Transverse instability of high frequency weakly stable quasilinear boundary value problems
Author:
Corentin Kilque
Journal:
Quart. Appl. Math. 81 (2023), 633-720
MSC (2020):
Primary 35B34, 35B35, 35C20, 35L50, 35A20; Secondary 35B40
DOI:
https://doi.org/10.1090/qam/1637
Published electronically:
November 15, 2022
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This work intends to prove that strong instabilities may appear for high order geometric optics expansions of weakly stable quasilinear hyperbolic boundary value problems, when the forcing boundary term is perturbed by a small amplitude oscillating function, with a transverse frequency. Since the boundary frequencies lie in the locus where the so-called Lopatinskii determinant is zero, the amplifications on the boundary give rise to a highly coupled system of equations for the profiles. A simplified model for this system is solved in an analytical framework using the Cauchy-Kovalevskaya theorem as well as a version of it ensuring analyticity in space and time for the solution. Then it is proven that, through resonances and amplification, a particular configuration for the phases may create an instability, in the sense that the small perturbation of the forcing term on the boundary interferes at the leading order in the asymptotic expansion of the solution. Finally we study the possibility for such a configuration of frequencies to happen for the isentropic Euler equations in space dimension three.
References
- Miguel Artola and Andrew J. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), no. 3, 253–281. MR 914450, DOI 10.1016/0167-2789(87)90019-4
- M. S. Baouendi and C. Goulaouic, Le théorème de Nishida pour le problème de Cauchy abstrait par une méthode de point fixe, Équations aux dérivées partielles (Proc. Conf., Saint-Jean-de-Monts, 1977) Lecture Notes in Math., vol. 660, Springer, Berlin, 1978, pp. 1–8 (French). MR 520864
- Sylvie Benzoni-Gavage and Denis Serre, Multidimensional hyperbolic partial differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. First-order systems and applications. MR 2284507
- Jacques Chazarain and Alain Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam-New York, 1982. Translated from the French. MR 678605
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 460128, DOI 10.1007/978-94-010-2196-8
- Jean-François Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. (9) 84 (2005), no. 6, 786–818 (English, with English and French summaries). MR 2138641, DOI 10.1016/j.matpur.2004.10.005
- Jean-François Coulombel and Olivier Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 6, 2183–2233 (English, with English and French summaries). MR 2791655, DOI 10.5802/aif.2581
- Jean-Francois Coulombel, Olivier Gues, and Mark Williams, Resonant leading order geometric optics expansions for quasilinear hyperbolic fixed and free boundary problems, Comm. Partial Differential Equations 36 (2011), no. 10, 1797–1859. MR 2832164, DOI 10.1080/03605302.2011.594474
- Jean-François Coulombel and Paolo Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 1, 85–139 (English, with English and French summaries). MR 2423311, DOI 10.24033/asens.2064
- Jean-François Coulombel and Mark Williams, Amplification of pulses in nonlinear geometric optics, J. Hyperbolic Differ. Equ. 11 (2014), no. 4, 749–793. MR 3312051, DOI 10.1142/S0219891614500234
- Jean-François Coulombel and Mark Williams, The Mach stem equation and amplification in strongly nonlinear geometric optics, Amer. J. Math. 139 (2017), no. 4, 967–1046. MR 3689322, DOI 10.1353/ajm.2017.0026
- Jean-Francois Coulombel, Olivier Guès, and Mark Williams, Semilinear geometric optics with boundary amplification, Anal. PDE 7 (2014), no. 3, 551–625. MR 3227427, DOI 10.2140/apde.2014.7.551
- Reuben Hersh, Mixed problems in several variables, J. Math. Mech. 12 (1963), 317–334. MR 147790
- J. K. Hunter, A. Majda, and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables, Stud. Appl. Math. 75 (1986), no. 3, 187–226. MR 867874, DOI 10.1002/sapm1986753187
- Fritz John, Partial differential equations, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1991. MR 1185075
- J.-L. Joly, G. Métivier, and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 1, 51–113. MR 1305424, DOI 10.24033/asens.1709
- Corentin Kilque, Weakly nonlinear multiphase geometric optics for hyperbolic quasilinear boundary value problems: construction of a leading profile, SIAM J. Math. Anal. 54 (2022), no. 2, 2413–2507. MR 4410268, DOI 10.1137/21M1413596
- Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304
- Peter D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627–646. MR 97628
- Vincent Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci. 17 (2007), no. 4, 485–535. MR 2316297, DOI 10.1142/S0218202507002005
- Andrew Majda and Rodolfo Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis, SIAM J. Appl. Math. 43 (1983), no. 6, 1310–1334. MR 722944, DOI 10.1137/0143088
- Andrew Majda and Rodolfo Rosales, A theory for spontaneous Mach-stem formation in reacting shock fronts. II. Steady-wave bifurcations and the evidence for breakdown, Stud. Appl. Math. 71 (1984), no. 2, 117–148. MR 760228, DOI 10.1002/sapm1984712117
- Andrew J. Majda and Miguel Artola, Nonlinear geometric optics for hyperbolic mixed problems, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 319–356. MR 956966
- Guy Métivier, The mathematics of nonlinear optics, Handbook of differential equations: evolutionary equations. Vol. V, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2009, pp. 169–313. MR 2562165, DOI 10.1016/S1874-5717(08)00210-7
- Baptiste Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, Ann. H. Lebesgue 3 (2020), 1195–1239 (English, with English and French summaries). MR 4191389, DOI 10.5802/alco.132
- L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561–576. MR 322321, DOI 10.4310/jdg/1214430643
- Takaaki Nishida, A note on a theorem of Nirenberg, J. Differential Geometry 12 (1977), no. 4, 629–633 (1978). MR 512931
- Jeffrey Rauch, Hyperbolic partial differential equations and geometric optics, Graduate Studies in Mathematics, vol. 133, American Mathematical Society, Providence, RI, 2012. MR 2918544, DOI 10.1090/gsm/133
- Jeffrey Rauch and Michael Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982), no. 2, 397–475. MR 659948
- Seiji Ukai, The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem, Japan J. Indust. Appl. Math. 18 (2001), no. 2, 383–392. Recent topics in mathematics moving toward science and engineering. MR 1842918, DOI 10.1007/BF03168581
- Mark Williams, Nonlinear geometric optics for hyperbolic boundary problems, Comm. Partial Differential Equations 21 (1996), no. 11-12, 1829–1895. MR 1421213, DOI 10.1080/03605309608821247
References
- Miguel Artola and Andrew J. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), no. 3, 253–281. MR 914450, DOI 10.1016/0167-2789(87)90019-4
- M. S. Baouendi and C. Goulaouic, Le théorème de Nishida pour le problème de Cauchy abstrait par une méthode de point fixe, Équations aux dérivées partielles (Proc. Conf., Saint-Jean-de-Monts, 1977) Lecture Notes in Math., vol. 660, Springer, Berlin, 1978, pp. 1–8 (French). MR 520864
- Sylvie Benzoni-Gavage and Denis Serre, Multidimensional hyperbolic partial differential equations: first-order systems and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. MR 2284507
- Jacques Chazarain and Alain Piriou, Introduction to the theory of linear partial differential equations, translated from the French, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 678605
- Louis Comtet, Advanced combinatorics: the art of finite and infinite expansions, revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. MR 0460128
- Jean-François Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl. (9) 84 (2005), no. 6, 786–818 (English, with English and French summaries). MR 2138641, DOI 10.1016/j.matpur.2004.10.005
- Jean-François Coulombel and Olivier Guès, Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 6, 2183–2233 (English, with English and French summaries). MR 2791655
- Jean-Francois Coulombel, Olivier Gues, and Mark Williams, Resonant leading order geometric optics expansions for quasilinear hyperbolic fixed and free boundary problems, Comm. Partial Differential Equations 36 (2011), no. 10, 1797–1859. MR 2832164, DOI 10.1080/03605302.2011.594474
- Jean-François Coulombel and Paolo Secchi, Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 1, 85–139 (English, with English and French summaries). MR 2423311, DOI 10.24033/asens.2064
- Jean-François Coulombel and Mark Williams, Amplification of pulses in nonlinear geometric optics, J. Hyperbolic Differ. Equ. 11 (2014), no. 4, 749–793. MR 3312051, DOI 10.1142/S0219891614500234
- Jean-François Coulombel and Mark Williams, The Mach stem equation and amplification in strongly nonlinear geometric optics, Amer. J. Math. 139 (2017), no. 4, 967–1046. MR 3689322, DOI 10.1353/ajm.2017.0026
- Jean-Francois Coulombel, Olivier Guès, and Mark Williams, Semilinear geometric optics with boundary amplification, Anal. PDE 7 (2014), no. 3, 551–625. MR 3227427, DOI 10.2140/apde.2014.7.551
- Reuben Hersh, Mixed problems in several variables, J. Math. Mech. 12 (1963), 317–334. MR 0147790
- J. K. Hunter, A. Majda, and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables, Stud. Appl. Math. 75 (1986), no. 3, 187–226. MR 867874, DOI 10.1002/sapm1986753187
- Fritz John, Partial differential equations, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1991. MR 1185075
- J.-L. Joly, G. Métivier, and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 1, 51–113. MR 1305424
- Corentin Kilque, Weakly nonlinear multiphase geometric optics for hyperbolic quasilinear boundary value problems: construction of a leading profile, SIAM J. Math. Anal. 54 (2022), no. 2, 2413–2507. MR 4410268, DOI 10.1137/21M1413596
- Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304
- Peter D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957), 627–646. MR 97628
- Vincent Lescarret, Wave transmission in dispersive media, Math. Models Methods Appl. Sci. 17 (2007), no. 4, 485–535. MR 2316297, DOI 10.1142/S0218202507002005
- Andrew Majda and Rodolfo Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis, SIAM J. Appl. Math. 43 (1983), no. 6, 1310–1334. MR 722944, DOI 10.1137/0143088
- Andrew Majda and Rodolfo Rosales, A theory for spontaneous Mach-stem formation in reacting shock fronts. II. Steady-wave bifurcations and the evidence for breakdown, Stud. Appl. Math. 71 (1984), no. 2, 117–148. MR 760228, DOI 10.1002/sapm1984712117
- Andrew J. Majda and Miguel Artola, Nonlinear geometric optics for hyperbolic mixed problems, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 319–356. MR 956966
- Guy Métivier, The mathematics of nonlinear optics, Handbook of differential equations: evolutionary equations. Vol. V, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2009, pp. 169–313. MR 2562165, DOI 10.1016/S1874-5717(08)00210-7
- Baptiste Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, Ann. H. Lebesgue 3 (2020), 1195–1239 (English, with English and French summaries). MR 4191389, DOI 10.5802/alco.132
- L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561–576. MR 322321
- Takaaki Nishida, A note on a theorem of Nirenberg, J. Differential Geometry 12 (1977), no. 4, 629–633 (1978). MR 512931
- Jeffrey Rauch, Hyperbolic partial differential equations and geometric optics, Graduate Studies in Mathematics, vol. 133, American Mathematical Society, Providence, RI, 2012. MR 2918544, DOI 10.1090/gsm/133
- Jeffrey Rauch and Michael Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982), no. 2, 397–475. MR 659948
- Seiji Ukai, The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem: recent topics in mathematics moving toward science and engineering, Japan J. Indust. Appl. Math. 18 (2001), no. 2, 383–392. MR 1842918, DOI 10.1007/BF03168581
- Mark Williams, Nonlinear geometric optics for hyperbolic boundary problems, Comm. Partial Differential Equations 21 (1996), no. 11-12, 1829–1895. MR 1421213, DOI 10.1080/03605309608821247
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35B34,
35B35,
35C20,
35L50,
35A20,
35B40
Retrieve articles in all journals
with MSC (2020):
35B34,
35B35,
35C20,
35L50,
35A20,
35B40
Additional Information
Corentin Kilque
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9, France
MR Author ID:
1500131
Email:
corentin.kilque@math.univ-toulouse.fr
Received by editor(s):
June 28, 2022
Received by editor(s) in revised form:
September 27, 2022
Published electronically:
November 15, 2022
Additional Notes:
The author is particularly grateful to Jean-François Coulombel, whose brilliant idea is at the origin of this work, and for his numerous advice and proofreading.
Article copyright:
© Copyright 2022
Brown University