Mixed determinants, compensated integrability, and new a priori estimates in gas dynamics
Author:
Denis Serre
Journal:
Quart. Appl. Math. 81 (2023), 281-295
MSC (2010):
Primary 35Q31, 46N60, 46T99, 76N15
DOI:
https://doi.org/10.1090/qam/1640
Published electronically:
December 8, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We extend the scope of our recent Compensated Integrability theory, by exploiting the multi-linearity of the determinant map over $\mathbf {Sym}_n(\mathbb {R})$. This allows us to establish new a priori estimates for inviscid gases flowing in the whole space $\mathbb {R}^d$. Notably, we estimate the defect measure (Boltzman equation) or weighted spacial correlations of the velocity field (Euler system). As usual, our bounds involve only the total mass and energy of the flow.
References
- Angelo Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977), no. 1, 148–156. MR 438106
- R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), no. 2, 321–366. MR 1014927, DOI 10.2307/1971423
- Lars Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965. MR 0113978, DOI 10.1512/iumj.1959.8.58061
- Emilio Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137 (Italian). MR 102740
- P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II, Arch. Ration. Mech. Anal. 158 (2001), no. 3, 173–193, 195–211. MR 1842343, DOI 10.1007/s002050100143
- Denis Serre, Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1209–1234. MR 3813963, DOI 10.1016/j.anihpc.2017.11.002
- Denis Serre, Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics, J. Math. Pures Appl. (9) 127 (2019), 67–88 (English, with English and French summaries). MR 3960138, DOI 10.1016/j.matpur.2018.06.025
References
- Angelo Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977), no. 1, 148–156. MR 438106
- R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), no. 2, 321–366. MR 1014927, DOI 10.2307/1971423
- Lars Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965. MR 0113978, DOI 10.1512/iumj.1959.8.58061
- Emilio Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137 (Italian). MR 102740
- P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II, Arch. Ration. Mech. Anal. 158 (2001), no. 3, 173–193, 195–211. MR 1842343, DOI 10.1007/s002050100143
- Denis Serre, Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1209–1234. MR 3813963, DOI 10.1016/j.anihpc.2017.11.002
- Denis Serre, Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics, J. Math. Pures Appl. (9) 127 (2019), 67–88 (English, with English and French summaries). MR 3960138, DOI 10.1016/j.matpur.2018.06.025
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
35Q31,
46N60,
46T99,
76N15
Retrieve articles in all journals
with MSC (2010):
35Q31,
46N60,
46T99,
76N15
Additional Information
Denis Serre
Affiliation:
U.M.P.A., UMR CNRS–ENSL # 5669, 46 allée d’Italie, 69364 Lyon cedex 07, France
MR Author ID:
158965
ORCID:
0000-0002-0725-4383
Email:
denis.serre@ens-lyon.fr
Keywords:
Div-BV tensors,
mixed determinant,
Schur complement,
gas dynamics
Received by editor(s):
August 20, 2022
Received by editor(s) in revised form:
October 24, 2022
Published electronically:
December 8, 2022
Dedicated:
To Constantine Dafermos, with admiration, friendship, and gratitude
Article copyright:
© Copyright 2022
Brown University