The mean-field limit of the Cucker-Smale model on complete Riemannian manifolds
Authors:
Hyunjin Ahn, Seung-Yeal Ha, Doheon Kim, Franz Wilhelm Schlöder and Woojoo Shim
Journal:
Quart. Appl. Math. 80 (2022), 403-450
MSC (2020):
Primary 58J45, 35L65
DOI:
https://doi.org/10.1090/qam/1613
Published electronically:
March 21, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study the mean-field limit of the Cucker-Smale (C-S) model for flocking on complete smooth Riemannian manifolds. For this, we first formally derive the kinetic manifold C-S model on manifolds using the BBGKY hierarchy and derive several a priori estimates on emergent dynamics. Then, we present a rigorous mean-field limit from the particle model to the corresponding kinetic model by using the generalized particle-in-cell method. As a byproduct of our rigorous mean-field limit estimate, we also establish a global existence of a measure-valued solution for the derived kinetic model. Compared to the corresponding results on $\mathbb {R}^d$, our procedure requires additional assumption on holonomy and proper a priori bound on the derivative of parallel transports. As a concrete example, we verify that hyperbolic space $\mathbb {H}^d$ satisfies our proposed standing assumptions.
References
- J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005), 137–185.
- Hyunjin Ahn, Seung-Yeal Ha, Myeongju Kang, and Woojoo Shim, Emergent behaviors of relativistic flocks on Riemannian manifolds, Phys. D 427 (2021), Paper No. 133011, 16. MR 4311548, DOI 10.1016/j.physd.2021.133011
- Hyunjin Ahn, Seung-Yeal Ha, Hansol Park, and Woojoo Shim, Emergent behaviors of Cucker-Smale flocks on the hyperboloid, J. Math. Phys. 62 (2021), no. 8, Paper No. 082702, 22. MR 4293476, DOI 10.1063/5.0020923
- Hyunjin Ahn, Seung-Yeal Ha, and Woojoo Shim, Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds, Kinet. Relat. Models 14 (2021), no. 2, 323–351. MR 4251948, DOI 10.3934/krm.2021007
- Shin Mi Ahn and Seung-Yeal Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys. 51 (2010), no. 10, 103301, 17. MR 2761313, DOI 10.1063/1.3496895
- G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and J. Soler, Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci. 29 (2019), no. 10, 1901–2005. MR 4014449, DOI 10.1142/S0218202519500374
- J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature 211 (1966), 562–564.
- J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal. 42 (2010), no. 1, 218–236. MR 2596552, DOI 10.1137/090757290
- Patrick Cattiaux, Fanny Delebecque, and Laure Pédèches, Stochastic Cucker-Smale models: old and new, Ann. Appl. Probab. 28 (2018), no. 5, 3239–3286. MR 3847987, DOI 10.1214/18-AAP1400
- Junghee Cho, Seung-Yeal Ha, Feimin Huang, Chunyin Jin, and Dongnam Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci. 26 (2016), no. 6, 1191–1218. MR 3484572, DOI 10.1142/S0218202516500287
- Young-Pil Choi and Jan Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models 10 (2017), no. 4, 1011–1033. MR 3622098, DOI 10.3934/krm.2017040
- Young-Pil Choi, Seung-Yeal Ha, and Zhuchun Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017, pp. 299–331. MR 3644594
- Young-Pil Choi, Dante Kalise, Jan Peszek, and Andrés A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst. 18 (2019), no. 4, 1954–1981. MR 4028780, DOI 10.1137/19M1241799
- Young-Pil Choi and Zhuchun Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett. 86 (2018), 49–56. MR 3836802, DOI 10.1016/j.aml.2018.06.018
- Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007), no. 5, 852–862. MR 2324245, DOI 10.1109/TAC.2007.895842
- Pierre Degond and Sébastien Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys. 131 (2008), no. 6, 989–1021. MR 2407377, DOI 10.1007/s10955-008-9529-8
- Peter Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88. MR 141050, DOI 10.1515/crll.1962.210.73
- Renjun Duan, Massimo Fornasier, and Giuseppe Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys. 300 (2010), no. 1, 95–145. MR 2725184, DOI 10.1007/s00220-010-1110-z
- B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol. 29 (1991), no. 6, 571–585. MR 1118757, DOI 10.1007/BF00164052
- Gregory S. Ezra, On the statistical mechanics of non-Hamiltonian systems: the generalized Liouville equation, entropy, and time-dependent metrics, J. Math. Chem. 35 (2004), no. 1, 29–53. MR 2043311, DOI 10.1023/B:JOMC.0000007811.79716.4d
- Di Fang, Seung-Yeal Ha, and Shi Jin, Emergent behaviors of the Cucker-Smale ensemble under attractive-repulsive couplings and Rayleigh frictions, Math. Models Methods Appl. Sci. 29 (2019), no. 7, 1349–1385. MR 3974169, DOI 10.1142/S0218202519500234
- R. C. Fetecau, S.-Y. Ha, and H. Park, Emergent behaviors of rotation matrix flocks, submitted.
- Razvan C. Fetecau, Seung-Yeal Ha, and Hansol Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: well-posedness and collective behaviours, J. Nonlinear Sci. 31 (2021), no. 5, Paper No. 74, 61. MR 4284364, DOI 10.1007/s00332-021-09732-2
- Razvan C. Fetecau, Hansol Park, and Francesco S. Patacchini, Well-posedness and asymptotic behavior of an aggregation model with intrinsic interactions on sphere and other manifolds, Anal. Appl. (Singap.) 19 (2021), no. 6, 965–1017. MR 4328763, DOI 10.1142/S0219530521500081
- Razvan C. Fetecau and Beril Zhang, Self-organization on Riemannian manifolds, J. Geom. Mech. 11 (2019), no. 3, 397–426. MR 4026014, DOI 10.3934/jgm.2019020
- E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, and M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel motion control method, Adapt. Behav. 20 (2012), 460–477.
- Seung-Yeal Ha, Taeyoung Ha, and Jong-Ho Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control 55 (2010), no. 7, 1679–1683. MR 2675831, DOI 10.1109/TAC.2010.2046113
- Seung-Yeal Ha, Doheon Kim, and Franz Wilhelm Schlöder, Emergent behaviors of Cucker-Smale flocks on Riemannian manifolds, IEEE Trans. Automat. Control 66 (2021), no. 7, 3020–3035. MR 4284127, DOI 10.1109/TAC.2020.3014096
- Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, and Xiongtao Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal. 231 (2019), no. 1, 319–365. MR 3894553, DOI 10.1007/s00205-018-1281-x
- Seung-Yeal Ha, Dongnam Ko, and Sang Woo Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys. 172 (2018), no. 5, 1427–1478. MR 3856949, DOI 10.1007/s10955-018-2091-0
- Seung-Yeal Ha, Dongnam Ko, and Sang Woo Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys. 168 (2017), no. 1, 171–207. MR 3659983, DOI 10.1007/s10955-017-1797-8
- Seung-Yeal Ha, Dongnam Ko, and Yinglong Zhang, Critical coupling strength of the Cucker-Smale model for flocking, Math. Models Methods Appl. Sci. 27 (2017), no. 6, 1051–1087. MR 3659046, DOI 10.1142/S0218202517400097
- Seung-Yeal Ha, Kiseop Lee, and Doron Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci. 7 (2009), no. 2, 453–469. MR 2536447, DOI 10.4310/CMS.2009.v7.n2.a9
- Seung-Yeal Ha and Jian-Guo Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci. 7 (2009), no. 2, 297–325. MR 2536440, DOI 10.4310/CMS.2009.v7.n2.a2
- Seung-Yeal Ha and Eitan Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models 1 (2008), no. 3, 415–435. MR 2425606, DOI 10.3934/krm.2008.1.415
- Jürgen Jost, Riemannian geometry and geometric analysis, 6th ed., Universitext, Springer, Heidelberg, 2011. MR 2829653, DOI 10.1007/978-3-642-21298-7
- M. A. Lohe, Non-abelian Kuramoto models and synchronization, J. Phys. A 42 (2009), no. 39, 395101, 25. MR 2539317, DOI 10.1088/1751-8113/42/39/395101
- Johan Markdahl, Johan Thunberg, and Jorge Gonçalves, Almost global consensus on the $n$-sphere, IEEE Trans. Automat. Control 63 (2018), no. 6, 1664–1675. MR 3807655, DOI 10.1109/tac.2017.2752799
- Sebastien Motsch and Eitan Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144 (2011), no. 5, 923–947. MR 2836613, DOI 10.1007/s10955-011-0285-9
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Reza Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Control 51 (2006), no. 3, 401–420. MR 2205679, DOI 10.1109/TAC.2005.864190
- R. Olfati-Saber, Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks, Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 5060–5066.
- Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths, Synchronization, Cambridge Nonlinear Science Series, vol. 12, Cambridge University Press, Cambridge, 2001. A universal concept in nonlinear sciences. MR 1869044, DOI 10.1017/CBO9780511755743
- C. W. Reynolds, Flocks, herds and schools: a distributed behavioral model, Proceeding SIGGRAPH 87, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987, pp. 25–34.
- Shigeo Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2) 10 (1958), 338–354. MR 112152, DOI 10.2748/tmj/1178244668
- F. W. Schlöder, Topics on helicity, geometric flocking dynamics and intersection space cohomology, Thesis (Ph.D.)–University of Milano Bicocca–Pavia–INDAM, 2020.
- Willi-Hans Steeb, Generalized Liouville equation, entropy, and dynamic systems containing limit cycles, Phys. A 95 (1979), no. 1, 181–190. MR 516926, DOI 10.1016/0378-4371(79)90050-5
- Steven H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D 143 (2000), no. 1-4, 1–20. Bifurcations, patterns and symmetry. MR 1783382, DOI 10.1016/S0167-2789(00)00094-4
- John Toner and Yuhai Tu, Flocks, herds, and schools: a quantitative theory of flocking, Phys. Rev. E (3) 58 (1998), no. 4, 4828–4858. MR 1651324, DOI 10.1103/PhysRevE.58.4828
- Chad M. Topaz and Andrea L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004), no. 1, 152–174. MR 2111591, DOI 10.1137/S0036139903437424
- Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), no. 6, 1226–1229. MR 3363421, DOI 10.1103/PhysRevLett.75.1226
- T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep. 517 (2012), 71–140.
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- Arthur T. Winfree, The geometry of biological time, Biomathematics, vol. 8, Springer-Verlag, Berlin-New York, 1980. MR 572965, DOI 10.1007/978-3-662-22492-2
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967), 15–42.
References
- J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005), 137–185.
- Hyunjin Ahn, Seung-Yeal Ha, Myeongju Kang, and Woojoo Shim, Emergent behaviors of relativistic flocks on Riemannian manifolds, Phys. D 427 (2021), Paper No. 133011, 16. MR 4311548, DOI 10.1016/j.physd.2021.133011
- Hyunjin Ahn, Seung-Yeal Ha, Hansol Park, and Woojoo Shim, Emergent behaviors of Cucker-Smale flocks on the hyperboloid, J. Math. Phys. 62 (2021), no. 8, Paper No. 082702, 22. MR 4293476, DOI 10.1063/5.0020923
- Hyunjin Ahn, Seung-Yeal Ha, and Woojoo Shim, Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds, Kinet. Relat. Models 14 (2021), no. 2, 323–351. MR 4251948, DOI 10.3934/krm.2021007
- Shin Mi Ahn and Seung-Yeal Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys. 51 (2010), no. 10, 103301, 17. MR 2761313, DOI 10.1063/1.3496895
- G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and J. Soler, Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci. 29 (2019), no. 10, 1901–2005. MR 4014449, DOI 10.1142/S0218202519500374
- J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature 211 (1966), 562–564.
- J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal. 42 (2010), no. 1, 218–236. MR 2596552, DOI 10.1137/090757290
- Patrick Cattiaux, Fanny Delebecque, and Laure Pédèches, Stochastic Cucker-Smale models: old and new, Ann. Appl. Probab. 28 (2018), no. 5, 3239–3286. MR 3847987, DOI 10.1214/18-AAP1400
- Junghee Cho, Seung-Yeal Ha, Feimin Huang, Chunyin Jin, and Dongnam Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci. 26 (2016), no. 6, 1191–1218. MR 3484572, DOI 10.1142/S0218202516500287
- Young-Pil Choi and Jan Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models 10 (2017), no. 4, 1011–1033. MR 3622098, DOI 10.3934/krm.2017040
- Young-Pil Choi, Seung-Yeal Ha, and Zhuchun Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, Active particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2017, pp. 299–331. MR 3644594
- Young-Pil Choi, Dante Kalise, Jan Peszek, and Andrés A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst. 18 (2019), no. 4, 1954–1981. MR 4028780, DOI 10.1137/19M1241799
- Young-Pil Choi and Zhuchun Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett. 86 (2018), 49–56. MR 3836802, DOI 10.1016/j.aml.2018.06.018
- Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control 52 (2007), no. 5, 852–862. MR 2324245, DOI 10.1109/TAC.2007.895842
- Pierre Degond and Sébastien Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys. 131 (2008), no. 6, 989–1021. MR 2407377, DOI 10.1007/s10955-008-9529-8
- Peter Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88. MR 141050, DOI 10.1515/crll.1962.210.73
- Renjun Duan, Massimo Fornasier, and Giuseppe Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys. 300 (2010), no. 1, 95–145. MR 2725184, DOI 10.1007/s00220-010-1110-z
- B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol. 29 (1991), no. 6, 571–585. MR 1118757, DOI 10.1007/BF00164052
- Gregory S. Ezra, On the statistical mechanics of non-Hamiltonian systems: the generalized Liouville equation, entropy, and time-dependent metrics, J. Math. Chem. 35 (2004), no. 1, 29–53. MR 2043311, DOI 10.1023/B:JOMC.0000007811.79716.4d
- Di Fang, Seung-Yeal Ha, and Shi Jin, Emergent behaviors of the Cucker-Smale ensemble under attractive-repulsive couplings and Rayleigh frictions, Math. Models Methods Appl. Sci. 29 (2019), no. 7, 1349–1385. MR 3974169, DOI 10.1142/S0218202519500234
- R. C. Fetecau, S.-Y. Ha, and H. Park, Emergent behaviors of rotation matrix flocks, submitted.
- Razvan C. Fetecau, Seung-Yeal Ha, and Hansol Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: well-posedness and collective behaviours, J. Nonlinear Sci. 31 (2021), no. 5, Paper No. 74, 61. MR 4284364, DOI 10.1007/s00332-021-09732-2
- Razvan C. Fetecau, Hansol Park, and Francesco S. Patacchini, Well-posedness and asymptotic behavior of an aggregation model with intrinsic interactions on sphere and other manifolds, Anal. Appl. (Singap.) 19 (2021), no. 6, 965–1017. MR 4328763, DOI 10.1142/S0219530521500081
- Razvan C. Fetecau and Beril Zhang, Self-organization on Riemannian manifolds, J. Geom. Mech. 11 (2019), no. 3, 397–426. MR 4026014, DOI 10.3934/jgm.2019020
- E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, and M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel motion control method, Adapt. Behav. 20 (2012), 460–477.
- Seung-Yeal Ha, Taeyoung Ha, and Jong-Ho Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control 55 (2010), no. 7, 1679–1683. MR 2675831, DOI 10.1109/TAC.2010.2046113
- Seung-Yeal Ha, Doheon Kim, and Franz Wilhelm Schlöder, Emergent behaviors of Cucker-Smale flocks on Riemannian manifolds, IEEE Trans. Automat. Control 66 (2021), no. 7, 3020–3035. MR 4284127
- Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, and Xiongtao Zhang, Complete cluster predictability of the Cucker-Smale flocking model on the real line, Arch. Ration. Mech. Anal. 231 (2019), no. 1, 319–365. MR 3894553, DOI 10.1007/s00205-018-1281-x
- Seung-Yeal Ha, Dongnam Ko, and Sang Woo Ryoo, On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds, J. Stat. Phys. 172 (2018), no. 5, 1427–1478. MR 3856949, DOI 10.1007/s10955-018-2091-0
- Seung-Yeal Ha, Dongnam Ko, and Sang Woo Ryoo, Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys. 168 (2017), no. 1, 171–207. MR 3659983, DOI 10.1007/s10955-017-1797-8
- Seung-Yeal Ha, Dongnam Ko, and Yinglong Zhang, Critical coupling strength of the Cucker-Smale model for flocking, Math. Models Methods Appl. Sci. 27 (2017), no. 6, 1051–1087. MR 3659046, DOI 10.1142/S0218202517400097
- Seung-Yeal Ha, Kiseop Lee, and Doron Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci. 7 (2009), no. 2, 453–469. MR 2536447
- Seung-Yeal Ha and Jian-Guo Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci. 7 (2009), no. 2, 297–325. MR 2536440
- Seung-Yeal Ha and Eitan Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models 1 (2008), no. 3, 415–435. MR 2425606, DOI 10.3934/krm.2008.1.415
- Jürgen Jost, Riemannian geometry and geometric analysis, 6th ed., Universitext, Springer, Heidelberg, 2011. MR 2829653, DOI 10.1007/978-3-642-21298-7
- M. A. Lohe, Non-abelian Kuramoto models and synchronization, J. Phys. A 42 (2009), no. 39, 395101, 25. MR 2539317, DOI 10.1088/1751-8113/42/39/395101
- Johan Markdahl, Johan Thunberg, and Jorge Gonçalves, Almost global consensus on the $n$-sphere, IEEE Trans. Automat. Control 63 (2018), no. 6, 1664–1675. MR 3807655, DOI 10.1109/tac.2017.2752799
- Sebastien Motsch and Eitan Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144 (2011), no. 5, 923–947. MR 2836613, DOI 10.1007/s10955-011-0285-9
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [MR0464128]. MR 3728284
- Reza Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Control 51 (2006), no. 3, 401–420. MR 2205679, DOI 10.1109/TAC.2005.864190
- R. Olfati-Saber, Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks, Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 5060–5066.
- Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths, Synchronization, Cambridge Nonlinear Science Series, vol. 12, Cambridge University Press, Cambridge, 2001. A universal concept in nonlinear sciences. MR 1869044, DOI 10.1017/CBO9780511755743
- C. W. Reynolds, Flocks, herds and schools: a distributed behavioral model, Proceeding SIGGRAPH 87, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987, pp. 25–34.
- Shigeo Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2) 10 (1958), 338–354. MR 112152, DOI 10.2748/tmj/1178244668
- F. W. Schlöder, Topics on helicity, geometric flocking dynamics and intersection space cohomology, Thesis (Ph.D.)–University of Milano Bicocca–Pavia–INDAM, 2020.
- Willi-Hans Steeb, Generalized Liouville equation, entropy, and dynamic systems containing limit cycles, Phys. A 95 (1979), no. 1, 181–190. MR 516926, DOI 10.1016/0378-4371(79)90050-5
- Steven H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D 143 (2000), no. 1-4, 1–20. Bifurcations, patterns and symmetry. MR 1783382, DOI 10.1016/S0167-2789(00)00094-4
- John Toner and Yuhai Tu, Flocks, herds, and schools: a quantitative theory of flocking, Phys. Rev. E (3) 58 (1998), no. 4, 4828–4858. MR 1651324, DOI 10.1103/PhysRevE.58.4828
- Chad M. Topaz and Andrea L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004), no. 1, 152–174. MR 2111591, DOI 10.1137/S0036139903437424
- Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), no. 6, 1226–1229. MR 3363421, DOI 10.1103/PhysRevLett.75.1226
- T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep. 517 (2012), 71–140.
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- Arthur T. Winfree, The geometry of biological time, Biomathematics, vol. 8, Springer-Verlag, Berlin-New York, 1980. MR 572965
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967), 15–42.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
58J45,
35L65
Retrieve articles in all journals
with MSC (2020):
58J45,
35L65
Additional Information
Hyunjin Ahn
Affiliation:
Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea
MR Author ID:
1435104
ORCID:
0000-0002-2528-8210
Email:
yagamelaito@snu.ac.kr
Seung-Yeal Ha
Affiliation:
Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea
MR Author ID:
684438
Email:
syha@snu.ac.kr
Doheon Kim
Affiliation:
Department of Applied Mathematics, Hanyang University, Gyeonggi-do 15588, Republic of Korea
MR Author ID:
1277907
Email:
doheonkim78@gmail.com
Franz Wilhelm Schlöder
Affiliation:
Dennemeyer and Co S.à r.l. 55, rue des Bruyères, 1274 Howald, Luxembourg
ORCID:
0000-0002-6668-6506
Email:
franz.schloeder@gmail.com
Woojoo Shim
Affiliation:
Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
MR Author ID:
1337213
ORCID:
0000-0002-2528-8210
Email:
cosmo.shim@gmail.com
Keywords:
Cucker-Smale model,
flocking,
multi-agent systems,
Riemannian manifold,
mean-field limit
Received by editor(s):
November 4, 2021
Received by editor(s) in revised form:
December 21, 2021
Published electronically:
March 21, 2022
Additional Notes:
The work of the second author was partially supported by National Research Foundation of Korea Grant (NRF-2020R1A2C3A01003881) funded by Korean Government.
Woojoo Shim is the corresponding author.
Article copyright:
© Copyright 2022
Brown University