A model of invariant control system using mean curvature drift from Brownian motion under submersions
Author:
Huang Ching-Peng
Journal:
Quart. Appl. Math. 81 (2023), 175-202
MSC (2020):
Primary 60D05; Secondary 93E03, 53E10
DOI:
https://doi.org/10.1090/qam/1633
Published electronically:
September 30, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract:
Given a Riemannian submersion $\phi : M \to N$, we construct a stochastic process $X$ on $M$ such that the image $Y≔\phi (X)$ is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping $\pi : GL(n) \to GL(n)/O(n)$, whose image is equivalent to the space of $n$-by-$n$ positive definite matrices, $\mathcal {S}_+(n,n)$, and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on $\mathcal {S}_+(n,n)$, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.
By choosing the background metric via natural $GL(n)$ action, we arrive at an invariant control system on the $GL(n)$-homogenous space $GL(n)/O(n)$. We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.
References
- Lionel Bérard-Bergery and Jean-Pierre Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181–200. MR 650387
- Rajendra Bhatia, Tanvi Jain, and Yongdo Lim, On the Bures-Wasserstein distance between positive definite matrices, Expo. Math. 37 (2019), no. 2, 165–191. MR 3992484, DOI 10.1016/j.exmath.2018.01.002
- Marie-France Bru, Diffusions of perturbed principal component analysis, J. Multivariate Anal. 29 (1989), no. 1, 127–136. MR 991060, DOI 10.1016/0047-259X(89)90080-8
- Fabrice Baudoin and Jing Wang, Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions, Electron. J. Probab. 26 (2021), 1–21, https://doi.org/10.1214/21-EJP600.
- Alan Edelman, Tomás A. Arias, and Steven T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 303–353. MR 1646856, DOI 10.1137/S0895479895290954
- Jean Gallier and Jocelyn Quaintance, Differential geometry and Lie groups—a computational perspective, Geometry and Computing, vol. 12, Springer, Cham, [2020] ©2020. MR 4164718
- Elton P. Hsu, Stochastic analysis on manifolds, Graduate Studies in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 2002. MR 1882015, DOI 10.1090/gsm/038
- E. J. Pauwels, Riemannian submersions of Brownian motions, Stochastics Stochastics Rep. 29 (1990), no. 4, 425–436. MR 1124160, DOI 10.1080/17442509708833626
- Serge Lang, Fundamentals of differential geometry, volume 191, Springer Science & Business Media, 2012.
- Estelle Massart and P.-A. Absil, Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl. 41 (2020), no. 1, 171–198. MR 4053861, DOI 10.1137/18M1231389
- Estelle Massart, Julien M. Hendrickx, and P.-A. Absil, Curvature of the manifold of fixed-rank positive-semidefinite matrices endowed with the Bures-Wasserstein metric, Geometric science of information, Lecture Notes in Comput. Sci., vol. 11712, Springer, Cham, 2019, pp. 739–748. MR 3996643, DOI 10.1007/978-3-030-26980-7_{7}
- J. R. Norris, L. C. G. Rogers, and David Williams, Brownian motions of ellipsoids, Trans. Amer. Math. Soc. 294 (1986), no. 2, 757–765. MR 825735, DOI 10.1090/S0002-9947-1986-0825735-5
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Tommaso Pacini, Mean curvature flow, orbits, moment maps, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3343–3357. MR 1974691, DOI 10.1090/S0002-9947-03-03307-5
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. Itô calculus; Reprint of the second (1994) edition. MR 1780932, DOI 10.1017/CBO9781107590120
- Yu. L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces, J. Math. Sci. (New York) 100 (2000), no. 4, 2355–2427. Dynamical systems, 8. MR 1776551, DOI 10.1007/s10958-000-0002-8
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), no. 1, 209–226. MR 519046, DOI 10.2969/jmsj/03110209
- Bill Watson, Manifold maps commuting with the Laplacian, J. Differential Geometry 8 (1973), 85–94. MR 365419
- Ke Ye, Ken Sze-Wai Wong, and Lek-Heng Lim, Optimization on flag manifolds, Math. Program. 194 (2022), no. 1-2, Ser. A, 621–660. MR 4445465, DOI 10.1007/s10107-021-01640-3
References
- Lionel Bérard-Bergery and Jean-Pierre Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math. 26 (1982), no. 2, 181–200. MR 650387
- Rajendra Bhatia, Tanvi Jain, and Yongdo Lim, On the Bures-Wasserstein distance between positive definite matrices, Expo. Math. 37 (2019), no. 2, 165–191. MR 3992484, DOI 10.1016/j.exmath.2018.01.002
- Marie-France Bru, Diffusions of perturbed principal component analysis, J. Multivariate Anal. 29 (1989), no. 1, 127–136. MR 991060, DOI 10.1016/0047-259X(89)90080-8
- Fabrice Baudoin and Jing Wang, Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions, Electron. J. Probab. 26 (2021), 1–21, https://doi.org/10.1214/21-EJP600.
- Alan Edelman, Tomás A. Arias, and Steven T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1999), no. 2, 303–353. MR 1646856, DOI 10.1137/S0895479895290954
- Jean Gallier and Jocelyn Quaintance, Differential geometry and Lie groups—a computational perspective, Geometry and Computing, vol. 12, Springer, Cham, [2020] ©2020. MR 4164718
- Elton P. Hsu, Stochastic analysis on manifolds, Graduate Studies in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 2002. MR 1882015, DOI 10.1090/gsm/038
- E. J. Pauwels, Riemannian submersions of Brownian motions, Stochastics Stochastics Rep. 29 (1990), no. 4, 425–436. MR 1124160, DOI 10.1080/17442509708833626
- Serge Lang, Fundamentals of differential geometry, volume 191, Springer Science & Business Media, 2012.
- Estelle Massart and P.-A. Absil, Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl. 41 (2020), no. 1, 171–198. MR 4053861, DOI 10.1137/18M1231389
- Estelle Massart, Julien M. Hendrickx, and P.-A. Absil, Curvature of the manifold of fixed-rank positive-semidefinite matrices endowed with the Bures-Wasserstein metric, Geometric science of information, Lecture Notes in Comput. Sci., vol. 11712, Springer, Cham, 2019, pp. 739–748. MR 3996643, DOI 10.1007/978-3-030-26980-7_7
- J. R. Norris, L. C. G. Rogers, and David Williams, Brownian motions of ellipsoids, Trans. Amer. Math. Soc. 294 (1986), no. 2, 757–765. MR 825735, DOI 10.2307/2000214
- Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 200865
- Tommaso Pacini, Mean curvature flow, orbits, moment maps, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3343–3357. MR 1974691, DOI 10.1090/S0002-9947-03-03307-5
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. Itô calculus; Reprint of the second (1994) edition. MR 1780932, DOI 10.1017/CBO9781107590120
- Yu. L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces, J. Math. Sci. (New York) 100 (2000), no. 4, 2355–2427. Dynamical systems, 8. MR 1776551, DOI 10.1007/s10958-000-0002-8
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), no. 1, 209–226. MR 519046, DOI 10.2969/jmsj/03110209
- Bill Watson, Manifold maps commuting with the Laplacian, J. Differential Geometry 8 (1973), 85–94. MR 365419
- Ke Ye, Ken Sze-Wai Wong, and Lek-Heng Lim, Optimization on flag manifolds, Math. Program. 194 (2022), no. 1-2, Ser. A, 621–660. MR 4445465, DOI 10.1007/s10107-021-01640-3
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
60D05,
93E03,
53E10
Retrieve articles in all journals
with MSC (2020):
60D05,
93E03,
53E10
Additional Information
Huang Ching-Peng
Affiliation:
Division of Applied Mathematics, Brown University, 170 Hope Street, Providence, RI 02912
Email:
cphuang@brown.edu
Keywords:
Mean curvature flow,
gradient flow,
Brownian motion,
Riemannian submersion,
random matrix,
eigenvalue processes,
geometry of positive definite matrices,
stochastic algorithm,
control theory on homogeneous space
Received by editor(s):
June 10, 2022
Received by editor(s) in revised form:
August 31, 2022
Published electronically:
September 30, 2022
Additional Notes:
Partial support for this work was provided by the National Science Foundation under grant DMS-2107205
Article copyright:
© Copyright 2022
Brown University