Large-time behavior of compressible polytropic fluids and nonlinear Schrödinger equation
Authors:
Rémi Carles, Kleber Carrapatoso and Matthieu Hillairet
Journal:
Quart. Appl. Math. 80 (2022), 549-574
MSC (2020):
Primary 35B40, 35D30, 35Q30, 35Q31, 35Q55
DOI:
https://doi.org/10.1090/qam/1618
Published electronically:
March 15, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper we analyze the large-time behavior of weak solutions to polytropic fluid models possibly including quantum and viscous effects. Formal a priori estimates show that the density of solutions to these systems should disperse with time. Scaling appropriately the system, we prove that, under a reasonable assumption on the decay of energy, the density of weak solutions converges in large times to an unknown profile. In contrast with the isothermal case, we also show that there exists a large variety of asymptotic profiles. We complement the study by providing existence of global-in-time weak solutions satisfying the required decay of energy. As a byproduct of our method, we also obtain results concerning the large-time behavior of solutions to nonlinear Schrödinger equation, allowing the presence of a semi-classical parameter as well as long range nonlinearities.
References
- Paolo Antonelli, Lars Eric Hientzsch, and Stefano Spirito, Global existence of finite energy weak solutions to the quantum Navier-Stokes equations with non-trivial far-field behavior, J. Differential Equations 290 (2021), 147–177. MR 4254549, DOI 10.1016/j.jde.2021.04.025
- Paolo Antonelli and Pierangelo Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys. 287 (2009), no. 2, 657–686. MR 2481754, DOI 10.1007/s00220-008-0632-0
- Paolo Antonelli, Pierangelo Marcati, and Hao Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Comm. Math. Phys. 383 (2021), no. 3, 2113–2161. MR 4244267, DOI 10.1007/s00220-021-03998-z
- Jacqueline E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys. 25 (1984), no. 11, 3270–3273. MR 761850, DOI 10.1063/1.526074
- Didier Bresch and Benoît Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9) 86 (2006), no. 4, 362–368 (English, with English and French summaries). MR 2257849, DOI 10.1016/j.matpur.2006.06.005
- Didier Bresch and Benoît Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9) 87 (2007), no. 1, 57–90 (English, with English and French summaries). MR 2297248, DOI 10.1016/j.matpur.2006.11.001
- Didier Bresch, Benoît Desjardins, and Chi-Kun Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations 28 (2003), no. 3-4, 843–868. MR 1978317, DOI 10.1081/PDE-120020499
- Rémi Carles, Semi-classical analysis for nonlinear Schrödinger equations—WKB analysis, focal points, coherent states, World Scientific Publishing Co., Singapore, [2021] ©2021. Second edition [of 2406566]. MR 4274579
- Rémi Carles, Kleber Carrapatoso, and Matthieu Hillairet, Global weak solutions for quantum isothermal fluids, Ann. Inst. Fourier. To appear. Archived at https://hal.archives-ouvertes.fr/hal-02116596.
- Rémi Carles, Kleber Carrapatoso, and Matthieu Hillairet, Rigidity results in generalized isothermal fluids, Ann. H. Lebesgue 1 (2018), 47–85 (English, with English and French summaries). MR 3963286, DOI 10.5802/ahl.2
- Rémi Carles, Raphaël Danchin, and Jean-Claude Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity 25 (2012), no. 10, 2843–2873. MR 2979973, DOI 10.1088/0951-7715/25/10/2843
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
- J. J. Duistermaat, Fourier integral operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011. Reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973 [MR0451313]. MR 2741911, DOI 10.1007/978-0-8176-8108-1
- Eduard Feireisl, Antonín Novotný, and Hana Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech. 3 (2001), no. 4, 358–392. MR 1867887, DOI 10.1007/PL00000976
- J. Ginibre, Introduction aux équations de Schrödinger non linéaires, 1995. Paris Onze Édition. Archived at http://sites.mathdoc.fr/PMO/PDF/G_GINIBRE-48.pdf.
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II. Scattering theory, general case, J. Functional Analysis 32 (1979), no. 1, 33–71. MR 533219, DOI 10.1016/0022-1236(79)90077-6
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. I, Rev. Math. Phys. 12 (2000), no. 3, 361–429. MR 1755906, DOI 10.1142/S0129055X00000137
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. II, Ann. Henri Poincaré 1 (2000), no. 4, 753–800. MR 1785187, DOI 10.1007/PL00001014
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Differential Equations 175 (2001), no. 2, 415–501. MR 1855975, DOI 10.1006/jdeq.2000.3969
- Jean Ginibre and Giorgio Velo, Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math. 68 (2010), no. 1, 113–134. MR 2598884, DOI 10.1090/S0033-569X-09-01141-9
- M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. 128 (2015), 106–121. MR 3399521, DOI 10.1016/j.na.2015.07.006
- Magali Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J. 47 (1998), no. 4, 1397–1432. MR 1687130, DOI 10.1512/iumj.1998.47.1608
- Nakao Hayashi and Pavel I. Naumkin, Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity, Comm. Math. Phys. 267 (2006), no. 2, 477–492. MR 2249776, DOI 10.1007/s00220-006-0057-6
- Jean-Luc Joly, Guy Metivier, and Jeffrey Rauch, Caustics for dissipative semilinear oscillations, Mem. Amer. Math. Soc. 144 (2000), no. 685, viii+72. MR 1682244, DOI 10.1090/memo/0685
- Ansgar Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal. 42 (2010), no. 3, 1025–1045. MR 2644915, DOI 10.1137/090776068
- Ingrid Lacroix-Violet and Alexis Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl. (9) 114 (2018), 191–210. MR 3801754, DOI 10.1016/j.matpur.2017.12.002
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998. Compressible models; Oxford Science Publications. MR 1637634
- Tetu Makino, Seiji Ukai, and Shuichi Kawashima, Sur la solution à support compact de l’équations d’Euler compressible, Japan J. Appl. Math. 3 (1986), no. 2, 249–257 (French, with English summary). MR 899222, DOI 10.1007/BF03167100
- Satoshi Masaki, Hayato Miyazaki, and Kota Uriya, Long-range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimensions, Trans. Amer. Math. Soc. 371 (2019), no. 11, 7925–7947. MR 3955539, DOI 10.1090/tran/7636
- Frédéric Rousset, Solutions faibles de l’équation de Navier-Stokes des fluides compressibles [d’après A. Vasseur et C. Yu], Astérisque 407 (2019), Exp. No. 1135, 565–584 (French). Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135. MR 3939286, DOI 10.24033/ast
- Denis Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 1, 139–153 (French, with English and French summaries). MR 1437182
- Yoshio Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), no. 3, 321–347 (English, with French summary). MR 824843
- Yoshio Tsutsumi and Kenji Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 186–188. MR 741737, DOI 10.1090/S0273-0979-1984-15263-7
- Alexis F. Vasseur and Cheng Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math. 206 (2016), no. 3, 935–974. MR 3573976, DOI 10.1007/s00222-016-0666-4
- Alexis F. Vasseur and Cheng Yu, Global weak solutions to the compressible quantum Navier-Stokes equations with damping, SIAM J. Math. Anal. 48 (2016), no. 2, 1489–1511. MR 3490496, DOI 10.1137/15M1013730
- Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), no. 3, 229–240. MR 1488513, DOI 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.3.CO;2-K
References
- Paolo Antonelli, Lars Eric Hientzsch, and Stefano Spirito, Global existence of finite energy weak solutions to the quantum Navier-Stokes equations with non-trivial far-field behavior, J. Differential Equations 290 (2021), 147–177. MR 4254549, DOI 10.1016/j.jde.2021.04.025
- Paolo Antonelli and Pierangelo Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys. 287 (2009), no. 2, 657–686. http://dx.doi.org/10.1007/s00220-008-0632-0. MR 2481754
- Paolo Antonelli, Pierangelo Marcati, and Hao Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Comm. Math. Phys. 383 (2021), no. 3, 2113–2161. MR 4244267
- Jacqueline E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys. 25 (1984), no. 11, 3270–3273. MR 761850, DOI 10.1063/1.526074
- Didier Bresch and Benoît Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9) 86 (2006), no. 4, 362–368 (English, with English and French summaries). MR 2257849, DOI 10.1016/j.matpur.2006.06.005
- Didier Bresch and Benoît Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9) 87 (2007), no. 1, 57–90 (English, with English and French summaries). MR 2297248, DOI 10.1016/j.matpur.2006.11.001
- Didier Bresch, Benoît Desjardins, and Chi-Kun Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations 28 (2003), no. 3-4, 843–868. MR 1978317, DOI 10.1081/PDE-120020499
- R. Carles, Semi-classical analysis for nonlinear Schrödinger equations: WKB analysis, focal points, coherent states, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021. MR 4274579
- Rémi Carles, Kleber Carrapatoso, and Matthieu Hillairet, Global weak solutions for quantum isothermal fluids, Ann. Inst. Fourier. To appear. Archived at https://hal.archives-ouvertes.fr/hal-02116596.
- Rémi Carles, Kleber Carrapatoso, and Matthieu Hillairet, Rigidity results in generalized isothermal fluids, Annales Henri Lebesgue 1 (2018), 47–85. https://doi.org/10.5802/ahl.2. MR 3963286
- R. Carles, R. Danchin, and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity 25 (2012), no. 10, 2843–2873. MR 2979973
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
- J. J. Duistermaat, Fourier integral operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011. Reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973 [MR0451313]. MR 2741911, DOI 10.1007/978-0-8176-8108-1
- Eduard Feireisl, Antonín Novotný, and Hana Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech. 3 (2001), no. 4, 358–392. MR 1867887, DOI 10.1007/PL00000976
- J. Ginibre, Introduction aux équations de Schrödinger non linéaires, 1995. Paris Onze Édition. Archived at http://sites.mathdoc.fr/PMO/PDF/G_GINIBRE-48.pdf.
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. II. Scattering theory, general case, J. Functional Analysis 32 (1979), no. 1, 33–71. MR 533219, DOI 10.1016/0022-1236(79)90077-6
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. I, Rev. Math. Phys. 12 (2000), no. 3, 361–429. MR 1755906, DOI 10.1142/S0129055X00000137
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. II, Ann. Henri Poincaré 1 (2000), no. 4, 753–800. MR 1785187, DOI 10.1007/PL00001014
- J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Differential Equations 175 (2001), no. 2, 415–501. MR 1855975, DOI 10.1006/jdeq.2000.3969
- Jean Ginibre and Giorgio Velo, Quadratic Morawetz inequalities and asymptotic completeness in the energy space for nonlinear Schrödinger and Hartree equations, Quart. Appl. Math. 68 (2010), no. 1, 113–134. MR 2598884, DOI 10.1090/S0033-569X-09-01141-9
- M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. 128 (2015), 106–121. MR 3399521, DOI 10.1016/j.na.2015.07.006
- Magali Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J. 47 (1998), no. 4, 1397–1432. MR 1687130, DOI 10.1512/iumj.1998.47.1608
- Nakao Hayashi and Pavel I. Naumkin, Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity, Comm. Math. Phys. 267 (2006), no. 2, 477–492. MR 2249776, DOI 10.1007/s00220-006-0057-6
- Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch, Caustics for dissipative semilinear oscillations, Mem. Amer. Math. Soc. 144 (2000), no. 685, viii+72. MR 1682244, DOI 10.1090/memo/0685
- Ansgar Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal. 42 (2010), no. 3, 1025–1045. MR 2644915, DOI 10.1137/090776068
- Ingrid Lacroix-Violet and Alexis Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl. (9) 114 (2018), 191–210. MR 3801754, DOI 10.1016/j.matpur.2017.12.002
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998. Compressible models; Oxford Science Publications. MR 1637634
- Tetu Makino, Seiji Ukai, and Shuichi Kawashima, Sur la solution à support compact de l’équations d’Euler compressible, Japan J. Appl. Math. 3 (1986), no. 2, 249–257 (French, with English summary). MR 899222, DOI 10.1007/BF03167100
- Satoshi Masaki, Hayato Miyazaki, and Kota Uriya, Long-range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimensions, Trans. Amer. Math. Soc. 371 (2019), no. 11, 7925–7947. MR 3955539, DOI 10.1090/tran/7636
- Frédéric Rousset, Solutions faibles de l’équation de Navier-Stokes des fluides compressibles [d’après A. Vasseur et C. Yu], Astérisque 407 (2019), Exp. No. 1135, 565–584 (French). Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135. MR 3939286, DOI 10.24033/ast
- Denis Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 1, 139–153 (French, with English and French summaries). MR 1437182
- Yoshio Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), no. 3, 321–347 (English, with French summary). MR 824843
- Yoshio Tsutsumi and Kenji Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 186–188. MR 741737, DOI 10.1090/S0273-0979-1984-15263-7
- Alexis F. Vasseur and Cheng Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math. 206 (2016), no. 3, 935–974. MR 3573976, DOI 10.1007/s00222-016-0666-4
- Alexis F. Vasseur and Cheng Yu, Global weak solutions to the compressible quantum Navier-Stokes equations with damping, SIAM J. Math. Anal. 48 (2016), no. 2, 1489–1511. MR 3490496, DOI 10.1137/15M1013730
- Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), no. 3, 229–240. MR 1488513, DOI 10.1002/(SICI)1097-0312(199803)51:3$\langle$229::AID-CPA1$\rangle$3.3.CO;2-K
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35B40,
35D30,
35Q30,
35Q31,
35Q55
Retrieve articles in all journals
with MSC (2020):
35B40,
35D30,
35Q30,
35Q31,
35Q55
Additional Information
Rémi Carles
Affiliation:
Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
ORCID:
0000-0002-8866-587X
Email:
Remi.Carles@math.cnrs.fr
Kleber Carrapatoso
Affiliation:
CMLS,École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
MR Author ID:
1043725
Email:
kleber.carrapatoso@polytechnique.edu
Matthieu Hillairet
Affiliation:
Institut Montpelliérain Alexander Grothendieck, Univ Montpellier, CNRS, Montpellier, France
MR Author ID:
718943
Email:
matthieu.hillairet@umontpellier.fr
Received by editor(s):
October 7, 2021
Received by editor(s) in revised form:
January 13, 2022
Published electronically:
March 15, 2022
Additional Notes:
The first author was supported by Rennes Métropole, through its AIS program. The second author was supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). The third author was supported by Institut Universitaire de France and SingFlows project (ANR-18- CE40-0027) of the French National Research Agency (ANR)
Article copyright:
© Copyright 2022
Brown University