On the stability of the compacton waves for the degenerate KdV and NLS models
Authors:
Sevdzhan Hakkaev, Abba Ramadan and Atanas G. Stefanov
Journal:
Quart. Appl. Math. 80 (2022), 507-528
MSC (2020):
Primary 35Q55, 35Q53; Secondary 35Q41
DOI:
https://doi.org/10.1090/qam/1616
Published electronically:
March 28, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper, we consider the degenerate semi-linear Schrödinger and Korteweg-de Vries equations in one spatial dimension. We construct special solutions of the two models, namely standing wave solutions of NLS and traveling waves, which turn out to have compact support, compactons. We show that the compactons are unique bell-shaped solutions of the corresponding PDEs and for appropriate variational problems as well. We provide a complete spectral characterization of such waves, for all values of $p$. Namely, we show that all waves are spectrally stable for $2<p\leq 8$, while a single mode instability occurs for $p>8$. This extends previous work of Germain, Harrop-Griffiths and Marzuola [Quart. Appl. Math. 78 (2020), pp. 1–32] who have previously established orbital stability for some specific waves, in the range $p<8$.
References
- Fred Cooper, Harvey Shepard, and Pasquale Sodano, Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3) 48 (1993), no. 5, 4027–4032. MR 1376975, DOI 10.1103/PhysRevE.48.4027
- Pierre Germain, Benjamin Harrop-Griffiths, and Jeremy L. Marzuola, Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math. 72 (2019), no. 11, 2449–2484. MR 4011864, DOI 10.1002/cpa.21828
- Pierre Germain, Benjamin Harrop-Griffiths, and Jeremy L. Marzuola, Compactons and their variational properties for degenerate KDV and NLS in dimension 1, Quart. Appl. Math. 78 (2020), no. 1, 1–32. MR 4042218, DOI 10.1090/qam/1538
- B. Harrop-Griffiths, J. Marzuola. Local well-posedness for a quasi- linear Schrödinger equation with degenerate dispersion, preprint, arXiv:2004.04134, 2020.
- Bogdan Mihaila, Andres Cardenas, Fred Cooper, and Avadh Saxena, Stability and dynamical properties of Cooper-Shepard-Sodano compactons, Phys. Rev. E (3) 82 (2010), no. 6, 066702, 11. MR 2787498, DOI 10.1103/PhysRevE.82.066702
- Benjamin Harrop-Griffiths and Jeremy L. Marzuola. Local well-posedness for a quasilinear schrödinger equation with degenerate dispersion, preprint, arXiv:2004.04134, 2020.
- Philip Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73 (1994), no. 13, 1737–1741. MR 1294558, DOI 10.1103/PhysRevLett.73.1737
- Philip Rosenau, What is$\dots$a compacton?, Notices Amer. Math. Soc. 52 (2005), no. 7, 738–739. MR 2159688
- Philip Rosenau, On solitons, compactons, and Lagrange maps, Phys. Lett. A 211 (1996), no. 5, 265–275. MR 1377202, DOI 10.1016/0375-9601(95)00933-7
- P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett. 70 (1993), no. 5, 564.
- Philip Rosenau and Alon Zilburg, Compactons, J. Phys. A 51 (2018), no. 34, 343001, 136. MR 3829411, DOI 10.1088/1751-8121/aabff5
- Zhiwu Lin and Chongchun Zeng, Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs, Mem. Amer. Math. Soc. 275 (2022), no. 1347, v+136. MR 4352468, DOI 10.1090/memo/1347
- G. Simpson, M. Spiegelman, and M. I. Weinstein, Degenerate dispersive equations arising in the study of magma dynamics, Nonlinearity 20 (2007), no. 1, 21–49. MR 2285103, DOI 10.1088/0951-7715/20/1/003
- Lijun Zhang and Li-Qun Chen, Envelope compacton and solitary pattern solutions of a generalized nonlinear Schrödinger equation, Nonlinear Anal. 70 (2009), no. 1, 492–496. MR 2468255, DOI 10.1016/j.na.2007.12.020
- Alon Zilburg and Philip Rosenau, On Hamiltonian formulations of the $\mathcal {C}_1(m,a,b)$ equations, Phys. Lett. A 381 (2017), no. 18, 1557–1562. MR 3628993, DOI 10.1016/j.physleta.2017.03.009
- Thierry Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 327–346 (French, with English summary). MR 559676, DOI 10.1017/S0308210500017182
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549–561. MR 677997, DOI 10.1007/BF01403504
- Louis Jeanjean and Stefan Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006), no. 7, 813–840. MR 2236583
- Todd Kapitula, Panayotis G. Kevrekidis, and Björn Sandstede, Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D 195 (2004), no. 3-4, 263–282. MR 2089513, DOI 10.1016/j.physd.2004.03.018
- Todd Kapitula, Panayotis G. Kevrekidis, and Björn Sandstede, Addendum: “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems” [Phys. D 195 (2004), no. 3-4, 263–282; MR2089513], Phys. D 201 (2005), no. 1-2, 199–201. MR 2118638, DOI 10.1016/j.physd.2004.11.015
- Todd Kapitula and Keith Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013. With a foreword by Christopher K. R. T. Jones. MR 3100266, DOI 10.1007/978-1-4614-6995-7
- Todd Kapitula and Bernard Deconinck, On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations, Hamiltonian partial differential equations and applications, Fields Inst. Commun., vol. 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 285–322. MR 3445506, DOI 10.1007/978-1-4939-2950-4_{1}0
- Dmitry E. Pelinovsky, Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2055, 783–812. MR 2121936, DOI 10.1098/rspa.2004.1345
- Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. MR 820338, DOI 10.1002/cpa.3160390103
References
- Fred Cooper, Harvey Shepard, and Pasquale Sodano, Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3) 48 (1993), no. 5, 4027–4032. MR 1376975, DOI 10.1103/PhysRevE.48.4027
- Pierre Germain, Benjamin Harrop-Griffiths, and Jeremy L. Marzuola, Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math. 72 (2019), no. 11, 2449–2484. MR 4011864, DOI 10.1002/cpa.21828
- Pierre Germain, Benjamin Harrop-Griffiths, and Jeremy L. Marzuola, Compactons and their variational properties for degenerate KDV and NLS in dimension 1, Quart. Appl. Math. 78 (2020), no. 1, 1–32. MR 4042218, DOI 10.1090/qam/1538
- B. Harrop-Griffiths, J. Marzuola. Local well-posedness for a quasi- linear Schrödinger equation with degenerate dispersion, preprint, arXiv:2004.04134, 2020.
- Bogdan Mihaila, Andres Cardenas, Fred Cooper, and Avadh Saxena, Stability and dynamical properties of Cooper-Shepard-Sodano compactons, Phys. Rev. E (3) 82 (2010), no. 6, 066702, 11. MR 2787498, DOI 10.1103/PhysRevE.82.066702
- Benjamin Harrop-Griffiths and Jeremy L. Marzuola. Local well-posedness for a quasilinear schrödinger equation with degenerate dispersion, preprint, arXiv:2004.04134, 2020.
- Philip Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73 (1994), no. 13, 1737–1741. MR 1294558, DOI 10.1103/PhysRevLett.73.1737
- Philip Rosenau, What is$\dots$a compacton?, Notices Amer. Math. Soc. 52 (2005), no. 7, 738–739. MR 2159688
- Philip Rosenau, On solitons, compactons, and Lagrange maps, Phys. Lett. A 211 (1996), no. 5, 265–275. MR 1377202, DOI 10.1016/0375-9601(95)00933-7
- P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett. 70 (1993), no. 5, 564.
- Philip Rosenau and Alon Zilburg, Compactons, J. Phys. A 51 (2018), no. 34, 343001, 136. MR 3829411, DOI 10.1088/1751-8121/aabff5
- Zhiwu Lin and Chongchun Zeng, Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs, Mem. Amer. Math. Soc. 275 (2022), no. 1347, v+136. MR 4352468, DOI 10.1090/memo/1347
- G. Simpson, M. Spiegelman, and M. I. Weinstein, Degenerate dispersive equations arising in the study of magma dynamics, Nonlinearity 20 (2007), no. 1, 21–49. MR 2285103, DOI 10.1088/0951-7715/20/1/003
- Lijun Zhang and Li-Qun Chen, Envelope compacton and solitary pattern solutions of a generalized nonlinear Schrödinger equation, Nonlinear Anal. 70 (2009), no. 1, 492–496. MR 2468255, DOI 10.1016/j.na.2007.12.020
- Alon Zilburg and Philip Rosenau, On Hamiltonian formulations of the $\mathcal {C}_1(m,a,b)$ equations, Phys. Lett. A 381 (2017), no. 18, 1557–1562. MR 3628993, DOI 10.1016/j.physleta.2017.03.009
- Thierry Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 327–346 (French, with English summary). MR 559676, DOI 10.1017/S0308210500017182
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549–561. MR 677997
- Louis Jeanjean and Stefan Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006), no. 7, 813–840. MR 2236583
- Todd Kapitula, Panayotis G. Kevrekidis, and Björn Sandstede, Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Phys. D 195 (2004), no. 3-4, 263–282. MR 2089513, DOI 10.1016/j.physd.2004.03.018
- Todd Kapitula, Panayotis G. Kevrekidis, and Björn Sandstede, Addendum: “Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems” [Phys. D 195 (2004), no. 3-4, 263–282; MR2089513], Phys. D 201 (2005), no. 1-2, 199–201. MR 2118638, DOI 10.1016/j.physd.2004.11.015
- Todd Kapitula and Keith Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013. With a foreword by Christopher K. R. T. Jones. MR 3100266, DOI 10.1007/978-1-4614-6995-7
- Todd Kapitula and Bernard Deconinck, On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations, Hamiltonian partial differential equations and applications, Fields Inst. Commun., vol. 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 285–322. MR 3445506, DOI 10.1007/978-1-4939-2950-4_10
- Dmitry E. Pelinovsky, Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2055, 783–812. MR 2121936, DOI 10.1098/rspa.2004.1345
- Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. MR 820338, DOI 10.1002/cpa.3160390103
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35Q55,
35Q53,
35Q41
Retrieve articles in all journals
with MSC (2020):
35Q55,
35Q53,
35Q41
Additional Information
Sevdzhan Hakkaev
Affiliation:
Department of Mathematics, Trakya University, 22030 Edirne, Turkey; Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 8, 1113 Sofia, Bulgaria; and Faculty of Mathematics and Informatics, Shumen University, 9712 Shumen, Bulgaria
MR Author ID:
698884
Email:
s.hakkaev@shu.bg
Abba Ramadan
Affiliation:
Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa, AL 35487-0350
MR Author ID:
1231155
Email:
abba90ramadan@gmail.com
Atanas G. Stefanov
Affiliation:
Department of Mathematics, University of Alabama-Birmingham, University Hall, Room 4005, 1402 10th Avenue, South Birmingham, AL 35294-1241
MR Author ID:
639852
Email:
stefanov@uab.edu
Received by editor(s):
September 22, 2021
Received by editor(s) in revised form:
January 6, 2022
Published electronically:
March 28, 2022
Additional Notes:
Abba Ramadan was partially supported by a graduate research assistantship under NSF-DMS # 1614734.
Atanas Stefanov was partially supported by NSF-DMS # 1908626 and NSF-DMS # 2204788.
Article copyright:
© Copyright 2022
Brown University