Many-body excitations in trapped Bose gas: A non-Hermitian approach
Authors:
Manoussos Grillakis, Dionisios Margetis and Stephen Sorokanich
Journal:
Quart. Appl. Math. 81 (2023), 87-126
MSC (2020):
Primary 35Q40, 81V73, 81Q12; Secondary 47N20, 82C10
DOI:
https://doi.org/10.1090/qam/1630
Published electronically:
September 26, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study a physically motivated model for a trapped dilute gas of Bosons with repulsive pairwise atomic interactions at zero temperature. Our goal is to describe aspects of the excited many-body quantum states of this system by accounting for the scattering of atoms in pairs from the macroscopic state. We start with an approximate many-body Hamiltonian, $\mathcal {H}_{\mathrm {app}}$, in the Bosonic Fock space. This $\mathcal {H}_{\mathrm {app}}$ conserves the total number of atoms. Inspired by Wu [J. Math. Phys. 2 (1961), 105–123], we apply a non-unitary transformation to $\mathcal {H}_{\mathrm {app}}$. Key in this procedure is the pair-excitation kernel, which obeys a nonlinear integro-partial differential equation. In the stationary case, we develop an existence theory for solutions to this equation by a variational principle. We connect this theory to a system of partial differential equations for one-particle excitation (“quasiparticle”-) wave functions derived by Fetter [Ann. Phys. 70 (1972), 67–101], and prove existence of solutions for this system. These wave functions solve an eigenvalue problem for a $J$-self-adjoint operator. From the non-Hermitian Hamiltonian, we derive a one-particle nonlocal equation for low-lying excitations, describe its solutions, and recover Fetter’s energy spectrum. We also analytically provide an explicit construction of the excited eigenstates of the reduced Hamiltonian in the $N$-particle sector of Fock space.
References
- S. Al′beverio and A. K. Motovilov, Solvability of the operator Riccati equation in the Feshbach case, Mat. Zametki 105 (2019), no. 4, 483–506 (Russian, with Russian summary); English transl., Math. Notes 105 (2019), no. 3-4, 485–502. MR 3942805, DOI 10.4213/mzm12061
- Sergio Albeverio, Alexander K. Motovilov, and Andrei A. Shkalikov, Bounds on variation of spectral subspaces under $J$-self-adjoint perturbations, Integral Equations Operator Theory 64 (2009), no. 4, 455–486. MR 2534029, DOI 10.1007/s00020-009-1702-1
- Sergio Albeverio, Alexander K. Motovilov, and Christiane Tretter, Bounds on the spectrum and reducing subspaces of a $J$-self-adjoint operator, Indiana Univ. Math. J. 59 (2010), no. 5, 1737–1776. MR 2865428, DOI 10.1512/iumj.2010.59.4225
- O. E. Alon, R. Beinke, and L. S. Cederbaum, Many-body effects in the excitations and dynamics of trapped Bose-Einstein condensates, arXiv:2101.11615v1 (106pp).
- M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269 (1995), no. 5221, 198–201.
- Carl M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), no. 6, 947–1018. MR 2331294, DOI 10.1088/0034-4885/70/6/R03
- C. M. Bender, $\mathcal {PT}$-symmetric quantum theory, J. Phys. Conf. Ser. 631 (2015), 012002.
- C. M. Bender, $\mathcal {PT}$-symmetric quantum field theory, J. Phys. Conf. Ser. 1586 (2020), 012004.
- Carl M. Bender, M. V. Berry, and Aikaterini Mandilara, Generalized $PT$ symmetry and real spectra, J. Phys. A 35 (2002), no. 31, L467–L471. MR 1928842, DOI 10.1088/0305-4470/35/31/101
- Carl M. Bender and Stefan Boettcher, Real spectra in non-Hermitian Hamiltonians having $\scr {PT}$ symmetry, Phys. Rev. Lett. 80 (1998), no. 24, 5243–5246. MR 1627442, DOI 10.1103/PhysRevLett.80.5243
- Carl M. Bender, Maarten DeKieviet, and S. P. Klevansky, $\scr {PT}$ quantum mechanics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), no. 1989, 20120523, 4. MR 3035410, DOI 10.1098/rsta.2012.0523
- Carl M. Bender and Gerald V. Dunne, Large-order perturbation theory for a non-Hermitian $\scr P\scr T$-symmetric Hamiltonian, J. Math. Phys. 40 (1999), no. 10, 4616–4621. MR 1715272, DOI 10.1063/1.532991
- F. A. Berezin, The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press, New York-London, 1966. Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. MR 0208930
- Chiara Boccato, The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime, Rev. Math. Phys. 33 (2021), no. 1, Paper No. 2060006, 11. MR 4205369, DOI 10.1142/S0129055X20600065
- Chiara Boccato, Christian Brennecke, Serena Cenatiempo, and Benjamin Schlein, The excitation spectrum of Bose gases interacting through singular potentials, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 7, 2331–2403. MR 4107508, DOI 10.4171/JEMS/966
- N. Bogolubov, On the theory of superfluidity, Acad. Sci. USSR. J. Phys. 11 (1947), 23–32. MR 0022177
- Lea Boßmann, Nataša Pavlović, Peter Pickl, and Avy Soffer, Higher order corrections to the mean-field description of the dynamics of interacting Bosons, J. Stat. Phys. 178 (2020), no. 6, 1362–1396. MR 4081233, DOI 10.1007/s10955-020-02500-8
- Christian Brennecke, Phan Thành Nam, Marcin Napiórkowski, and Benjamin Schlein, Fluctuations of $N$-particle quantum dynamics around the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1201–1235. MR 3985542, DOI 10.1016/j.anihpc.2018.10.007
- L. S. Cederbaum, Exact many-body wave function and properties of trapped Bosons in the infinite-particle limit, Phys. Rev. A 96 (2017), no. 1, 013615.
- C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82 (2010), no. 2, 1225–1286.
- N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Modern Phys. 91 (2019), no. 1, 015005, 55. MR 3942980, DOI 10.1103/RevModPhys.91.015005
- H. D. Cornean, J. Dereziński, and P. Ziń, On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50 (2009), no. 6, 062103, 49. MR 2541168, DOI 10.1063/1.3129489
- E. A. Cornell and C. E. Wieman, Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74 (2002), no. 3, 875–893.
- Jean-Claude Cuenin and Christiane Tretter, Non-symmetric perturbations of self-adjoint operators, J. Math. Anal. Appl. 441 (2016), no. 1, 235–258. MR 3488056, DOI 10.1016/j.jmaa.2016.03.070
- F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), no. 3, 463–512.
- I. Danshita, N. Yokoshi, and S. Kurihara, Phase dependence of phonon tunnelling in bosonic superfluid-insulator-superfluid junctions, New J. Phys. 8 (2006), 44.
- K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75 (1995), no. 22, 3969–3973.
- Jan Dereziński and Marcin Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Ann. Henri Poincaré 15 (2014), no. 12, 2409–2439. MR 3272826, DOI 10.1007/s00023-013-0302-4
- Jan Dereziński, Marcin Napiórkowski, and Jan Philip Solovej, On the minimization of Hamiltonians over pure Gaussian states, Complex quantum systems, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 24, World Sci. Publ., Hackensack, NJ, 2013, pp. 151–161. MR 3331491, DOI 10.1142/9789814460156_{0}004
- L. Erdős, B. Schlein, and H-T Yau, Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A 78 (2008), 053627.
- László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math. (2) 172 (2010), no. 1, 291–370. MR 2680421, DOI 10.4007/annals.2010.172.291
- A. L. Fetter, Nonuniform states of an imperfect Bose gas, Annals Phys. 70 (1972), no. 1, 67–101.
- A. L. Fetter, Ground state and excited states of a confined condensed Bose gas, Phys. Rev. A 53 (1996), no. 6, 4245–4249.
- A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81 (2009), no. 2, 647–691.
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- C. W. Gardiner, Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas, Phys. Rev. A 56 (1997), no. 2, 1414–1423.
- M. Girardeau and R. Arnowitt, Theory of many-boson systems: pair theory, Phys. Rev. (2) 113 (1959), 755–761. MR 129365, DOI 10.1103/PhysRev.113.755
- Philip Grech and Robert Seiringer, The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys. 322 (2013), no. 2, 559–591. MR 3077925, DOI 10.1007/s00220-013-1736-8
- A. Griffin, Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures, Phys. Rev. B 53 (1996), no. 14, 9341–9347.
- M. Grillakis and M. Machedon, Beyond mean field: on the role of pair excitations in the evolution of condensates, J. Fixed Point Theory Appl. 14 (2013), no. 1, 91–111. MR 3202027, DOI 10.1007/s11784-013-0150-3
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys. 324 (2013), no. 2, 601–636. MR 3117522, DOI 10.1007/s00220-013-1818-7
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, II, Comm. Partial Differential Equations 42 (2017), no. 1, 24–67. MR 3605290, DOI 10.1080/03605302.2016.1255228
- Manoussos G. Grillakis, Matei Machedon, and Dionisios Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Comm. Math. Phys. 294 (2010), no. 1, 273–301. MR 2575484, DOI 10.1007/s00220-009-0933-y
- M. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math. 228 (2011), no. 3, 1788–1815. MR 2824569, DOI 10.1016/j.aim.2011.06.028
- Manoussos Grillakis, Matei Machedon, and Dionisios Margetis, Evolution of the boson gas at zero temperature: mean-field limit and second-order correction, Quart. Appl. Math. 75 (2017), no. 1, 69–104. MR 3580096, DOI 10.1090/qam/1455
- E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento (10) 20 (1961), 454–477 (English, with Italian summary). MR 128907, DOI 10.1007/BF02731494
- W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys. 74 (2002), no. 4, 1131–1151.
- Vadim Kostrykin, Konstantin A. Makarov, and Alexander K. Motovilov, Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach, Advances in differential equations and mathematical physics (Birmingham, AL, 2002) Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 181–198. MR 1991541, DOI 10.1090/conm/327/05814
- T. D. Lee, Kerson Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. (2) 106 (1957), 1135–1145. MR 88176, DOI 10.1103/PhysRev.106.1135
- T. D. Lee and C. N. Yang, Low-temperature behavior of a dilute Bose system of hard spheres. I. Equilibrium properties, Phys. Rev. (2) 112 (1958), 1419–1429. MR 127865, DOI 10.1103/PhysRev.112.1419
- A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73 (2001), no. 2, 307–356.
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6131–6157. MR 3461029, DOI 10.1090/tran/6537
- Mathieu Lewin, Phan Thành Nam, and Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, Amer. J. Math. 137 (2015), no. 6, 1613–1650. MR 3432269, DOI 10.1353/ajm.2015.0040
- Mathieu Lewin, Phan Thành Nam, Sylvia Serfaty, and Jan Philip Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68 (2015), no. 3, 413–471. MR 3310520, DOI 10.1002/cpa.21519
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817
- Dionisios Margetis, Bose-Einstein condensation beyond mean field: many-body bound state of periodic microstructure, Multiscale Model. Simul. 10 (2012), no. 2, 383–417. MR 2968845, DOI 10.1137/110826576
- O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (2006), no. 1, 179–215.
- Phan Thành Nam and Marcin Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys. 21 (2017), no. 3, 683–738. MR 3695801, DOI 10.4310/ATMP.2017.v21.n3.a4
- Phan Thành Nam and Marcin Napiórkowski, Norm approximation for many-body quantum dynamics and Bogoliubov theory, Advances in quantum mechanics, Springer INdAM Ser., vol. 18, Springer, Cham, 2017, pp. 223–238. MR 3588052
- Phan Thành Nam and Marcin Napiórkowski, A note on the validity of Bogoliubov correction to mean-field dynamics, J. Math. Pures Appl. (9) 108 (2017), no. 5, 662–688 (English, with English and French summaries). MR 3711470, DOI 10.1016/j.matpur.2017.05.013
- Phan Thành Nam, Marcin Napiórkowski, and Jan Philip Solovej, Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations, J. Funct. Anal. 270 (2016), no. 11, 4340–4368. MR 3484973, DOI 10.1016/j.jfa.2015.12.007
- Phan Thành Nam and Robert Seiringer, Collective excitations of Bose gases in the mean-field regime, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 381–417. MR 3294406, DOI 10.1007/s00205-014-0781-6
- R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate, Rev. Mod. Phys. 77 (2005), no. 1, 187–205.
- C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, 2nd ed., Cambridge University, Cambridge, UK, 2008.
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
- L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP 13 (1961), no. 2, 451–454.
- A. Rovenchak, Effective Hamiltonian and excitation spectrum of harmonically trapped bosons, Low Temp. Phys. 42 (2016), no. 1, 36–41.
- B. Schlein, Gross-Pitaevskii evolution for Bose-Einstein condensates, Macroscopic Limits of Quantum Systems (D. Cadamuro, M. Duell, W. Dybalski, and S. Simonella, eds.), Springer Proceedings in Mathematics and Statistics, vol. 270, Springer International Publishing, Cham, Switzerland, 2018, pp. 171–184.
- Robert Seiringer, The excitation spectrum for weakly interacting bosons, Comm. Math. Phys. 306 (2011), no. 2, 565–578. MR 2824481, DOI 10.1007/s00220-011-1261-6
- Robert Seiringer, Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation, J. Math. Phys. 55 (2014), no. 7, 075209, 18. MR 3390687, DOI 10.1063/1.4881536
- Jan Philip Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Comm. Math. Phys. 266 (2006), no. 3, 797–818. MR 2238912, DOI 10.1007/s00220-006-0020-6
- D. M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85 (2013), no. 3, 1191–1244.
- MichałTomza, Krzysztof Jachymski, Rene Gerritsma, Antonio Negretti, Tommaso Calarco, Zbigniew Idziaszek, and Paul S. Julienne, Cold hybrid ion-atom systems, Rev. Modern Phys. 91 (2019), no. 3, 035001, 57. MR 4015929, DOI 10.1103/RevModPhys.91.035001
- Christiane Tretter, Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008. MR 2463978, DOI 10.1142/9781848161122
- Tai Tsun Wu, Ground state of a Bose system of hard spheres, Phys. Rev. (2) 115 (1959), 1390–1404. MR 127866, DOI 10.1103/PhysRev.115.1390
- Tai Tsun Wu, Some nonequilibrium properties of a Bose system of hard spheres at extremely low temperatures, J. Mathematical Phys. 2 (1961), 105–123. MR 121200, DOI 10.1063/1.1724205
- T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature: General theory, Phys. Rev. A 58 (1998), no. 2, 1465–1474.
- K. Xu, Y. Liu, D. E. Miller, J. K. Chin, W. Setiawan, and W. Ketterle, Observation of strong quantum depletion in a gaseous Bose-Einstein condensate, Phys. Rev. Lett. 96 (2006), no. 18, 180405.
- Horng-Tzer Yau and Jun Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys. 136 (2009), no. 3, 453–503. MR 2529681, DOI 10.1007/s10955-009-9792-3
- Valentin A. Zagrebnov and Jean-Bernard Bru, The Bogoliubov model of weakly imperfect Bose gas, Phys. Rep. 350 (2001), no. 5-6, 291–434. MR 1853206, DOI 10.1016/S0370-1573(00)00132-0
References
- S. Albeverio and A. K. Motovilov, Solvability of the operator Riccati equation in the Feshbach case, Mat. Zametki 105 (2019), no. 4, 483–506 (Russian, with Russian summary); English transl., Math. Notes 105 (2019), no. 3-4, 485–502. MR 3942805, DOI 10.4213/mzm12061
- Sergio Albeverio, Alexander K. Motovilov, and Andrei A. Shkalikov, Bounds on variation of spectral subspaces under $J$-self-adjoint perturbations, Integral Equations Operator Theory 64 (2009), no. 4, 455–486. MR 2534029, DOI 10.1007/s00020-009-1702-1
- Sergio Albeverio, Alexander K. Motovilov, and Christiane Tretter, Bounds on the spectrum and reducing subspaces of a $J$-self-adjoint operator, Indiana Univ. Math. J. 59 (2010), no. 5, 1737–1776. MR 2865428, DOI 10.1512/iumj.2010.59.4225
- O. E. Alon, R. Beinke, and L. S. Cederbaum, Many-body effects in the excitations and dynamics of trapped Bose-Einstein condensates, arXiv:2101.11615v1 (106pp).
- M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269 (1995), no. 5221, 198–201.
- Carl M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), no. 6, 947–1018. MR 2331294, DOI 10.1088/0034-4885/70/6/R03
- C. M. Bender, $\mathcal {PT}$-symmetric quantum theory, J. Phys. Conf. Ser. 631 (2015), 012002.
- C. M. Bender, $\mathcal {PT}$-symmetric quantum field theory, J. Phys. Conf. Ser. 1586 (2020), 012004.
- Carl M. Bender, M. V. Berry, and Aikaterini Mandilara, Generalized $PT$ symmetry and real spectra, J. Phys. A 35 (2002), no. 31, L467–L471. MR 1928842, DOI 10.1088/0305-4470/35/31/101
- Carl M. Bender and Stefan Boettcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal {PT}$ symmetry, Phys. Rev. Lett. 80 (1998), no. 24, 5243–5246. MR 1627442, DOI 10.1103/PhysRevLett.80.5243
- Carl M. Bender, Maarten DeKieviet, and S. P. Klevansky, $\mathcal {PT}$ quantum mechanics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), no. 1989, 20120523, 4. MR 3035410, DOI 10.1098/rsta.2012.0523
- Carl M. Bender and Gerald V. Dunne, Large-order perturbation theory for a non-Hermitian $\mathcal {P}\mathcal {T}$-symmetric Hamiltonian, J. Math. Phys. 40 (1999), no. 10, 4616–4621. MR 1715272, DOI 10.1063/1.532991
- F. A. Berezin, The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press, New York-London, 1966. Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. MR 0208930
- Chiara Boccato, The excitation spectrum of the Bose gas in the Gross-Pitaevskii regime, Rev. Math. Phys. 33 (2021), no. 1, Paper No. 2060006, 11. MR 4205369, DOI 10.1142/S0129055X20600065
- Chiara Boccato, Christian Brennecke, Serena Cenatiempo, and Benjamin Schlein, The excitation spectrum of Bose gases interacting through singular potentials, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 7, 2331–2403. MR 4107508, DOI 10.4171/JEMS/966
- N. Bogolubov, On the theory of superfluidity, Acad. Sci. USSR. J. Phys. 11 (1947), 23–32. MR 0022177
- Lea Boßmann, Nataša Pavlović, Peter Pickl, and Avy Soffer, Higher order corrections to the mean-field description of the dynamics of interacting Bosons, J. Stat. Phys. 178 (2020), no. 6, 1362–1396. MR 4081233, DOI 10.1007/s10955-020-02500-8
- Christian Brennecke, Phan Thành Nam, Marcin Napiórkowski, and Benjamin Schlein, Fluctuations of $N$-particle quantum dynamics around the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 5, 1201–1235. MR 3985542, DOI 10.1016/j.anihpc.2018.10.007
- L. S. Cederbaum, Exact many-body wave function and properties of trapped Bosons in the infinite-particle limit, Phys. Rev. A 96 (2017), no. 1, 013615.
- C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82 (2010), no. 2, 1225–1286.
- N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91 (2019), no. 1, 015005, 55. MR 3942980, DOI 10.1103/RevModPhys.91.015005
- H. D. Cornean, J. Dereziński, and P. Ziń, On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50 (2009), no. 6, 062103, 49. MR 2541168, DOI 10.1063/1.3129489
- E. A. Cornell and C. E. Wieman, Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74 (2002), no. 3, 875–893.
- Jean-Claude Cuenin and Christiane Tretter, Non-symmetric perturbations of self-adjoint operators, J. Math. Anal. Appl. 441 (2016), no. 1, 235–258. MR 3488056, DOI 10.1016/j.jmaa.2016.03.070
- F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), no. 3, 463–512.
- I. Danshita, N. Yokoshi, and S. Kurihara, Phase dependence of phonon tunnelling in bosonic superfluid-insulator-superfluid junctions, New J. Phys. 8 (2006), 44.
- K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75 (1995), no. 22, 3969–3973.
- Jan Dereziński and Marcin Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Ann. Henri Poincaré 15 (2014), no. 12, 2409–2439. MR 3272826, DOI 10.1007/s00023-013-0302-4
- Jan Dereziński, Marcin Napiórkowski, and Jan Philip Solovej, On the minimization of Hamiltonians over pure Gaussian states, Complex Quantum Systems, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 24, World Sci. Publ., Hackensack, NJ, 2013, pp. 151–161. MR 3331491, DOI 10.1142/9789814460156_0004
- L. Erdős, B. Schlein, and H-T Yau, Ground-state energy of a low-density Bose gas: A second-order upper bound, Phys. Rev. A 78 (2008), 053627.
- László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math. 172 (2010), no. 1, 291–370. MR 2680421, DOI 10.4007/ annals.2010.172.291
- A. L. Fetter, Nonuniform states of an imperfect Bose gas, Annals Phys. 70 (1972), no. 1, 67–101.
- A. L. Fetter, Ground state and excited states of a confined condensed Bose gas, Phys. Rev. A 53 (1996), no. 6, 4245–4249.
- A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81 (2009), no. 2, 647–691.
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- C. W. Gardiner, Particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas, Phys. Rev. A 56 (1997), no. 2, 1414–1423.
- M. Girardeau and R. Arnowitt, Theory of many-Boson systems: Pair theory, Phys. Rev. (2) 113 (1959), 755–761. MR 129365
- Philip Grech and Robert Seiringer, The excitation spectrum for weakly interacting Bosons in a trap, Comm. Math. Phys. 322 (2013), no. 2, 559–591. MR 3077925, DOI 10.1007/s00220-013-1736-8
- A. Griffin, Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures, Phys. Rev. B 53 (1996), no. 14, 9341–9347.
- M. Grillakis and M. Machedon, Beyond mean field: On the role of pair excitations in the evolution of condensates, J. Fixed Point Theory Appl. 14 (2013), no. 1, 91–111. MR 3202027, DOI 10.1007/s11784-013-0150-3
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting Bosons, I, Comm. Math. Phys. 324 (2013), no. 2, 601–636. MR 3117522, DOI 10.1007/s00220-013-1818-7
- M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting Bosons, II, Comm. Partial Differential Equations 42 (2017), no. 1, 24–67. MR 3605290, DOI 10.1080/03605302.2016.1255228
- Manoussos G. Grillakis, Matei Machedon, and Dionisios Margetis, Second-order corrections to mean field evolution of weakly interacting Bosons. I, Comm. Math. Phys. 294 (2010), no. 1, 273–301. MR 2575484, DOI 10.1007/s00220-009-0933-y
- M. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting Bosons. II, Adv. Math. 228 (2011), no. 3, 1788–1815. MR 2824569, DOI 10.1016/j.aim.2011.06.028
- Manoussos Grillakis, Matei Machedon, and Dionisios Margetis, Evolution of the Boson gas at zero temperature: mean-field limit and second-order correction, Quart. Appl. Math. 75 (2017), no. 1, 69–104. MR 3580096, DOI 10.1090/qam/1455
- E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento (10) 20 (1961), 454–477 (English, with Italian summary). MR 128907
- W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys. 74 (2002), no. 4, 1131–1151.
- Vadim Kostrykin, Konstantin A. Makarov, and Alexander K. Motovilov, Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach, Advances in differential equations and mathematical physics (Birmingham, AL, 2002) Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 181–198. MR 1991541, DOI 10.1090/conm/327/05814
- T. D. Lee, Kerson Huang, and C. N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev. (2) 106 (1957), 1135–1145. MR 88176
- T. D. Lee and C. N. Yang, Low-temperature behavior of a dilute Bose system of hard spheres. I. Equilibrium properties, Phys. Rev. (2) 112 (1958), 1419–1429. MR 127865
- A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73 (2001), no. 2, 307–356.
- Mathieu Lewin, Phan Thành Nam, and Nicolas Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6131–6157. MR 3461029, DOI 10.1090/tran/6537
- Mathieu Lewin, Phan Thành Nam, and Benjamin Schlein, Fluctuations around Hartree states in the mean-field regime, Amer. J. Math. 137 (2015), no. 6, 1613–1650. MR 3432269, DOI 10.1353/ajm.2015.0040
- Mathieu Lewin, Phan Thành Nam, Sylvia Serfaty, and Jan Philip Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68 (2015), no. 3, 413–471. MR 3310520, DOI 10.1002/cpa.21519
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817
- Dionisios Margetis, Bose-Einstein condensation beyond mean field: Many-body bound state of periodic microstructure, Multiscale Model. Simul. 10 (2012), no. 2, 383–417. MR 2968845, DOI 10.1137/110826576
- O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (2006), no. 1, 179–215.
- Phan Thành Nam and Marcin Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys. 21 (2017), no. 3, 683–738. MR 3695801, DOI 10.4310/ATMP.2017.v21.n3.a4
- Phan Thành Nam and Marcin Napiórkowski, Norm approximation for many-body quantum dynamics and Bogoliubov theory, Advances in Quantum Mechanics, Springer INdAM Ser., vol. 18, Springer, Cham, 2017, pp. 223–238. MR 3588052
- Phan Thành Nam and Marcin Napiórkowski, A note on the validity of Bogoliubov correction to mean-field dynamics, J. Math. Pures Appl. (9) 108 (2017), no. 5, 662–688 (English, with English and French summaries). MR 3711470, DOI 10.1016/j.matpur.2017.05.013
- Phan Thành Nam, Marcin Napiórkowski, and Jan Philip Solovej, Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations, J. Funct. Anal. 270 (2016), no. 11, 4340–4368. MR 3484973, DOI 10.1016/j.jfa.2015.12.007
- Phan Thành Nam and Robert Seiringer, Collective excitations of Bose gases in the mean-field regime, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 381–417. MR 3294406, DOI 10.1007/s00205-014-0781-6
- R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate, Rev. Mod. Phys. 77 (2005), no. 1, 187–205.
- C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, 2nd ed., Cambridge University, Cambridge, UK, 2008.
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
- L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP 13 (1961), no. 2, 451–454.
- A. Rovenchak, Effective Hamiltonian and excitation spectrum of harmonically trapped bosons, Low Temp. Phys. 42 (2016), no. 1, 36–41.
- B. Schlein, Gross-Pitaevskii evolution for Bose-Einstein condensates, Macroscopic Limits of Quantum Systems (D. Cadamuro, M. Duell, W. Dybalski, and S. Simonella, eds.), Springer Proceedings in Mathematics and Statistics, vol. 270, Springer International Publishing, Cham, Switzerland, 2018, pp. 171–184.
- Robert Seiringer, The excitation spectrum for weakly interacting bosons, Comm. Math. Phys. 306 (2011), no. 2, 565–578. MR 2824481, DOI 10.1007/s00220-011-1261-6
- Robert Seiringer, Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation, J. Math. Phys. 55 (2014), no. 7, 075209, 18. MR 3390687, DOI 10.1063/1.4881536
- Jan Philip Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Comm. Math. Phys. 266 (2006), no. 3, 797–818. MR 2238912, DOI 10.1007/s00220-006-0020-6
- D. M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85 (2013), no. 3, 1191–1244.
- MichałTomza, Krzysztof Jachymski, Rene Gerritsma, Antonio Negretti, Tommaso Calarco, Zbigniew Idziaszek, and Paul S. Julienne, Cold hybrid ion-atom systems, Rev. Mod. Phys. 91 (2019), no. 3, 035001, 57. MR 4015929, DOI 10.1103/RevModPhys.91.035001
- Christiane Tretter, Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008. MR 2463978, DOI 10.1142/9781848161122
- Tai Tsun Wu, Ground state of a Bose system of hard spheres, Phys. Rev. 115 (1959), 1390–1404. MR 127866
- Tai Tsun Wu, Some nonequilibrium properties of a Bose system of hard spheres at extremely low temperatures, J. Math. Phys. 2 (1961), 105–123. MR 121200, DOI 10.1063/1.1724205
- T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature: General theory, Phys. Rev. A 58 (1998), no. 2, 1465–1474.
- K. Xu, Y. Liu, D. E. Miller, J. K. Chin, W. Setiawan, and W. Ketterle, Observation of strong quantum depletion in a gaseous Bose-Einstein condensate, Phys. Rev. Lett. 96 (2006), no. 18, 180405.
- Horng-Tzer Yau and Jun Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys. 136 (2009), no. 3, 453–503. MR 2529681, DOI 10.1007/s10955-009-9792-3
- Valentin A. Zagrebnov and Jean-Bernard Bru, The Bogoliubov model of weakly imperfect Bose gas, Phys. Rep. 350 (2001), no. 5-6, 291–434. MR 1853206, DOI 10.1016/S0370-1573(00)00132-0
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35Q40,
81V73,
81Q12,
47N20,
82C10
Retrieve articles in all journals
with MSC (2020):
35Q40,
81V73,
81Q12,
47N20,
82C10
Additional Information
Manoussos Grillakis
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742
MR Author ID:
77045
Email:
mggrlk@umd.edu
Dionisios Margetis
Affiliation:
Department of Mathematics, and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
MR Author ID:
637091
ORCID:
0000-0001-9058-502X
Email:
diom@umd.edu
Stephen Sorokanich
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742
ORCID:
0000-0001-6776-9461
Email:
ssorokan@umd.edu
Keywords:
Quantum many-body dynamics,
nonlinear integro-partial differential equation,
non-self-adjoint operators,
variational principle,
Fock space,
quasiparticle,
operator Riccati equation
Received by editor(s):
May 26, 2022
Received by editor(s) in revised form:
August 18, 2022
Published electronically:
September 26, 2022
Additional Notes:
The second and third authors (DM and SS) were partly supported by the National Science Foundation through Grant DMS-1517162.
Article copyright:
© Copyright 2022
Brown University