, DOI 10.1090/conm/717/14437
- Richard Froese and Ira Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), no. 4, 1075–1085. MR 683011, DOI 10.1215/S0012-7094-82-04947-X
- Jürg Fröhlich, Nonperturbative quantum field theory, Advanced Series in Mathematical Physics, vol. 15, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. Mathematical aspects and applications; Selected papers; With a foreword by Arthur S. Wightman. MR 1169464, DOI 10.1142/1245
- Jürg Fröhlich, Mathematical aspects of the quantum Hall effect, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 23–48. MR 1341838
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with the quantized radiation field, Adv. Math. 164 (2001), no. 2, 349–398. MR 1878286, DOI 10.1006/aima.2001.2026
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic completeness for Rayleigh scattering, Ann. Henri Poincaré 3 (2002), no. 1, 107–170. MR 1891841, DOI 10.1007/s00023-002-8614-9
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic completeness for Compton scattering, Comm. Math. Phys. 252 (2004), no. 1-3, 415–476. MR 2104885, DOI 10.1007/s00220-004-1180-x
- J. Fröhlich, M. Griesemer, and B. Schlein, Rayleigh scattering at atoms with dynamical nuclei, Comm. Math. Phys. 271 (2007), no. 2, 387–430. MR 2287910, DOI 10.1007/s00220-006-0134-x
- J. Fröhlich, M. Griesemer, and I. M. Sigal, Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys. 283 (2008), no. 3, 613–646. MR 2434740, DOI 10.1007/s00220-008-0506-5
- J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys. 250 (2004), no. 3, 613–642. MR 2094474, DOI 10.1007/s00220-004-1128-1
- Jürg Fröhlich, Antti Knowles, Benjamin Schlein, and Vedran Sohinger, Gibbs measures of nonlinear Schrödinger equations as limits of many-body quantum states in dimensions $d \leqslant 3$, Comm. Math. Phys. 356 (2017), no. 3, 883–980. MR 3719544, DOI 10.1007/s00220-017-2994-7
- J. Fröhlich, A. Knowles, and A. Pizzo, Atomism and quantization, J. Phys. A 40 (2007), no. 12, 3033–3045. MR 2313859, DOI 10.1088/1751-8113/40/12/S09
- Zhou Gang and I. M. Sigal, On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal. 16 (2006), no. 6, 1377–1390. MR 2276543, DOI 10.1007/s00039-006-0587-2
- Zhou Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math. 216 (2007), no. 2, 443–490. MR 2351368, DOI 10.1016/j.aim.2007.04.018
- Adam Gardner, Instability of Electroweak Homogeneous Vacua in Strong Magnetic Fields, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–University of Toronto (Canada). MR 4257313
- C. Gérard, Sharp propagation estimates for $N$-particle systems, Duke Math. J. 67 (1992), no. 3, 483–515. MR 1181310, DOI 10.1215/S0012-7094-92-06719-6
- C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 1 (2000), no. 3, 443–459. MR 1777307, DOI 10.1007/s000230050002
- C. Gérard, On the scattering theory of massless Nelson models, Rev. Math. Phys. 14 (2002), no. 11, 1165–1280. MR 1943190, DOI 10.1142/S0129055X02001508
- C. Gérard and I. Łaba, Scattering theory for $N$-particle systems in constant magnetic fields, Duke Math. J. 76 (1994), no. 2, 433–465. MR 1302320, DOI 10.1215/S0012-7094-94-07615-1
- C. Gérard and I. Łaba, Scattering theory for $N$-particle systems in constant magnetic fields. II. Long-range interactions, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1791–1830. MR 1349232, DOI 10.1080/03605309508821152
- Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, Mathematical Surveys and Monographs, vol. 90, American Mathematical Society, Providence, RI, 2002. MR 1871447, DOI 10.1198/10857110260141265
- V. Georgescu, C. Gérard, and J. S. Møller, Commutators, $C_0$-semigroups and resolvent estimates, J. Funct. Anal. 216 (2004), no. 2, 303–361. MR 2095686, DOI 10.1016/j.jfa.2004.03.004
- V. Georgescu, C. Gérard, and J. S. Møller, Spectral theory of massless Pauli-Fierz models, Comm. Math. Phys. 249 (2004), no. 1, 29–78. MR 2077252, DOI 10.1007/s00220-004-1111-x
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys. 66 (1979), no. 1, 37–76. MR 530915, DOI 10.1007/BF01197745
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys. 68 (1979), no. 1, 45–68. MR 539736, DOI 10.1007/BF01562541
- James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000, DOI 10.1007/978-1-4684-0121-9
- Gian Michele Graf, Asymptotic completeness for $N$-body short-range quantum systems: a new proof, Comm. Math. Phys. 132 (1990), no. 1, 73–101. MR 1069201, DOI 10.1007/BF02278000
- Gian Michele Graf and Daniel Schenker, Classical action and quantum $N$-body asymptotic completeness, Multiparticle quantum scattering with applications to nuclear, atomic and molecular physics (Minneapolis, MN, 1995) IMA Vol. Math. Appl., vol. 89, Springer, New York, 1997, pp. 103–119. MR 1487919, DOI 10.1007/978-1-4612-1870-8_{4}
- M. Griesemer, Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal. 210 (2004), no. 2, 321–340. MR 2053490, DOI 10.1016/j.jfa.2003.06.001
- M. Griesemer, Non-relativistic matter and quantized radiation, Large Coulomb systems, Lecture Notes in Phys., vol. 695, Springer, Berlin, 2006, pp. 217–248. MR 2497823, DOI 10.1007/3-540-32579-4_{5}
- Marcel Griesemer and David G. Hasler, Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation, Ann. Henri Poincaré 10 (2009), no. 3, 577–621. MR 2519822, DOI 10.1007/s00023-009-0417-9
- Marcel Griesemer, Elliott H. Lieb, and Michael Loss, Ground states in non-relativistic quantum electrodynamics, Invent. Math. 145 (2001), no. 3, 557–595. MR 1856401, DOI 10.1007/s002220100159
- Marcel Griesemer and Heribert Zenk, Asymptotic electromagnetic fields in non-relativistic QED: the problem of existence revisited, J. Math. Anal. Appl. 354 (2009), no. 1, 339–346. MR 2510444, DOI 10.1016/j.jmaa.2008.12.046
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys. 324 (2013), no. 2, 601–636. MR 3117522, DOI 10.1007/s00220-013-1818-7
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, II, Comm. Partial Differential Equations 42 (2017), no. 1, 24–67. MR 3605290, DOI 10.1080/03605302.2016.1255228
- B. Güneysu, O. Matte, and J. S. Møller, Stochastic differential equations for models of non-relativistic matter interacting with quantized radiation fields, Probab. Theory Related Fields 167 (2017), no. 3-4, 817–915. MR 3627429, DOI 10.1007/s00440-016-0694-4
- Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, Universitext, Springer, Cham, [2020] ©2020. Third edition [of 2002159]. MR 4199124, DOI 10.1007/978-3-030-59562-3
- S. Gustafson and Li Wang, Co-rotational chiral magnetic skyrmions near harmonic maps, J. Funct. Anal. 280 (2021), no. 4, Paper No. 108867, 69. MR 4179069, DOI 10.1016/j.jfa.2020.108867
- Christian Hainzl, One non-relativistic particle coupled to a photon field, Ann. Henri Poincaré 4 (2003), no. 2, 217–237. MR 1985772, DOI 10.1007/s00023-003-0128-6
- Christian Hainzl, Eman Hamza, Robert Seiringer, and Jan Philip Solovej, The BCS functional for general pair interactions, Comm. Math. Phys. 281 (2008), no. 2, 349–367. MR 2410898, DOI 10.1007/s00220-008-0489-2
- Christian Hainzl, Masao Hirokawa, and Herbert Spohn, Binding energy for hydrogen-like atoms in the Nelson model without cutoffs, J. Funct. Anal. 220 (2005), no. 2, 424–459. MR 2119286, DOI 10.1016/j.jfa.2004.07.009
- Christian Hainzl and Robert Seiringer, Mass renormalization and energy level shift in non-relativistic QED, Adv. Theor. Math. Phys. 6 (2002), no. 5, 847–871 (2003). MR 1974588, DOI 10.4310/ATMP.2002.v6.n5.a3
- C. Hainzl and R. Seiringer, The Bardeen-Cooper-Schrieffer functional of superconductivity and its mathematical properties, J. Math. Phys. 57 (2016), no. 2, 021101, 46. MR 3463277, DOI 10.1063/1.4941723
- Christian Hainzl, Vitali Vougalter, and Semjon A. Vugalter, Enhanced binding in non-relativistic QED, Comm. Math. Phys. 233 (2003), no. 1, 13–26. MR 1957730, DOI 10.1007/s00220-002-0787-z
- D. Hasler and I. Herbst, On the self-adjointness and domain of Pauli-Fierz type Hamiltonians, Rev. Math. Phys. 20 (2008), no. 7, 787–800. MR 2436496, DOI 10.1142/S0129055X08003389
- D. Hasler and I. Herbst, Absence of ground states for a class of translation invariant models of non-relativistic QED, Comm. Math. Phys. 279 (2008), no. 3, 769–787. MR 2386727, DOI 10.1007/s00220-008-0444-2
- D. Hasler and I. Herbst, Convergent expansions in non-relativistic qed: analyticity of the ground state, J. Funct. Anal. 261 (2011), no. 11, 3119–3154. MR 2835993, DOI 10.1016/j.jfa.2011.07.023
- David Hasler and Ira Herbst, Ground states in the spin boson model, Ann. Henri Poincaré 12 (2011), no. 4, 621–677. MR 2787765, DOI 10.1007/s00023-011-0091-6
- D. Hasler and I. Herbst, Smoothness and analyticity of perturbation expansions in qed, Adv. Math. 228 (2011), no. 6, 3249–3299. MR 2844943, DOI 10.1016/j.aim.2011.08.007
- David Hasler, Benjamin Hinrichs, and Oliver Siebert, On existence of ground states in the spin boson model, Comm. Math. Phys. 388 (2021), no. 1, 419–433. MR 4328059, DOI 10.1007/s00220-021-04185-w
- D. Hasler and O. Siebert, Ground states for translationally invariant Pauli-Fierz models at zero momentum, arXiv:2007.01250v2, 2020.
- Ira Herbst, Jacob Schach Møller, and Erik Skibsted, Asymptotic completeness for $N$-body Stark Hamiltonians, Comm. Math. Phys. 174 (1996), no. 3, 509–535. MR 1370079, DOI 10.1007/BF02101526
- Ira Herbst and Erik Skibsted, Free channel Fourier transform in the long-range $N$-body problem, J. Anal. Math. 65 (1995), 297–332. MR 1335378, DOI 10.1007/BF02788775
- Klaus Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265–277. MR 332046, DOI 10.1007/BF01646348
- F. Hiroshima, Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré 3 (2002), no. 1, 171–201. MR 1891842, DOI 10.1007/s00023-002-8615-8
- Fumio Hiroshima, Fiber Hamiltonians in non-relativistic quantum electrodynamics, J. Funct. Anal. 252 (2007), no. 1, 314–355. MR 2357359, DOI 10.1016/j.jfa.2007.06.006
- Fumio Hiroshima and Herbert Spohn, Mass renormalization in nonrelativistic quantum electrodynamics, J. Math. Phys. 46 (2005), no. 4, 042302, 27. MR 2131228, DOI 10.1063/1.1852699
- Peter D. Hislop, Lectures on random Schrödinger operators, Fourth Summer School in Analysis and Mathematical Physics, Contemp. Math., vol. 476, Amer. Math. Soc., Providence, RI, 2008, pp. 41–131. MR 2509108, DOI 10.1090/conm/476/09293
- Justin Holmer, Dynamics of KdV solitons in the presence of a slowly varying potential, Int. Math. Res. Not. IMRN 23 (2011), 5367–5397. MR 2855072, DOI 10.1093/imrn/rnq284
- Justin Holmer, Jeremy Marzuola, and Maciej Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 (2007), no. 1, 187–216. MR 2318852, DOI 10.1007/s00220-007-0261-z
- Justin Holmer, Galina Perelman, and Maciej Zworski, Effective dynamics of double solitons for perturbed mKdV, Comm. Math. Phys. 305 (2011), no. 2, 363–425. MR 2805465, DOI 10.1007/s00220-011-1252-7
- Justin Holmer and Maciej Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN 10 (2008), Art. ID rnn026, 36. MR 2429244, DOI 10.1093/imrn/rnn026
- Justin Holmer and Maciej Zworski, Breathing patterns in nonlinear relaxation, Nonlinearity 22 (2009), no. 6, 1259–1301. MR 2507321, DOI 10.1088/0951-7715/22/6/002
- Matthias Hübner and Herbert Spohn, Radiative decay: nonperturbative approaches, Rev. Math. Phys. 7 (1995), no. 3, 363–387. MR 1326139, DOI 10.1142/S0129055X95000165
- W. Hunziker and I. M. Sigal, The quantum $N$-body problem, J. Math. Phys. 41 (2000), no. 6, 3448–3510. MR 1768629, DOI 10.1063/1.533319
- W. Hunziker, I. M. Sigal, and A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2279–2295. MR 1720738, DOI 10.1080/03605309908821502
- V. Jakšić and C.-A. Pillet, Mathematical theory of non-equilibrium quantum statistical mechanics, J. Statist. Phys. 108 (2002), no. 5-6, 787–829. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933434, DOI 10.1023/A:1019818909696
- Robert L. Jerrard, Quantized vortex filaments in complex scalar fields, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 789–810. MR 3729052
- Robert L. Jerrard and Didier Smets, Leapfrogging vortex rings for the three dimensional Gross-Pitaevskii equation, Ann. PDE 4 (2018), no. 1, Paper No. 4, 48. MR 3736755, DOI 10.1007/s40818-017-0040-x
- W. Kirsch, Random Schrödinger operators, Lecture Notes in Physics, 2006.
- B. Lars G. Jonsson, Jürg Fröhlich, Stephen Gustafson, and Israel Michael Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré 7 (2006), no. 4, 621–660. MR 2232367, DOI 10.1007/s00023-006-0263-y
- Claude Le Bris and Pierre-Louis Lions, From atoms to crystals: a mathematical journey, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 3, 291–363. MR 2149087, DOI 10.1090/S0273-0979-05-01059-1
- M. Levy, Electron densities in search of Hamiltonians, Phys. Rev. A 26 (1982), 1200–1208.
- Mathieu Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal. 260 (2011), no. 12, 3535–3595. MR 2781970, DOI 10.1016/j.jfa.2010.11.017
- M. Lewin, Mean-field limit of bose systems: rigorous results, Proc. ICMP, 2015.
- Mathieu Lewin, Semi-classical limit of the Levy-Lieb functional in density functional theory, C. R. Math. Acad. Sci. Paris 356 (2018), no. 4, 449–455 (English, with English and French summaries). MR 3787535, DOI 10.1016/j.crma.2018.03.002
- Mathieu Lewin, Existence of Hartree-Fock excited states for atoms and molecules, Lett. Math. Phys. 108 (2018), no. 4, 985–1006. MR 3780174, DOI 10.1007/s11005-017-1019-y
- Mathieu Lewin, Elliott H. Lieb, and Robert Seiringer, The local density approximation in density functional theory, Pure Appl. Anal. 2 (2020), no. 1, 35–73. MR 4041277, DOI 10.2140/paa.2020.2.35
- M. Lewin, E. H. Lieb, and R. Seiringer, Universal functionals in density functional theory, chapter of a book In Density Functional Theory, E. Cancès, G. Friesecke, and L. Lin, eds., to appear, arXiv:1912.10424V2 (2020).
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6131–6157. MR 3461029, DOI 10.1090/tran/6537
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, A note on 2D focusing many-boson systems, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2441–2454. MR 3626502, DOI 10.1090/proc/13468
- Mathieu Lewin, Phan Thành Nam, and Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, Amer. J. Math. 137 (2015), no. 6, 1613–1650. MR 3432269, DOI 10.1353/ajm.2015.0040
- Xinye Li and Christof Melcher, Lattice solutions in a Ginzburg-Landau model for a chiral magnet, J. Nonlinear Sci. 30 (2020), no. 6, 3389–3420. MR 4170329, DOI 10.1007/s00332-020-09654-5
- Elliott H. Lieb, The stability of matter, Rev. Modern Phys. 48 (1976), no. 4, 553–569. MR 0456083, DOI 10.1103/RevModPhys.48.553
- Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603–641. MR 629207, DOI 10.1103/RevModPhys.53.603
- E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem. 24 (1983), 243–277.
- Elliott H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 1–49. MR 1014510, DOI 10.1090/S0273-0979-1990-15831-8
- Elliott H. Lieb, The stability of matter: from atoms to stars, 4th ed., Springer, Berlin, 2005. Selecta of Elliott H. Lieb; Edited by W. Thirring, and with a preface by F. Dyson. MR 2766495, DOI 10.1007/b138553
- Elliott H. Lieb and Michael Loss, Existence of atoms and molecules in non-relativistic quantum electrodynamics, Adv. Theor. Math. Phys. 7 (2003), no. 4, 667–710. MR 2039034, DOI 10.4310/ATMP.2003.v7.n4.a3
- Elliott H. Lieb and Michael Loss, A note on polarization vectors in quantum electrodynamics, Comm. Math. Phys. 252 (2004), no. 1-3, 477–483. MR 2104886, DOI 10.1007/s00220-004-1185-5
- E. H. Lieb and R. Seiringer, Stability of matter, Cambridge Univ. Press, 2010.
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817
- Elliott H. Lieb and Barry Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), no. 1, 22–116. MR 428944, DOI 10.1016/0001-8708(77)90108-6
- Elliott H. Lieb and Barry Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185–194. MR 452286, DOI 10.1007/BF01609845
- Hans Lindblad and Avy Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity 19 (2006), no. 2, 345–353. MR 2199392, DOI 10.1088/0951-7715/19/2/006
- Hans Lindblad and Avy Soffer, Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Trans. Amer. Math. Soc. 367 (2015), no. 12, 8861–8909. MR 3403074, DOI 10.1090/S0002-9947-2014-06455-6
- P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33–97. MR 879032, DOI 10.1007/BF01205672
- J. Lőrinczi, R. A. Minlos, and H. Spohn, The infrared behaviour in Nelson’s model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincaré 3 (2002), no. 2, 269–295. MR 1914143, DOI 10.1007/s00023-002-8617-6
- André Martinez and Vania Sordoni, Widths of highly excited resonances in multidimensional molecular predissociation, J. Math. Soc. Japan 72 (2020), no. 3, 687–730. MR 4125842, DOI 10.2969/jmsj/81538153
- Alberto Maspero, Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations, Math. Res. Lett. 26 (2019), no. 4, 1197–1215. MR 4028118, DOI 10.4310/MRL.2019.v26.n4.a11
- A. Maspero, Growth of Sobolev norms in linear Schrödinger equations as a dispersive phenomenon, arXiv:2101.09055, 2021.
- A. Maspero and D. Robert, On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, J. Funct. Anal. 273 (2017), no. 2, 721–781. MR 3648866, DOI 10.1016/j.jfa.2017.02.029
- Riccardo Montalto, Growth of Sobolev norms for time dependent periodic Schrödinger equations with sublinear dispersion, J. Differential Equations 266 (2019), no. 8, 4953–4996. MR 3912739, DOI 10.1016/j.jde.2018.10.017
- Jacob Schach Møller, The translation invariant massive Nelson model. I. The bottom of the spectrum, Ann. Henri Poincaré 6 (2005), no. 6, 1091–1135. MR 2189378, DOI 10.1007/s00023-005-0234-8
- Jacob Schach Møller, Fully coupled Pauli-Fierz systems at zero and positive temperature, J. Math. Phys. 55 (2014), no. 7, 075203, 67. MR 3390681, DOI 10.1063/1.4879239
- Jacob Schach Møller and Morten Grud Rasmussen, The translation invariant massive Nelson model: II. The continuous spectrum below the two-boson threshold, Ann. Henri Poincaré 14 (2013), no. 4, 793–852. MR 3046457, DOI 10.1007/s00023-012-0208-6
- E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), no. 3, 391–408. MR 603501, DOI 10.1007/BF01942331
- Phan Thành Nam and Marcin Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys. 21 (2017), no. 3, 683–738. MR 3695801, DOI 10.4310/ATMP.2017.v21.n3.a4
- M. Napiórkoswki, Dynamics of interacting bosons: a compact review, arXiv:2101.04594, 2021.
- Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej, The Bogoliubov free energy functional I: Existence of minimizers and phase diagram, Arch. Ration. Mech. Anal. 229 (2018), no. 3, 1037–1090. MR 3814596, DOI 10.1007/s00205-018-1232-6
- Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej, The Bogoliubov free energy functional II: The dilute limit, Comm. Math. Phys. 360 (2018), no. 1, 347–403. MR 3795194, DOI 10.1007/s00220-017-3064-x
- Francis Nier, A variational formulation of Schrödinger-Poisson systems in dimension $d\le 3$, Comm. Partial Differential Equations 18 (1993), no. 7-8, 1125–1147. MR 1233187, DOI 10.1080/03605309308820966
- Gianluca Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré 8 (2007), no. 5, 995–1011. MR 2342883, DOI 10.1007/s00023-007-0326-8
- Gianluca Panati, Herbert Spohn, and Stefan Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond, Comm. Math. Phys. 242 (2003), no. 3, 547–578. MR 2020280, DOI 10.1007/s00220-003-0950-1
- Gianluca Panati, Herbert Spohn, and Stefan Teufel, The time-dependent Born-Oppenheimer approximation, M2AN Math. Model. Numer. Anal. 41 (2007), no. 2, 297–314. MR 2339630, DOI 10.1051/m2an:2007023
- Alessandro Pizzo, One-particle (improper) states in Nelson’s massless model, Ann. Henri Poincaré 4 (2003), no. 3, 439–486. MR 2007254, DOI 10.1007/s00023-003-0136-6
- Alessandro Pizzo, Scattering of an Infraparticle: the one particle sector in Nelson’s massless model, Ann. Henri Poincaré 6 (2005), no. 3, 553–606. MR 2222131, DOI 10.1007/s00023-005-0216-x
- E. Prodan and P. Nordlander, On the Kohn-Sham equations with periodic background potentials, J. Statist. Phys. 111 (2003), no. 3-4, 967–992. MR 1972131, DOI 10.1023/A:1022810601639
- Fabio Pusateri and Israel Michael Sigal, Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal. 241 (2021), no. 1, 447–473. MR 4271963, DOI 10.1007/s00205-021-01656-1
- Igor Rodnianski, Wilhelm Schlag, and Avraham Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math. 58 (2005), no. 2, 149–216. MR 2094850, DOI 10.1002/cpa.20066
- Nicolas Rougerie, Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surv. Math. Sci. 7 (2020), no. 2, 253–408. MR 4261667, DOI 10.4171/emss/40
- Etienne Sandier and Sylvia Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2279839, DOI 10.1007/978-0-8176-4550-2
- W. Schlag, A. Soffer, and W. Staubach, Decay estimates for the Schrödinger evolution on asymptotically conic surfaces of revolution, Trans. AMS 362 (2010), 289–318.
- I. M. Sigal, Lectures on large Coulomb systems, Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993) CRM Proc. Lecture Notes, vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. 73–107. MR 1332037
- Israel Michael Sigal, Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys. 134 (2009), no. 5-6, 899–939. MR 2518974, DOI 10.1007/s10955-009-9721-5
- I. M. Sigal, Renormalization group and problem of radiation, Lecture Notes of the Les Houches Summer Schools, vol. 95, Oxford University Press, 2012.
- Israel Michael Sigal, Magnetic vortices, Abrikosov lattices, and automorphic functions, Mathematical and computational modeling, Pure Appl. Math. (Hoboken), Wiley, Hoboken, NJ, 2015, pp. 19–58. MR 3381531
- I. M. Sigal, Radiation and scattering in non-relativistic QED, Mathematical Physics: A Bridge Between Mathematics and Physics. Springer, 2016.
- I. M. Sigal and A. Soffer, The $N$-particle scattering problem: asymptotic completeness for short-range systems, Ann. of Math. (2) 126 (1987), no. 1, 35–108. MR 898052, DOI 10.2307/1971345
- I. M. Sigal and A. Soffer, Local decay and propagation estimates for time-dependent and time-independent Hamiltonians, preprint, Princeton Univ., 1988, http://www.math.toronto.edu/sigal/publications/SigSofVelBnd.pdf.
- I. M. Sigal and A. Soffer, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math. 99 (1990), no. 1, 115–143. MR 1029392, DOI 10.1007/BF01234414
- I. M. Sigal and A. Soffer, Asymptotic completeness for $N\leq 4$ particle systems with the Coulomb-type interactions, Duke Math. J. 71 (1993), no. 1, 243–298. MR 1230292, DOI 10.1215/S0012-7094-93-07110-4
- Israel Michael Sigal and Tim Tzaneteas, Stability of Abrikosov lattices under gauge-periodic perturbations, Nonlinearity 25 (2012), no. 4, 1187–1210. MR 2904275, DOI 10.1088/0951-7715/25/4/1187
- Israel Michael Sigal and Tim Tzaneteas, On stability of Abrikosov vortex lattices, Adv. Math. 326 (2018), 108–199. MR 3758428, DOI 10.1016/j.aim.2017.11.031
- Barry Simon, Tosio Kato’s work on non-relativistic quantum mechanics: part 1, Bull. Math. Sci. 8 (2018), no. 1, 121–232. MR 3775269, DOI 10.1007/s13373-018-0118-0
- B. Simon, Twelve tales in mathematical physics: an expanded Heinemann price lecture, arXiv:2011.12335, 2021.
- Erik Skibsted, Propagation estimates for $N$-body Schroedinger operators, Comm. Math. Phys. 142 (1991), no. 1, 67–98. MR 1137775, DOI 10.1007/BF02099172
- Erik Skibsted, Asymptotic completeness for particles in combined constant electric and magnetic fields. II, Duke Math. J. 89 (1997), no. 2, 307–350. MR 1460625, DOI 10.1215/S0012-7094-97-08915-8
- Erik Skibsted, Spectral analysis of $N$-body systems coupled to a bosonic field, Rev. Math. Phys. 10 (1998), no. 7, 989–1026. MR 1653729, DOI 10.1142/S0129055X9800032X
- Erik Skibsted, Long-range scattering of three-body quantum systems: asymptotic completeness, Invent. Math. 151 (2003), no. 1, 65–99. MR 1943742, DOI 10.1007/s00222-002-0247-6
- Avy Soffer, Soliton dynamics and scattering, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 459–471. MR 2275691
- Herbert Spohn, Ground state(s) of the spin-boson Hamiltonian, Comm. Math. Phys. 123 (1989), no. 2, 277–304. MR 1002040, DOI 10.1007/BF01238859
- Herbert Spohn, Asymptotic completeness for Rayleigh scattering, J. Math. Phys. 38 (1997), no. 5, 2281–2296. MR 1447858, DOI 10.1063/1.531974
- Herbert Spohn, Ground state of a quantum particle coupled to a scalar Bose field, Lett. Math. Phys. 44 (1998), no. 1, 9–16. MR 1623746, DOI 10.1023/A:1007473300274
- Herbert Spohn, Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge, 2004. MR 2097788, DOI 10.1017/CBO9780511535178
- Hideo Tamura, Asymptotic completeness for $N$-body Schrödinger operators with short-range interactions, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1129–1154. MR 1116856, DOI 10.1080/03605309108820792
- Stefan Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, vol. 1821, Springer-Verlag, Berlin, 2003. MR 2158392, DOI 10.1007/b13355
- Stefan Teufel and Jakob Wachsmuth, Spontaneous decay of resonant energy levels for molecules with moving nuclei, Comm. Math. Phys. 315 (2012), no. 3, 699–738. MR 2981811, DOI 10.1007/s00220-012-1547-3
- András Vasy, Structure of the resolvent for three-body potentials, Duke Math. J. 90 (1997), no. 2, 379–434. MR 1484859, DOI 10.1215/S0012-7094-97-09010-4
- András Vasy, Propagation of singularities in many-body scattering in the presence of bound states, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999) Univ. Nantes, Nantes, 1999, pp. Exp. No. XVI, 20. MR 1719010
- Alexander B. Watson, Jianfeng Lu, and Michael I. Weinstein, Wavepackets in inhomogeneous periodic media: effective particle-field dynamics and Berry curvature, J. Math. Phys. 58 (2017), no. 2, 021503, 40. MR 3613303, DOI 10.1063/1.4976200
- D. Yafaev, Radiation conditions and scattering theory for $N$-particle Hamiltonians, Comm. Math. Phys. 154 (1993), no. 3, 523–554. MR 1224090, DOI 10.1007/BF02102107
References
- Abdelmalek Abdesselam, The ground state energy of the massless spin-boson model, Ann. Henri Poincaré 12 (2011), no. 7, 1321–1347. MR 2846670, DOI 10.1007/s00023-011-0103-6
- Abdelmalek Abdesselam and David Hasler, Analyticity of the ground state energy for massless Nelson models, Comm. Math. Phys. 310 (2012), no. 2, 511–536. MR 2890307, DOI 10.1007/s00220-011-1407-6
- Amandine Aftalion, Vortices in Bose-Einstein condensates, Progress in Nonlinear Differential Equations and their Applications, vol. 67, Birkhäuser Boston, Inc., Boston, MA, 2006. MR 2228356
- A. Aftalion, X. Blanc, and R. L. Jerrard, Supersolid crystals under rotation and sphere packing problems, Nonlinearity 22 (2009), 1589–1614.
- A. Aftalion, P. Mason, and J. Wei, Vortex peak interaction and lattice shape in rotating two-component condensates, Phys. Rev. A 85 (2012), 033614.
- Amandine Aftalion, Benedetta Noris, and Christos Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation, Comm. Math. Phys. 336 (2015), no. 2, 509–579. MR 3322380, DOI 10.1007/s00220-014-2281-9
- Amandine Aftalion and Etienne Sandier, Vortex patterns and sheets in segregated two component Bose-Einstein condensates, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 19, 38. MR 4040628, DOI 10.1007/s00526-019-1637-6
- Amandine Aftalion and Sylvia Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $H_{c_2}$, Selecta Math. (N.S.) 13 (2007), no. 2, 183–202. MR 2361092, DOI 10.1007/s00029-007-0043-7
- Amandine Aftalion and Christos Sourdis, Interface layer of a two-component Bose-Einstein condensate, Commun. Contemp. Math. 19 (2017), no. 5, 1650052, 46. MR 3670791, DOI 10.1142/S0219199716500528
- Stan Alama, Lia Bronsard, and Etienne Sandier, On the shape of interlayer vortices in the Lawrence-Doniach model, Trans. Amer. Math. Soc. 360 (2008), no. 1, 1–34. MR 2341992, DOI 10.1090/S0002-9947-07-04188-8
- Stan Alama, Lia Bronsard, and Etienne Sandier, Periodic minimizers of the anisotropic Ginzburg-Landau model, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 399–417. MR 2551137, DOI 10.1007/s00526-009-0234-5
- Yaniv Almog and Bernard Helffer, Global stability of the normal state of superconductors in the presence of a strong electric current, Comm. Math. Phys. 330 (2014), no. 3, 1021–1094. MR 3227506, DOI 10.1007/s00220-014-1970-8
- Yaniv Almog, Bernard Helffer, and Xing-Bin Pan, Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1183–1217. MR 3003262, DOI 10.1090/S0002-9947-2012-05572-3
- Benjamin Louis Alvarez and Jérémy Faupin, Scattering theory for mathematical models of the weak interaction, Rev. Math. Phys. 32 (2020), no. 1, 2050002, 80. MR 4059133, DOI 10.1142/S0129055X20500026
- Benjamin Alvarez, Jérémy Faupin, and Jean-Claude Guillot, Hamiltonian models of interacting fermion fields in quantum field theory, Lett. Math. Phys. 109 (2019), no. 11, 2403–2437. MR 4019993, DOI 10.1007/s11005-019-01193-9
- Arnaud Anantharaman and Eric Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2425–2455. MR 2569902, DOI 10.1016/j.anihpc.2009.06.003
- Ioannis Anapolitanos and Mathieu Lewin, Compactness of molecular reaction paths in quantum mechanics, Arch. Ration. Mech. Anal. 236 (2020), no. 2, 505–576. MR 4072678, DOI 10.1007/s00205-019-01475-5
- Ioannis Anapolitanos and Israel Michael Sigal, Long-range behavior of the van der Waals force, Comm. Pure Appl. Math. 70 (2017), no. 9, 1633–1671. MR 3684306, DOI 10.1002/cpa.21695
- Asao Arai, A new asymptotic perturbation theory with applications to models of massless quantum fields, Ann. Henri Poincaré 15 (2014), no. 6, 1145–1170. MR 3205748, DOI 10.1007/s00023-013-0271-7
- Asao Arai, Mathematical analysis of quantum fields—historical survey and a new asymptotic perturbation theory [translation of 3700430], Sugaku Expositions 34 (2021), no. 1, 93–121. MR 4252515, DOI 10.1090/suga/459
- Asao Arai, Masao Hirokawa, and Fumio Hiroshima, On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff, J. Funct. Anal. 168 (1999), no. 2, 470–497. MR 1719225, DOI 10.1006/jfan.1999.3472
- J. Arbunich, F. Pusateri, I. M. Sigal, and A. Soffer, Maximal speed of quantum propagation, Lett. Math. Phys. 111 (2021), no. 3, Paper No. 62, 16. MR 4254070, DOI 10.1007/s11005-021-01397-y
- Claude-Alain Pillet, Quantum dynamical systems, Open quantum systems. I, Lecture Notes in Math., vol. 1880, Springer, Berlin, 2006, pp. 107–182. MR 2248983, DOI 10.1007/3-540-33922-1_4
- J. E. Avron, Adiabatic quantum transport, Mesoscopic Quantum Physics, E. Akkermans et al., eds., Les Houches, 1994.
- J. E. Avron, M. Fraas, and G. M. Graf, Adiabatic response for Lindblad dynamics, J. Stat. Phys. 148 (2012), no. 5, 800–823. MR 2972856, DOI 10.1007/s10955-012-0550-6
- Hassen Aydi and Etienne Sandier, Vortex analysis of the periodic Ginzburg-Landau model, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 4, 1223–1236 (English, with English and French summaries). MR 2542722, DOI 10.1016/j.anihpc.2008.09.004
- V. Bach, Mass renormalization in non-relativistic quantum electrodynamics, Lecture Notes of the Les Houches Summer School, vol. 95, 2011.
- Volker Bach, Miguel Ballesteros, and Jürg Fröhlich, Continuous renormalization group analysis of spectral problems in quantum field theory, J. Funct. Anal. 268 (2015), no. 4, 749–823. MR 3296580, DOI 10.1016/j.jfa.2014.10.022
- Volker Bach, Miguel Ballesteros, Diego Iniesta, and Alessandro Pizzo, A new method of construction of resonances that applies to critical models, J. Funct. Anal. 280 (2021), no. 6, Paper No. 108818, 39. MR 4190583, DOI 10.1016/j.jfa.2020.108818
- Volker Bach, Miguel Ballesteros, Martin Könenberg, and Lars Menrath, Existence of ground state eigenvalues for the spin-boson model with critical infrared divergence and multiscale analysis, J. Math. Anal. Appl. 453 (2017), no. 2, 773–797. MR 3648258, DOI 10.1016/j.jmaa.2017.03.075
- Volker Bach, Miguel Ballesteros, and Lars Menrath, A new approach to continuous multi-scale analysis in nonrelativistic QED: ground states and photon number bounds for the spin-boson model with critical infrared singularity, J. Evol. Equ. 18 (2018), no. 2, 715–754. MR 3820420, DOI 10.1007/s00028-017-0417-z
- Volker Bach, Miguel Ballesteros, and Alessandro Pizzo, Existence and construction of resonances for atoms coupled to the quantized radiation field, Adv. Math. 314 (2017), 540–572. MR 3658724, DOI 10.1016/j.aim.2017.04.029
- V. Bach, S. Breteaux, T. Chen, J. Fröhlich, and I. M. Sigal, The time-dependent Hartree-Fock-Bogoliubov equations for bosons, arXiv:1602.05171v2.
- Volker Bach, Sébastien Breteaux, Hans Konrad Knörr, and Edmund Menge, Generalization of Lieb’s variational principle to Bogoliubov-Hartree-Fock theory, J. Math. Phys. 55 (2014), no. 1, 012101, 22. MR 3390418, DOI 10.1063/1.4853875
- Volker Bach, Thomas Chen, Jürg Fröhlich, and Israel Michael Sigal, The renormalized electron mass in non-relativistic quantum electrodynamics, J. Funct. Anal. 243 (2007), no. 2, 426–535. MR 2289695, DOI 10.1016/j.jfa.2006.09.017
- Volker Bach, Jürg Fröhlich, and Alessandro Pizzo, Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field, Adv. Math. 220 (2009), no. 4, 1023–1074. MR 2483715, DOI 10.1016/j.aim.2008.10.006
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Quantum electrodynamics of confined nonrelativistic particles, Adv. Math. 137 (1998), no. 2, 299–395. MR 1639713, DOI 10.1006/aima.1998.1734
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Renormalization group analysis of spectral problems in quantum field theory, Adv. Math. 137 (1998), no. 2, 205–298. MR 1639709, DOI 10.1006/aima.1998.1733
- Volker Bach, Jürg Fröhlich, and Israel Michael Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Comm. Math. Phys. 207 (1999), no. 2, 249–290. MR 1724854, DOI 10.1007/s002200050726
- S. Bachmann, D.-A. Deckert, and A. Pizzo, The mass shell of the Nelson model without cut-offs, J. Funct. Anal. 263 (2012), no. 5, 1224–1282. MR 2943729, DOI 10.1016/j.jfa.2012.04.021
- Miguel Ballesteros, Jérémy Faupin, Jürg Fröhlich, and Baptiste Schubnel, Quantum electrodynamics of atomic resonances, Comm. Math. Phys. 337 (2015), no. 2, 633–680. MR 3339159, DOI 10.1007/s00220-015-2319-7
- Miguel Ballesteros, Dirk-André Deckert, Jérémy Faupin, and Felix Hänle, One-boson scattering processes in the massive spin-boson model, J. Math. Anal. Appl. 489 (2020), no. 1, 124094, 44. MR 4087255, DOI 10.1016/j.jmaa.2020.124094
- Miguel Ballesteros, Dirk-André Deckert, and Felix Hänle, Analyticity of resonances and eigenvalues and spectral properties of the massless spin-boson model, J. Funct. Anal. 276 (2019), no. 8, 2524–2581. MR 3926124, DOI 10.1016/j.jfa.2019.02.008
- Miguel Ballesteros, Dirk-André Deckert, and Felix Hänle, One-boson scattering processes in the massless Spin-Boson model—A non-perturbative formula, Adv. Math. 371 (2020), 107248, 26. MR 4116099, DOI 10.1016/j.aim.2020.107248
- Dario Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1823–1865. MR 3739193, DOI 10.1090/tran/7135
- Dario Bambusi, Benoît Grébert, Alberto Maspero, and Didier Robert, Reducibility of the quantum harmonic oscillator in $d$-dimensions with polynomial time-dependent perturbation, Anal. PDE 11 (2018), no. 3, 775–799. MR 3738262, DOI 10.2140/apde.2018.11.775
- Dario Bambusi, Benoît Grébert, Alberto Maspero, and Didier Robert, Growth of Sobolev norms for abstract linear Schrödinger equations, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 2, 557–583. MR 4195741, DOI 10.4171/jems/1017
- D. Bambusi, B. Langella, and R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori, arXiv:2012.02654, 2020.
- Jean-Marie Barbaroux, Jérémy Faupin, and Jean-Claude Guillot, Local decay for weak interactions with massless particles, J. Spectr. Theory 9 (2019), no. 2, 453–512. MR 3950659, DOI 10.4171/JST/253
- Niels Benedikter, Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer, Correlation energy of a weakly interacting Fermi gas, Invent. Math. 225 (2021), no. 3, 885–979. MR 4296352, DOI 10.1007/s00222-021-01041-5
- Niels Benedikter, Marcello Porta, and Benjamin Schlein, Effective evolution equations from quantum dynamics, SpringerBriefs in Mathematical Physics, vol. 7, Springer, Cham, 2016. MR 3382225, DOI 10.1007/978-3-319-24898-1
- Niels Benedikter, Jérémy Sok, and Jan Philip Solovej, The Dirac-Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations, Ann. Henri Poincaré 19 (2018), no. 4, 1167–1214. MR 3775154, DOI 10.1007/s00023-018-0644-z
- Marius Beceanu and Avy Soffer, Large outgoing solutions to supercritical wave equations, Int. Math. Res. Not. IMRN 20 (2018), 6201–6253. MR 3872322, DOI 10.1093/imrn/rnx050
- M. Berti and A. Maspero, Long time dynamics of Schrödinger and wave equations on flat tori, J. Differential Equations 267 (2019), no. 2, 1167–1200. MR 3957984, DOI 10.1016/j.jde.2019.02.004
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538, DOI 10.1007/978-1-4612-0287-5
- P. Blue and A. Soffer, Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates, Adv. Differential Equations 8 (2003), no. 5, 595–614. MR 1972492
- P. Blue and A. Soffer, Phase space analysis on some black hole manifolds, J. Funct. Anal. 256 (2009), no. 1, 1–90. MR 2475417, DOI 10.1016/j.jfa.2008.10.004
- Jean-François Bony, Jérémy Faupin, and Israel Michael Sigal, Maximal velocity of photons in non-relativistic QED, Adv. Math. 231 (2012), no. 5, 3054–3078. MR 2970473, DOI 10.1016/j.aim.2012.07.019
- Philippe Briet and André Martinez, Molecular dynamics at an energy-level crossing, J. Differential Equations 267 (2019), no. 10, 5662–5700. MR 3996782, DOI 10.1016/j.jde.2019.06.004
- J. C. Bronski and R. L. Jerrard, Soliton dynamics in a potential, Math. Res. Lett. 7 (2000), no. 2-3, 329–342. MR 1764326, DOI 10.4310/MRL.2000.v7.n3.a7
- Éric Cancès, Salma Lahbabi, and Mathieu Lewin, Mean-field models for disordered crystals, J. Math. Pures Appl. (9) 100 (2013), no. 2, 241–274. MR 3073215, DOI 10.1016/j.matpur.2012.12.003
- Eric Cancès and Nahia Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity 27 (2014), no. 9, 1999–2033. MR 3247069, DOI 10.1088/0951-7715/27/9/1999
- Eric Cancès and L. Ridgway Scott, Van der Waals interactions between two hydrogen atoms: the Slater-Kirkwood method revisited, SIAM J. Math. Anal. 50 (2018), no. 1, 381–410. MR 3749384, DOI 10.1137/15M1021878
- E. Cancès, R. Coyaud, and L. R. Scott, Van der Waals interactions between two hydrogen atoms: The next orders, arXiv:2007.04227v1, 2021.
- E. Cancès, G. Stoltz, and M. Lewin, The electronic ground-state energy problem: a new reduced density matrix approach, J. Chem. Phys. 125 (2006), 064101.
- Isabelle Catto and Christian Hainzl, Self-energy of one electron in non-relativistic QED, J. Funct. Anal. 207 (2004), no. 1, 68–110. MR 2027637, DOI 10.1016/S0022-1236(03)00064-8
- Thomas Chen, Infrared renormalization in non-relativistic QED and scaling criticality, J. Funct. Anal. 254 (2008), no. 10, 2555–2647. MR 2406687, DOI 10.1016/j.jfa.2008.01.001
- T. Chen, J. Faupin, J. Fröhlich, and I. M. Sigal, Local decay in non-relativistic QED, Comm. Math. Phys. 309 (2012), no. 2, 543–582. MR 2864803, DOI 10.1007/s00220-011-1339-1
- Thomas Chen and Jürg Fröhlich, Coherent infrared representations in non-relativistic QED, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 25–45. MR 2310197, DOI 10.1090/pspum/076.1/2310197
- Thomas Chen, Jürg Fröhlich, and Alessandro Pizzo, Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm, Comm. Math. Phys. 294 (2010), no. 3, 761–825. MR 2585987, DOI 10.1007/s00220-009-0950-x
- Thomas Chen, Jürg Fröhlich, and Alessandro Pizzo, Infraparticle scattering states in nonrelativistic quantum electrodynamics. II. Mass shell properties, J. Math. Phys. 50 (2009), no. 1, 012103, 34. MR 2492583, DOI 10.1063/1.3000088
- I. Chenn, R. L. Frank, Ch. Hainzl, and I. M. Sigal, On derivation of the Ginzburg-Landau model, in preparation, 2021.
- Ilias Chenn and I. M. Sigal, On effective PDEs of quantum physics, New tools for nonlinear PDEs and application, Trends Math., Birkhäuser/Springer, Cham, 2019, pp. 1–47. MR 4011362, DOI 10.1007/978-3-030-10937-0_1
- Ilias Chenn and I. M. Sigal, Vortex lattices and the Bogoliubov–de Gennes equations, Adv. Math. 380 (2021), Paper No. 107546, 53. MR 4203494, DOI 10.1016/j.aim.2020.107546
- M. R. Christiansen, Ch. Hainzl, and Phan Thành Nam, The random phase approximation for interacting fermi gases in the mean-field regime, arXiv:2106.11161v1, 2021.
- J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Internat. Math. Res. Notices 7 (1998), 333–358. MR 1623410, DOI 10.1155/S1073792898000221
- M. Correggi, R. Duboscq, D. Lundholm, and N. Rougerie, Vortex patterns in the almost-bosonic anyon gas, EPL 126 (2019), 20005.
- Michele Correggi, Marco Falconi, and Marco Olivieri, Magnetic Schrödinger operators as the quasi-classical limit of Pauli-Fierz-type models, J. Spectr. Theory 9 (2019), no. 4, 1287–1325. MR 4033522, DOI 10.4171/jst/277
- Michele Correggi, Douglas Lundholm, and Nicolas Rougerie, Local density approximation for the almost-bosonic anyon gas, Anal. PDE 10 (2017), no. 5, 1169–1200. MR 3668588, DOI 10.2140/apde.2017.10.1169
- M. Correggi and N. Rougerie, On the Ginzburg-Landau functional in the surface superconductivity regime, Comm. Math. Phys. 332 (2014), no. 3, 1297–1343. MR 3262627, DOI 10.1007/s00220-014-2095-9
- Michele Correggi and Nicolas Rougerie, Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime, Arch. Ration. Mech. Anal. 219 (2016), no. 1, 553–606. MR 3437856, DOI 10.1007/s00205-015-0900-z
- Michele Correggi and Nicolas Rougerie, Effects of boundary curvature on surface superconductivity, Lett. Math. Phys. 106 (2016), no. 4, 445–467. MR 3474896, DOI 10.1007/s11005-016-0824-z
- M. Correggi, N. Rougerie, and J. Yngvason, The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate, Comm. Math. Phys. 303 (2011), no. 2, 451–508. MR 2782622, DOI 10.1007/s00220-011-1202-4
- Scipio Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations, Dispersive nonlinear problems in mathematical physics, Quad. Mat., vol. 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 21–57. MR 2231327
- Scipio Cuccagna and Masaya Maeda, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 5, 1693–1716. MR 4228957, DOI 10.3934/dcdss.2020450
- H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger operators, Springer, 1987.
- Thomas Norman Dam and Jacob Schach Møller, Asymptotics in spin-boson type models, Comm. Math. Phys. 374 (2020), no. 3, 1389–1415. MR 4076078, DOI 10.1007/s00220-020-03685-5
- Stephan De Bièvre, Peter D. Hislop, and I. M. Sigal, Scattering theory for the wave equation on noncompact manifolds, Rev. Math. Phys. 4 (1992), no. 4, 575–618. MR 1197551, DOI 10.1142/S0129055X92000236
- S. De Bièvre and D. W. Pravica, Spectral analysis for optical fibres and stratified fluids. I. The limiting absorption principle, J. Funct. Anal. 98 (1991), no. 2, 404–436. MR 1111576, DOI 10.1016/0022-1236(91)90085-J
- S. De Bièvre and D. W. Pravica, Spectral analysis for optical fibres and stratified fluids. II. Absence of eigenvalues, Comm. Partial Differential Equations 17 (1992), no. 1-2, 69–97. MR 1151257, DOI 10.1080/03605309208820835
- Jürg Fröhlich and Alessandro Pizzo, On the absence of excited eigenstates of atoms in QED, Comm. Math. Phys. 286 (2009), no. 3, 803–836. MR 2472018, DOI 10.1007/s00220-008-0704-1
- W. De Roeck, J. Fröhlich, and A. Pizzo, Quantum Brownian motion in a simple model system, Comm. Math. Phys. 293 (2010), no. 2, 361–398. MR 2563788, DOI 10.1007/s00220-009-0924-z
- Jürg Fröhlich and Alessandro Pizzo, Renormalized electron mass in nonrelativistic QED, Comm. Math. Phys. 294 (2010), no. 2, 439–470. MR 2579462, DOI 10.1007/s00220-009-0960-8
- W. De Roeck, M. Griesemer, and A. Kupiainen, Asymptotic completeness for the massless spin-boson model, Adv. Math. 268 (2015), 62–84. MR 3276589, DOI 10.1016/j.aim.2014.09.012
- Wojciech De Roeck and Antti Kupiainen, Approach to ground state and time-independent photon bound for massless spin-boson models, Ann. Henri Poincaré 14 (2013), no. 2, 253–311. MR 3028040, DOI 10.1007/s00023-012-0190-z
- Dirk-André Deckert, Jürg Fröhlich, Peter Pickl, and Alessandro Pizzo, Effective dynamics of a tracer particle interacting with an ideal Bose gas, Comm. Math. Phys. 328 (2014), no. 2, 597–624. MR 3199994, DOI 10.1007/s00220-014-1987-z
- D-A. Deckert, J. Fröhlich, P. Pickl, and A. Pizzo, Dynamics of sound waves in an interacting Bose gas, Adv. Math. 293 (2016), 275–323. MR 3474323, DOI 10.1016/j.aim.2016.02.001
- P. Deift and B. Simon, A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math. 30 (1977), no. 5, 573–583. MR 459397, DOI 10.1002/cpa.3160300504
- Jan Dereziński, Asymptotic completeness of long-range $N$-body quantum systems, Ann. of Math. (2) 138 (1993), no. 2, 427–476. MR 1240577, DOI 10.2307/2946615
- Jan Dereziński and Christian Gérard, Scattering theory of classical and quantum $N$-particle systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1459161, DOI 10.1007/978-3-662-03403-3
- J. Dereziński and C. Gérard, Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (1999), no. 4, 383–450. MR 1682684, DOI 10.1142/S0129055X99000155
- A. Deuchert, Ch. Hainzl, and M. Schaub, Microscopic derivation of Ginzburg-Landau theory and the BCS critical temperature shift in a weak homogeneous magnetic field, arXiv:2105.05623v2, 2021.
- Andreas Deuchert and Robert Seiringer, Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature, Arch. Ration. Mech. Anal. 236 (2020), no. 3, 1217–1271. MR 4076065, DOI 10.1007/s00205-020-01489-4
- M. Disertori, W. Kirsch, A. Klein, F. Klopp, and V. Rivasseau, Random Schrödinger Operators, Panoramas et Syntheses 25, AMS, 2008.
- Roland Donninger, Wilhelm Schlag, and Avy Soffer, A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta, Adv. Math. 226 (2011), no. 1, 484–540. MR 2735767, DOI 10.1016/j.aim.2010.06.026
- Roland Donninger, Wilhelm Schlag, and Avy Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), no. 1, 51–86. MR 2864787, DOI 10.1007/s00220-011-1393-8
- Geneviève Dusson, Israel Michael Sigal, and Benjamin Stamm, The Feshbach-Schur map and perturbation theory, Partial differential equations, spectral theory, and mathematical physics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2021, pp. 65–88. MR 4331808, DOI 10.4171/ECR/18-1/5
- Wojciech Dybalski and Jacob Schach Møller, The translation invariant massive Nelson model: III. Asymptotic completeness below the two-boson threshold, Ann. Henri Poincaré 16 (2015), no. 11, 2603–2693. MR 3411743, DOI 10.1007/s00023-014-0384-7
- W. Dybalski and A. Pizzo, Coulomb scattering in the massless Nelson model I. Foundations of two-electron scattering, J. Stat. Phys. 154 (2014), no. 1-2, 543–587. MR 3162553, DOI 10.1007/s10955-013-0857-y
- Wojciech Dybalski and Alessandro Pizzo, Coulomb scattering in the massless Nelson model III: ground state wave functions and non-commutative recurrence relations, Ann. Henri Poincaré 19 (2018), no. 2, 463–514. MR 3748299, DOI 10.1007/s00023-017-0642-6
- Wojciech Dybalski and Alessandro Pizzo, Coulomb scattering in the massless Nelson model II. Regularity of ground states, Rev. Math. Phys. 31 (2019), no. 3, 1950010, 127. MR 3924848, DOI 10.1142/S0129055X19500107
- Weinan E and Jianfeng Lu, Electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model, Comm. Pure Appl. Math. 63 (2010), no. 11, 1432–1468. MR 2683390, DOI 10.1002/cpa.20330
- Weinan E and Jianfeng Lu, The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule, Arch. Ration. Mech. Anal. 199 (2011), no. 2, 407–433. MR 2763029, DOI 10.1007/s00205-010-0339-1
- Weinan E and Jianfeng Lu, The Kohn-Sham equation for deformed crystals, Mem. Amer. Math. Soc. 221 (2013), no. 1040, vi+97. MR 3057835, DOI 10.1090/S0065-9266-2012-00659-9
- Weinan E, Jianfeng Lu, and Xu Yang, Effective Maxwell equations from time-dependent density functional theory, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 2, 339–368. MR 2754040, DOI 10.1007/s10114-011-0555-0
- Volker Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 39–176. MR 824987, DOI 10.1007/BFb0080332
- Jérémy Faupin and Israel Michael Sigal, On Rayleigh scattering in non-relativistic quantum electrodynamics, Comm. Math. Phys. 328 (2014), no. 3, 1199–1254. MR 3201223, DOI 10.1007/s00220-014-1883-6
- Jérémy Faupin and Israel Michael Sigal, Minimal photon velocity bounds in non-relativistic quantum electrodynamics, J. Stat. Phys. 154 (2014), no. 1-2, 58–90. MR 3162533, DOI 10.1007/s10955-013-0862-1
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- Charles Fefferman, Addendum to: “The $N$-body problem in quantum mechanics”, Comm. Pure Appl. Math. 40 (1987), no. 4, 523. MR 890175, DOI 10.1002/cpa.3160400406
- C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, Ann. PDE 2 (2016), no. 2, Art. 12, 80. MR 3595458, DOI 10.1007/s40818-016-0015-3
- C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Topologically protected states in one-dimensional systems, Mem. Amer. Math. Soc. 247 (2017), no. 1173, vii+118. MR 3633291, DOI 10.1090/memo/1173
- C. L. Fefferman and M. I. Weinstein, Continuum Schroedinger operators for sharply terminated graphene-like structures, Comm. Math. Phys. 380 (2020), no. 2, 853–945. MR 4170293, DOI 10.1007/s00220-020-03868-0
- E. Fermi, Quantum theory of radiation, Rev. Mod. Phys. 4 (1932), 87–132.
- S. Fournais and B. Helffer, On the Ginzburg-Landau critical field in three dimensions, Comm. Pure Appl. Math. 62 (2009), no. 2, 215–241. MR 2468609, DOI 10.1002/cpa.20247
- Søren Fournais and Bernard Helffer, Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser Boston, Inc., Boston, MA, 2010. MR 2662319
- S. Fournais and B. Helffer, Bulk superconductivity in Type II superconductors near the second critical field, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 2, 461–470. MR 2608948, DOI 10.4171/JEMS/205
- Søren Fournais, Bernard Helffer, and Mikael Persson, Superconductivity between $H_{C_2}$ and $H_{C_3}$, J. Spectr. Theory 1 (2011), no. 3, 273–298. MR 2831754, DOI 10.4171/JST/12
- Søren Fournais and Ayman Kachmar, Nucleation of bulk superconductivity close to critical magnetic field, Adv. Math. 226 (2011), no. 2, 1213–1258. MR 2737783, DOI 10.1016/j.aim.2010.08.004
- Søren Fournais and Ayman Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional Part I: Bulk regime, Comm. Partial Differential Equations 38 (2013), no. 2, 339–383. MR 3009083, DOI 10.1080/03605302.2012.717156
- Rupert L. Frank, Christian Hainzl, and Edwin Langmann, The BCS critical temperature in a weak homogeneous magnetic field, J. Spectr. Theory 9 (2019), no. 3, 1005–1062. MR 4003549, DOI 10.4171/JST/270
- Rupert L. Frank, Christian Hainzl, Robert Seiringer, and Jan Philip Solovej, Microscopic derivation of Ginzburg-Landau theory, J. Amer. Math. Soc. 25 (2012), no. 3, 667–713. MR 2904570, DOI 10.1090/S0894-0347-2012-00735-8
- Rupert L. Frank, Christian Hainzl, Benjamin Schlein, and Robert Seiringer, Incompatibility of time-dependent Bogoliubov-de-Gennes and Ginzburg-Landau equations, Lett. Math. Phys. 106 (2016), no. 7, 913–923. MR 3513288, DOI 10.1007/s11005-016-0847-5
- Rupert L. Frank, Christian Hainzl, Robert Seiringer, and Jan Philip Solovej, The external field dependence of the BCS critical temperature, Comm. Math. Phys. 342 (2016), no. 1, 189–216. MR 3455149, DOI 10.1007/s00220-015-2526-2
- Rupert L. Frank and Marius Lemm, Multi-component Ginzburg-Landau theory: microscopic derivation and examples, Ann. Henri Poincaré 17 (2016), no. 9, 2285–2340. MR 3535864, DOI 10.1007/s00023-016-0473-x
- Rupert L. Frank, Phan Thành Nam, and Hanne Van Den Bosch, The maximal excess charge in Müller density-matrix-functional theory, Ann. Henri Poincaré 19 (2018), no. 9, 2839–2867. MR 3844478, DOI 10.1007/s00023-018-0695-1
- Rupert L. Frank, Phan Thành Nam, and Hanne Van Den Bosch, A short proof of the ionization conjecture in Müller theory, Mathematical problems in quantum physics, Contemp. Math., vol. 717, Amer. Math. Soc., [Providence], RI, 2018, pp. 1–12. MR 3869129, DOI 10.1090/conm/717/14437
- Richard Froese and Ira Herbst, A new proof of the Mourre estimate, Duke Math. J. 49 (1982), no. 4, 1075–1085. MR 683011, DOI 10.1215/S0012-7094-82-04947-X
- Jürg Fröhlich, Nonperturbative quantum field theory, Advanced Series in Mathematical Physics, vol. 15, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. Mathematical aspects and applications; Selected papers; With a foreword by Arthur S. Wightman. MR 1169464, DOI 10.1142/1245
- Jürg Fröhlich, Mathematical aspects of the quantum Hall effect, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 23–48. MR 1341838
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with the quantized radiation field, Adv. Math. 164 (2001), no. 2, 349–398. MR 1878286, DOI 10.1006/aima.2001.2026
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic completeness for Rayleigh scattering, Ann. Henri Poincaré 3 (2002), no. 1, 107–170. MR 1891841, DOI 10.1007/s00023-002-8614-9
- J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic completeness for Compton scattering, Comm. Math. Phys. 252 (2004), no. 1-3, 415–476. MR 2104885, DOI 10.1007/s00220-004-1180-x
- J. Fröhlich, M. Griesemer, and B. Schlein, Rayleigh scattering at atoms with dynamical nuclei, Comm. Math. Phys. 271 (2007), no. 2, 387–430. MR 2287910, DOI 10.1007/s00220-006-0134-x
- J. Fröhlich, M. Griesemer, and I. M. Sigal, Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys. 283 (2008), no. 3, 613–646. MR 2434740, DOI 10.1007/s00220-008-0506-5
- J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys. 250 (2004), no. 3, 613–642. MR 2094474, DOI 10.1007/s00220-004-1128-1
- Jürg Fröhlich, Antti Knowles, Benjamin Schlein, and Vedran Sohinger, Gibbs measures of nonlinear Schrödinger equations as limits of many-body quantum states in dimensions $d \leqslant 3$, Comm. Math. Phys. 356 (2017), no. 3, 883–980. MR 3719544, DOI 10.1007/s00220-017-2994-7
- J. Fröhlich, A. Knowles, and A. Pizzo, Atomism and quantization, J. Phys. A 40 (2007), no. 12, 3033–3045. MR 2313859, DOI 10.1088/1751-8113/40/12/S09
- Zhou Gang and I. M. Sigal, On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal. 16 (2006), no. 6, 1377–1390. MR 2276543, DOI 10.1007/s00039-006-0587-2
- Zhou Gang and I. M. Sigal, Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. Math. 216 (2007), no. 2, 443–490. MR 2351368, DOI 10.1016/j.aim.2007.04.018
- Adam Gardner, Instability of Electroweak Homogeneous Vacua in Strong Magnetic Fields, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–University of Toronto (Canada). MR 4257313
- C. Gérard, Sharp propagation estimates for $N$-particle systems, Duke Math. J. 67 (1992), no. 3, 483–515. MR 1181310, DOI 10.1215/S0012-7094-92-06719-6
- C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 1 (2000), no. 3, 443–459. MR 1777307, DOI 10.1007/s000230050002
- C. Gérard, On the scattering theory of massless Nelson models, Rev. Math. Phys. 14 (2002), no. 11, 1165–1280. MR 1943190, DOI 10.1142/S0129055X02001508
- C. Gérard and I. Łaba, Scattering theory for $N$-particle systems in constant magnetic fields, Duke Math. J. 76 (1994), no. 2, 433–465. MR 1302320, DOI 10.1215/S0012-7094-94-07615-1
- C. Gérard and I. Łaba, Scattering theory for $N$-particle systems in constant magnetic fields. II. Long-range interactions, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1791–1830. MR 1349232, DOI 10.1080/03605309508821152
- Christian Gérard and Izabella Łaba, Multiparticle quantum scattering in constant magnetic fields, Mathematical Surveys and Monographs, vol. 90, American Mathematical Society, Providence, RI, 2002. MR 1871447, DOI 10.1198/10857110260141265
- V. Georgescu, C. Gérard, and J. S. Møller, Commutators, $C_0$-semigroups and resolvent estimates, J. Funct. Anal. 216 (2004), no. 2, 303–361. MR 2095686, DOI 10.1016/j.jfa.2004.03.004
- V. Georgescu, C. Gérard, and J. S. Møller, Spectral theory of massless Pauli-Fierz models, Comm. Math. Phys. 249 (2004), no. 1, 29–78. MR 2077252, DOI 10.1007/s00220-004-1111-x
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys. 66 (1979), no. 1, 37–76. MR 530915
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys. 68 (1979), no. 1, 45–68. MR 539736
- James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000
- Gian Michele Graf, Asymptotic completeness for $N$-body short-range quantum systems: a new proof, Comm. Math. Phys. 132 (1990), no. 1, 73–101. MR 1069201
- Gian Michele Graf and Daniel Schenker, Classical action and quantum $N$-body asymptotic completeness, Multiparticle quantum scattering with applications to nuclear, atomic and molecular physics (Minneapolis, MN, 1995) IMA Vol. Math. Appl., vol. 89, Springer, New York, 1997, pp. 103–119. MR 1487919, DOI 10.1007/978-1-4612-1870-8_4
- M. Griesemer, Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal. 210 (2004), no. 2, 321–340. MR 2053490, DOI 10.1016/j.jfa.2003.06.001
- M. Griesemer, Non-relativistic matter and quantized radiation, Large Coulomb systems, Lecture Notes in Phys., vol. 695, Springer, Berlin, 2006, pp. 217–248. MR 2497823, DOI 10.1007/3-540-32579-4_5
- Marcel Griesemer and David G. Hasler, Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation, Ann. Henri Poincaré 10 (2009), no. 3, 577–621. MR 2519822, DOI 10.1007/s00023-009-0417-9
- Marcel Griesemer, Elliott H. Lieb, and Michael Loss, Ground states in non-relativistic quantum electrodynamics, Invent. Math. 145 (2001), no. 3, 557–595. MR 1856401, DOI 10.1007/s002220100159
- Marcel Griesemer and Heribert Zenk, Asymptotic electromagnetic fields in non-relativistic QED: the problem of existence revisited, J. Math. Anal. Appl. 354 (2009), no. 1, 339–346. MR 2510444, DOI 10.1016/j.jmaa.2008.12.046
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys. 324 (2013), no. 2, 601–636. MR 3117522, DOI 10.1007/s00220-013-1818-7
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, II, Comm. Partial Differential Equations 42 (2017), no. 1, 24–67. MR 3605290, DOI 10.1080/03605302.2016.1255228
- B. Güneysu, O. Matte, and J. S. Møller, Stochastic differential equations for models of non-relativistic matter interacting with quantized radiation fields, Probab. Theory Related Fields 167 (2017), no. 3-4, 817–915. MR 3627429, DOI 10.1007/s00440-016-0694-4
- Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, Universitext, Springer, Cham, 2020. Third edition [of 2002159]. MR 4199124, DOI 10.1007/978-3-030-59562-3
- S. Gustafson and Li Wang, Co-rotational chiral magnetic skyrmions near harmonic maps, J. Funct. Anal. 280 (2021), no. 4, Paper No. 108867, 69. MR 4179069, DOI 10.1016/j.jfa.2020.108867
- Christian Hainzl, One non-relativistic particle coupled to a photon field, Ann. Henri Poincaré 4 (2003), no. 2, 217–237. MR 1985772, DOI 10.1007/s00023-003-0128-6
- Christian Hainzl, Eman Hamza, Robert Seiringer, and Jan Philip Solovej, The BCS functional for general pair interactions, Comm. Math. Phys. 281 (2008), no. 2, 349–367. MR 2410898, DOI 10.1007/s00220-008-0489-2
- Christian Hainzl, Masao Hirokawa, and Herbert Spohn, Binding energy for hydrogen-like atoms in the Nelson model without cutoffs, J. Funct. Anal. 220 (2005), no. 2, 424–459. MR 2119286, DOI 10.1016/j.jfa.2004.07.009
- Christian Hainzl and Robert Seiringer, Mass renormalization and energy level shift in non-relativistic QED, Adv. Theor. Math. Phys. 6 (2002), no. 5, 847–871 (2003). MR 1974588, DOI 10.4310/ATMP.2002.v6.n5.a3
- C. Hainzl and R. Seiringer, The Bardeen-Cooper-Schrieffer functional of superconductivity and its mathematical properties, J. Math. Phys. 57 (2016), no. 2, 021101, 46. MR 3463277, DOI 10.1063/1.4941723
- Christian Hainzl, Vitali Vougalter, and Semjon A. Vugalter, Enhanced binding in non-relativistic QED, Comm. Math. Phys. 233 (2003), no. 1, 13–26. MR 1957730, DOI 10.1007/s00220-002-0787-z
- D. Hasler and I. Herbst, On the self-adjointness and domain of Pauli-Fierz type Hamiltonians, Rev. Math. Phys. 20 (2008), no. 7, 787–800. MR 2436496, DOI 10.1142/S0129055X08003389
- D. Hasler and I. Herbst, Absence of ground states for a class of translation invariant models of non-relativistic QED, Comm. Math. Phys. 279 (2008), no. 3, 769–787. MR 2386727, DOI 10.1007/s00220-008-0444-2
- D. Hasler and I. Herbst, Convergent expansions in non-relativistic qed: analyticity of the ground state, J. Funct. Anal. 261 (2011), no. 11, 3119–3154. MR 2835993, DOI 10.1016/j.jfa.2011.07.023
- David Hasler and Ira Herbst, Ground states in the spin boson model, Ann. Henri Poincaré 12 (2011), no. 4, 621–677. MR 2787765, DOI 10.1007/s00023-011-0091-6
- D. Hasler and I. Herbst, Smoothness and analyticity of perturbation expansions in qed, Adv. Math. 228 (2011), no. 6, 3249–3299. MR 2844943, DOI 10.1016/j.aim.2011.08.007
- David Hasler, Benjamin Hinrichs, and Oliver Siebert, On existence of ground states in the spin boson model, Comm. Math. Phys. 388 (2021), no. 1, 419–433. MR 4328059, DOI 10.1007/s00220-021-04185-w
- D. Hasler and O. Siebert, Ground states for translationally invariant Pauli-Fierz models at zero momentum, arXiv:2007.01250v2, 2020.
- Ira Herbst, Jacob Schach Møller, and Erik Skibsted, Asymptotic completeness for $N$-body Stark Hamiltonians, Comm. Math. Phys. 174 (1996), no. 3, 509–535. MR 1370079
- Ira Herbst and Erik Skibsted, Free channel Fourier transform in the long-range $N$-body problem, J. Anal. Math. 65 (1995), 297–332. MR 1335378, DOI 10.1007/BF02788775
- Klaus Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265–277. MR 332046
- F. Hiroshima, Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré 3 (2002), no. 1, 171–201. MR 1891842, DOI 10.1007/s00023-002-8615-8
- Fumio Hiroshima, Fiber Hamiltonians in non-relativistic quantum electrodynamics, J. Funct. Anal. 252 (2007), no. 1, 314–355. MR 2357359, DOI 10.1016/j.jfa.2007.06.006
- Fumio Hiroshima and Herbert Spohn, Mass renormalization in nonrelativistic quantum electrodynamics, J. Math. Phys. 46 (2005), no. 4, 042302, 27. MR 2131228, DOI 10.1063/1.1852699
- Peter D. Hislop, Lectures on random Schrödinger operators, Fourth Summer School in Analysis and Mathematical Physics, Contemp. Math., vol. 476, Amer. Math. Soc., Providence, RI, 2008, pp. 41–131. MR 2509108, DOI 10.1090/conm/476/09293
- Justin Holmer, Dynamics of KdV solitons in the presence of a slowly varying potential, Int. Math. Res. Not. IMRN 23 (2011), 5367–5397. MR 2855072, DOI 10.1093/imrn/rnq284
- Justin Holmer, Jeremy Marzuola, and Maciej Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 (2007), no. 1, 187–216. MR 2318852, DOI 10.1007/s00220-007-0261-z
- Justin Holmer, Galina Perelman, and Maciej Zworski, Effective dynamics of double solitons for perturbed mKdV, Comm. Math. Phys. 305 (2011), no. 2, 363–425. MR 2805465, DOI 10.1007/s00220-011-1252-7
- Justin Holmer and Maciej Zworski, Soliton interaction with slowly varying potentials, Int. Math. Res. Not. IMRN 10 (2008), Art. ID rnn026, 36. MR 2429244, DOI 10.1093/imrn/rnn026
- Justin Holmer and Maciej Zworski, Breathing patterns in nonlinear relaxation, Nonlinearity 22 (2009), no. 6, 1259–1301. MR 2507321, DOI 10.1088/0951-7715/22/6/002
- Matthias Hübner and Herbert Spohn, Radiative decay: nonperturbative approaches, Rev. Math. Phys. 7 (1995), no. 3, 363–387. MR 1326139, DOI 10.1142/S0129055X95000165
- W. Hunziker and I. M. Sigal, The quantum $N$-body problem, J. Math. Phys. 41 (2000), no. 6, 3448–3510. MR 1768629, DOI 10.1063/1.533319
- W. Hunziker, I. M. Sigal, and A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2279–2295. MR 1720738, DOI 10.1080/03605309908821502
- V. Jakšić and C.-A. Pillet, Mathematical theory of non-equilibrium quantum statistical mechanics, J. Statist. Phys. 108 (2002), no. 5-6, 787–829. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933434, DOI 10.1023/A:1019818909696
- Robert L. Jerrard, Quantized vortex filaments in complex scalar fields, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 789–810. MR 3729052
- Robert L. Jerrard and Didier Smets, Leapfrogging vortex rings for the three dimensional Gross-Pitaevskii equation, Ann. PDE 4 (2018), no. 1, Paper No. 4, 48. MR 3736755, DOI 10.1007/s40818-017-0040-x
- W. Kirsch, Random Schrödinger operators, Lecture Notes in Physics, 2006.
- B. Lars G. Jonsson, Jürg Fröhlich, Stephen Gustafson, and Israel Michael Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré 7 (2006), no. 4, 621–660. MR 2232367, DOI 10.1007/s00023-006-0263-y
- Claude Le Bris and Pierre-Louis Lions, From atoms to crystals: a mathematical journey, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 3, 291–363. MR 2149087, DOI 10.1090/S0273-0979-05-01059-1
- M. Levy, Electron densities in search of Hamiltonians, Phys. Rev. A 26 (1982), 1200–1208.
- Mathieu Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal. 260 (2011), no. 12, 3535–3595. MR 2781970, DOI 10.1016/j.jfa.2010.11.017
- M. Lewin, Mean-field limit of bose systems: rigorous results, Proc. ICMP, 2015.
- Mathieu Lewin, Semi-classical limit of the Levy-Lieb functional in density functional theory, C. R. Math. Acad. Sci. Paris 356 (2018), no. 4, 449–455 (English, with English and French summaries). MR 3787535, DOI 10.1016/j.crma.2018.03.002
- Mathieu Lewin, Existence of Hartree-Fock excited states for atoms and molecules, Lett. Math. Phys. 108 (2018), no. 4, 985–1006. MR 3780174, DOI 10.1007/s11005-017-1019-y
- Mathieu Lewin, Elliott H. Lieb, and Robert Seiringer, The local density approximation in density functional theory, Pure Appl. Anal. 2 (2020), no. 1, 35–73. MR 4041277, DOI 10.2140/paa.2020.2.35
- M. Lewin, E. H. Lieb, and R. Seiringer, Universal functionals in density functional theory, chapter of a book In Density Functional Theory, E. Cancès, G. Friesecke, and L. Lin, eds., to appear, arXiv:1912.10424V2 (2020).
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6131–6157. MR 3461029, DOI 10.1090/tran/6537
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, A note on 2D focusing many-boson systems, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2441–2454. MR 3626502, DOI 10.1090/proc/13468
- Mathieu Lewin, Phan Thành Nam, and Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, Amer. J. Math. 137 (2015), no. 6, 1613–1650. MR 3432269, DOI 10.1353/ajm.2015.0040
- Xinye Li and Christof Melcher, Lattice solutions in a Ginzburg-Landau model for a chiral magnet, J. Nonlinear Sci. 30 (2020), no. 6, 3389–3420. MR 4170329, DOI 10.1007/s00332-020-09654-5
- Elliott H. Lieb, The stability of matter, Rev. Modern Phys. 48 (1976), no. 4, 553–569. MR 0456083, DOI 10.1103/RevModPhys.48.553
- Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603–641. MR 629207, DOI 10.1103/RevModPhys.53.603
- E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem. 24 (1983), 243–277.
- Elliott H. Lieb, The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 1–49. MR 1014510, DOI 10.1090/S0273-0979-1990-15831-8
- Elliott H. Lieb, The stability of matter: from atoms to stars, 4th ed., Springer, Berlin, 2005. Selecta of Elliott H. Lieb; Edited by W. Thirring, and with a preface by F. Dyson. MR 2766495
- Elliott H. Lieb and Michael Loss, Existence of atoms and molecules in non-relativistic quantum electrodynamics, Adv. Theor. Math. Phys. 7 (2003), no. 4, 667–710. MR 2039034
- Elliott H. Lieb and Michael Loss, A note on polarization vectors in quantum electrodynamics, Comm. Math. Phys. 252 (2004), no. 1-3, 477–483. MR 2104886, DOI 10.1007/s00220-004-1185-5
- E. H. Lieb and R. Seiringer, Stability of matter, Cambridge Univ. Press, 2010.
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817
- Elliott H. Lieb and Barry Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math. 23 (1977), no. 1, 22–116. MR 428944, DOI 10.1016/0001-8708(77)90108-6
- Elliott H. Lieb and Barry Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185–194. MR 452286
- Hans Lindblad and Avy Soffer, Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity 19 (2006), no. 2, 345–353. MR 2199392, DOI 10.1088/0951-7715/19/2/006
- Hans Lindblad and Avy Soffer, Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities, Trans. Amer. Math. Soc. 367 (2015), no. 12, 8861–8909. MR 3403074, DOI 10.1090/S0002-9947-2014-06455-6
- P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33–97. MR 879032
- J. Lőrinczi, R. A. Minlos, and H. Spohn, The infrared behaviour in Nelson’s model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincaré 3 (2002), no. 2, 269–295. MR 1914143, DOI 10.1007/s00023-002-8617-6
- André Martinez and Vania Sordoni, Widths of highly excited resonances in multidimensional molecular predissociation, J. Math. Soc. Japan 72 (2020), no. 3, 687–730. MR 4125842, DOI 10.2969/jmsj/81538153
- Alberto Maspero, Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations, Math. Res. Lett. 26 (2019), no. 4, 1197–1215. MR 4028118, DOI 10.4310/MRL.2019.v26.n4.a11
- A. Maspero, Growth of Sobolev norms in linear Schrödinger equations as a dispersive phenomenon, arXiv:2101.09055, 2021.
- A. Maspero and D. Robert, On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, J. Funct. Anal. 273 (2017), no. 2, 721–781. MR 3648866, DOI 10.1016/j.jfa.2017.02.029
- Riccardo Montalto, Growth of Sobolev norms for time dependent periodic Schrödinger equations with sublinear dispersion, J. Differential Equations 266 (2019), no. 8, 4953–4996. MR 3912739, DOI 10.1016/j.jde.2018.10.017
- Jacob Schach Møller, The translation invariant massive Nelson model. I. The bottom of the spectrum, Ann. Henri Poincaré 6 (2005), no. 6, 1091–1135. MR 2189378, DOI 10.1007/s00023-005-0234-8
- Jacob Schach Møller, Fully coupled Pauli-Fierz systems at zero and positive temperature, J. Math. Phys. 55 (2014), no. 7, 075203, 67. MR 3390681, DOI 10.1063/1.4879239
- Jacob Schach Møller and Morten Grud Rasmussen, The translation invariant massive Nelson model: II. The continuous spectrum below the two-boson threshold, Ann. Henri Poincaré 14 (2013), no. 4, 793–852. MR 3046457, DOI 10.1007/s00023-012-0208-6
- E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), no. 3, 391–408. MR 603501
- Phan Thành Nam and Marcin Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys. 21 (2017), no. 3, 683–738. MR 3695801, DOI 10.4310/ATMP.2017.v21.n3.a4
- M. Napiórkoswki, Dynamics of interacting bosons: a compact review, arXiv:2101.04594, 2021.
- Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej, The Bogoliubov free energy functional I: Existence of minimizers and phase diagram, Arch. Ration. Mech. Anal. 229 (2018), no. 3, 1037–1090. MR 3814596, DOI 10.1007/s00205-018-1232-6
- Marcin Napiórkowski, Robin Reuvers, and Jan Philip Solovej, The Bogoliubov free energy functional II: The dilute limit, Comm. Math. Phys. 360 (2018), no. 1, 347–403. MR 3795194, DOI 10.1007/s00220-017-3064-x
- Francis Nier, A variational formulation of Schrödinger-Poisson systems in dimension $d\le 3$, Comm. Partial Differential Equations 18 (1993), no. 7-8, 1125–1147. MR 1233187, DOI 10.1080/03605309308820966
- Gianluca Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré 8 (2007), no. 5, 995–1011. MR 2342883, DOI 10.1007/s00023-007-0326-8
- Gianluca Panati, Herbert Spohn, and Stefan Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond, Comm. Math. Phys. 242 (2003), no. 3, 547–578. MR 2020280, DOI 10.1007/s00220-003-0950-1
- Gianluca Panati, Herbert Spohn, and Stefan Teufel, The time-dependent Born-Oppenheimer approximation, M2AN Math. Model. Numer. Anal. 41 (2007), no. 2, 297–314. MR 2339630, DOI 10.1051/m2an:2007023
- Alessandro Pizzo, One-particle (improper) states in Nelson’s massless model, Ann. Henri Poincaré 4 (2003), no. 3, 439–486. MR 2007254, DOI 10.1007/s00023-003-0136-6
- Alessandro Pizzo, Scattering of an Infraparticle: the one particle sector in Nelson’s massless model, Ann. Henri Poincaré 6 (2005), no. 3, 553–606. MR 2222131, DOI 10.1007/s00023-005-0216-x
- E. Prodan and P. Nordlander, On the Kohn-Sham equations with periodic background potentials, J. Statist. Phys. 111 (2003), no. 3-4, 967–992. MR 1972131, DOI 10.1023/A:1022810601639
- Fabio Pusateri and Israel Michael Sigal, Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal. 241 (2021), no. 1, 447–473. MR 4271963, DOI 10.1007/s00205-021-01656-1
- Igor Rodnianski, Wilhelm Schlag, and Avraham Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math. 58 (2005), no. 2, 149–216. MR 2094850, DOI 10.1002/cpa.20066
- Nicolas Rougerie, Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surv. Math. Sci. 7 (2020), no. 2, 253–408. MR 4261667, DOI 10.4171/emss/40
- Etienne Sandier and Sylvia Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2279839
- W. Schlag, A. Soffer, and W. Staubach, Decay estimates for the Schrödinger evolution on asymptotically conic surfaces of revolution, Trans. AMS 362 (2010), 289–318.
- I. M. Sigal, Lectures on large Coulomb systems, Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993) CRM Proc. Lecture Notes, vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. 73–107. MR 1332037
- Israel Michael Sigal, Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys. 134 (2009), no. 5-6, 899–939. MR 2518974, DOI 10.1007/s10955-009-9721-5
- I. M. Sigal, Renormalization group and problem of radiation, Lecture Notes of the Les Houches Summer Schools, vol. 95, Oxford University Press, 2012.
- Israel Michael Sigal, Magnetic vortices, Abrikosov lattices, and automorphic functions, Mathematical and computational modeling, Pure Appl. Math. (Hoboken), Wiley, Hoboken, NJ, 2015, pp. 19–58. MR 3381531
- I. M. Sigal, Radiation and scattering in non-relativistic QED, Mathematical Physics: A Bridge Between Mathematics and Physics. Springer, 2016.
- I. M. Sigal and A. Soffer, The $N$-particle scattering problem: asymptotic completeness for short-range systems, Ann. of Math. (2) 126 (1987), no. 1, 35–108. MR 898052, DOI 10.2307/1971345
- I. M. Sigal and A. Soffer, Local decay and propagation estimates for time-dependent and time-independent Hamiltonians, preprint, Princeton Univ., 1988, http://www.math.toronto.edu/sigal/publications/SigSofVelBnd.pdf.
- I. M. Sigal and A. Soffer, Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials, Invent. Math. 99 (1990), no. 1, 115–143. MR 1029392, DOI 10.1007/BF01234414
- I. M. Sigal and A. Soffer, Asymptotic completeness for $N\leq 4$ particle systems with the Coulomb-type interactions, Duke Math. J. 71 (1993), no. 1, 243–298. MR 1230292, DOI 10.1215/S0012-7094-93-07110-4
- Israel Michael Sigal and Tim Tzaneteas, Stability of Abrikosov lattices under gauge-periodic perturbations, Nonlinearity 25 (2012), no. 4, 1187–1210. MR 2904275, DOI 10.1088/0951-7715/25/4/1187
- Israel Michael Sigal and Tim Tzaneteas, On stability of Abrikosov vortex lattices, Adv. Math. 326 (2018), 108–199. MR 3758428, DOI 10.1016/j.aim.2017.11.031
- Barry Simon, Tosio Kato’s work on non-relativistic quantum mechanics: part 1, Bull. Math. Sci. 8 (2018), no. 1, 121–232. MR 3775269, DOI 10.1007/s13373-018-0118-0
- B. Simon, Twelve tales in mathematical physics: an expanded Heinemann price lecture, arXiv:2011.12335, 2021.
- Erik Skibsted, Propagation estimates for $N$-body Schroedinger operators, Comm. Math. Phys. 142 (1991), no. 1, 67–98. MR 1137775
- Erik Skibsted, Asymptotic completeness for particles in combined constant electric and magnetic fields. II, Duke Math. J. 89 (1997), no. 2, 307–350. MR 1460625, DOI 10.1215/S0012-7094-97-08915-8
- Erik Skibsted, Spectral analysis of $N$-body systems coupled to a bosonic field, Rev. Math. Phys. 10 (1998), no. 7, 989–1026. MR 1653729, DOI 10.1142/S0129055X9800032X
- Erik Skibsted, Long-range scattering of three-body quantum systems: asymptotic completeness, Invent. Math. 151 (2003), no. 1, 65–99. MR 1943742, DOI 10.1007/s00222-002-0247-6
- Avy Soffer, Soliton dynamics and scattering, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 459–471. MR 2275691
- Herbert Spohn, Ground state(s) of the spin-boson Hamiltonian, Comm. Math. Phys. 123 (1989), no. 2, 277–304. MR 1002040
- Herbert Spohn, Asymptotic completeness for Rayleigh scattering, J. Math. Phys. 38 (1997), no. 5, 2281–2296. MR 1447858, DOI 10.1063/1.531974
- Herbert Spohn, Ground state of a quantum particle coupled to a scalar Bose field, Lett. Math. Phys. 44 (1998), no. 1, 9–16. MR 1623746, DOI 10.1023/A:1007473300274
- Herbert Spohn, Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge, 2004. MR 2097788, DOI 10.1017/CBO9780511535178
- Hideo Tamura, Asymptotic completeness for $N$-body Schrödinger operators with short-range interactions, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1129–1154. MR 1116856, DOI 10.1080/03605309108820792
- Stefan Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, vol. 1821, Springer-Verlag, Berlin, 2003. MR 2158392, DOI 10.1007/b13355
- Stefan Teufel and Jakob Wachsmuth, Spontaneous decay of resonant energy levels for molecules with moving nuclei, Comm. Math. Phys. 315 (2012), no. 3, 699–738. MR 2981811, DOI 10.1007/s00220-012-1547-3
- András Vasy, Structure of the resolvent for three-body potentials, Duke Math. J. 90 (1997), no. 2, 379–434. MR 1484859, DOI 10.1215/S0012-7094-97-09010-4
- András Vasy, Propagation of singularities in many-body scattering in the presence of bound states, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999) Univ. Nantes, Nantes, 1999, pp. Exp. No. XVI, 20. MR 1719010
- Alexander B. Watson, Jianfeng Lu, and Michael I. Weinstein, Wavepackets in inhomogeneous periodic media: effective particle-field dynamics and Berry curvature, J. Math. Phys. 58 (2017), no. 2, 021503, 40. MR 3613303, DOI 10.1063/1.4976200
- D. Yafaev, Radiation conditions and scattering theory for $N$-particle Hamiltonians, Comm. Math. Phys. 154 (1993), no. 3, 523–554. MR 1224090
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35Q41,
81Q99,
81U24,
35Q56,
35Q70,
81V10
Retrieve articles in all journals
with MSC (2020):
35Q41,
81Q99,
81U24,
35Q56,
35Q70,
81V10
Additional Information
I. M. Sigal
Affiliation:
Department of Mathematics, University of Toronto, Toronto M5S 2E4, Canada
MR Author ID:
161895
ORCID:
0000-0001-7514-7056
Email:
im.sigal@utoronto.ca
Received by editor(s):
November 11, 2021
Received by editor(s) in revised form:
January 1, 2022
Published electronically:
March 22, 2022
Additional Notes:
The author’s research was supported in part by NSERC Grant No. NA7901.
Article copyright:
© Copyright 2022
Brown University