On a quaternary nonlocal isoperimetric problem
Authors:
Stanley Alama, Lia Bronsard, Xinyang Lu and Chong Wang
Journal:
Quart. Appl. Math. 82 (2024), 97-113
MSC (2020):
Primary 49J45, 49J10, 49Q05
DOI:
https://doi.org/10.1090/qam/1675
Published electronically:
July 3, 2023
MathSciNet review:
4695277
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study a two-dimensional quaternary inhibitory system. This free energy functional combines an interface energy favoring micro-domain growth with a Coulomb-type long range interaction energy which prevents micro-domains from unlimited spreading. Here we consider a limit in which three species are vanishingly small, but interactions are correspondingly large to maintain a nontrivial limit. In this limit two energy levels are distinguished: the highest order limit encodes information on the geometry of local structures as a three-component isoperimetric problem, while the second level describes the spatial distribution of components in global minimizers. Geometrical descriptions of limit configurations are derived.
References
- E. Acerbi, N. Fusco, V. Julin, and M. Morini, Nonlinear stability results for the modified Mullins-Sekerka and the surface diffusion flow, J. Differential Geom. 113 (2019), no. 1, 1–53. MR 3998906, DOI 10.4310/jdg/1567216953
- E. Acerbi, N. Fusco, and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys. 322 (2013), no. 2, 515–557. MR 3077924, DOI 10.1007/s00220-013-1733-y
- Stanley Alama, Lia Bronsard, Xinyang Lu, and Chong Wang, Periodic minimizers of a ternary non-local isoperimetric problem, Indiana Univ. Math. J. 70 (2021), no. 6, 2557–2601. MR 4359919, DOI 10.1512/iumj.2021.70.8720
- Stan Alama, Lia Bronsard, and Ihsan Topaloglu, Sharp interface limit of an energy modelling nanoparticle-polymer blends, Interfaces Free Bound. 18 (2016), no. 2, 263–289. MR 3549008, DOI 10.4171/IFB/364
- Stan Alama, Lia Bronsard, Rustum Choksi, and Ihsan Topaloglu, Droplet breakup in the liquid drop model with background potential, Commun. Contemp. Math. 21 (2019), no. 3, 1850022, 23. MR 3947064, DOI 10.1142/S0219199718500220
- Stan Alama, Lia Bronsard, Rustum Choksi, and Ihsan Topaloglu, Droplet phase in a nonlocal isoperimetric problem under confinement, Commun. Pure Appl. Anal. 19 (2020), no. 1, 175–202. MR 4025940, DOI 10.3934/cpaa.2020010
- Giovanni Alberti, Rustum Choksi, and Felix Otto, Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Amer. Math. Soc. 22 (2009), no. 2, 569–605. MR 2476783, DOI 10.1090/S0894-0347-08-00622-X
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292, DOI 10.1093/oso/9780198502456.001.0001
- F. S. Bates and G. H. Fredrickson, Block copolymers — designer soft materials, Phys. Today 52 (1999), no. 2, 32–38.
- M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on $\Bbb {R}^N$, SIAM J. Math. Anal. 46 (2014), no. 4, 2310–2349. MR 3226747, DOI 10.1137/130929898
- Marco Bonacini and Hans Knüpfer, Ground states of a ternary system including attractive and repulsive Coulomb-type interactions, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 114, 31. MR 3549920, DOI 10.1007/s00526-016-1047-y
- Rustum Choksi, Robin Neumayer, and Ihsan Topaloglu, Anisotropic liquid drop models, Adv. Calc. Var. 15 (2022), no. 1, 109–131. MR 4385589, DOI 10.1515/acv-2019-0088
- Rustum Choksi and Mark A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional, SIAM J. Math. Anal. 42 (2010), no. 3, 1334–1370. MR 2653253, DOI 10.1137/090764888
- Rustum Choksi and Xiaofeng Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, J. Statist. Phys. 113 (2003), no. 1-2, 151–176. MR 2012976, DOI 10.1023/A:1025722804873
- Rustum Choksi and Xiaofeng Ren, Diblock copolymer/homopolymer blends: derivation of a density functional theory, Phys. D 203 (2005), no. 1-2, 100–119. MR 2135136, DOI 10.1016/j.physd.2005.03.006
- Rustum Choksi and Peter Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. Reine Angew. Math. 611 (2007), 75–108. MR 2360604, DOI 10.1515/CRELLE.2007.074
- Marco Cicalese and Emanuele Spadaro, Droplet minimizers of an isoperimetric problem with long-range interactions, Comm. Pure Appl. Math. 66 (2013), no. 8, 1298–1333. MR 3069960, DOI 10.1002/cpa.21463
- Riccardo Cristoferi, On periodic critical points and local minimizers of the Ohta-Kawasaki functional, Nonlinear Anal. 168 (2018), 81–109. MR 3759471, DOI 10.1016/j.na.2017.11.004
- Mouhamed Moustapha Fall, Periodic patterns for a model involving short-range and long-range interactions, Nonlinear Anal. 175 (2018), 73–107. MR 3830723, DOI 10.1016/j.na.2018.05.009
- A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507. MR 3322379, DOI 10.1007/s00220-014-2244-1
- Joel Foisy, Manuel Alfaro, Jeffrey Brock, Nickelous Hodges, and Jason Zimba, The standard double soap bubble in $\textbf {R}^2$ uniquely minimizes perimeter, Pacific J. Math. 159 (1993), no. 1, 47–59. MR 1211384, DOI 10.2140/pjm.1993.159.47
- Rupert L. Frank and Elliott H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model, SIAM J. Math. Anal. 47 (2015), no. 6, 4436–4450. MR 3425373, DOI 10.1137/15M1010658
- Karl Glasner, Evolution and competition of block copolymer nanoparticles, SIAM J. Appl. Math. 79 (2019), no. 1, 28–54. MR 3899175, DOI 10.1137/18M1192809
- Karl Glasner and Rustum Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures, Phys. D 238 (2009), no. 14, 1241–1255. MR 2532405, DOI 10.1016/j.physd.2009.04.006
- Dorian Goldman, Cyrill B. Muratov, and Sylvia Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Ration. Mech. Anal. 210 (2013), no. 2, 581–613. MR 3101793, DOI 10.1007/s00205-013-0657-1
- Joel Hass and Roger Schlafly, Double bubbles minimize, Ann. of Math. (2) 151 (2000), no. 2, 459–515. MR 1765704, DOI 10.2307/121042
- Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros, Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), no. 2, 459–489. MR 1906593, DOI 10.2307/3062123
- Michael Helmers, Barbara Niethammer, and Xiaofeng Ren, Evolution in off-critical diblock copolymer melts, Netw. Heterog. Media 3 (2008), no. 3, 615–632. MR 2425075, DOI 10.3934/nhm.2008.3.615
- Cyril Isenberg, The science of soap films and soap bubbles, Tieto Ltd., Clevedon, 1978. With a foreword by George Porter. MR 620322
- Vesa Julin, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J. 63 (2014), no. 1, 77–89. MR 3218265, DOI 10.1512/iumj.2014.63.5185
- Vesa Julin and Giovanni Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, J. Reine Angew. Math. 729 (2017), 81–117. MR 3680371, DOI 10.1515/crelle-2014-0117
- Vesa Julin, Remark on a nonlocal isoperimetric problem, Nonlinear Anal. 154 (2017), 174–188. MR 3614649, DOI 10.1016/j.na.2016.10.011
- J. Lu and F. Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus, preprint, arXiv:1508.07172, 2015.
- Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term I: The planar case, Comm. Pure Appl. Math. 66 (2013), no. 7, 1129–1162. MR 3055587, DOI 10.1002/cpa.21451
- Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term II: The general case, Comm. Pure Appl. Math. 67 (2014), no. 12, 1974–1994. MR 3272365, DOI 10.1002/cpa.21479
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Massimiliano Morini and Peter Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains, SIAM J. Math. Anal. 46 (2014), no. 3, 2033–2051. MR 3223928, DOI 10.1137/130932594
- H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers, Macromolecules 26 (1993), no. 20, 5503–5511.
- Yasumasa Nishiura and Isamu Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Phys. D 84 (1995), no. 1-2, 31–39. MR 1334695, DOI 10.1016/0167-2789(95)00005-O
- Francesco Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory. MR 2976521, DOI 10.1017/CBO9781139108133
- N. Min, T. Choi, S. Kim, Bicolored Janus microparticles created by phase separation in emulsion drops, Macromol. Chem. Phys. 218 (2017), 1600265.
- Y. Mogi et al., Superlattice structures in morphologies of the ABC Triblock copolymers, Macromolecules 27 (1994), no. 23, 6755–6760.
- Cyrill B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys. 299 (2010), no. 1, 45–87. MR 2672798, DOI 10.1007/s00220-010-1094-8
- Yoshihito Oshita, Singular limit problem for some elliptic systems, SIAM J. Math. Anal. 38 (2007), no. 6, 1886–1911. MR 2299434, DOI 10.1137/060656632
- T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986), no. 10, 2621–2632.
- Xiaofeng Ren and Chong Wang, A stationary core-shell assembly in a ternary inhibitory system, Discrete Contin. Dyn. Syst. 37 (2017), no. 2, 983–1012. MR 3583508, DOI 10.3934/dcds.2017041
- Xiaofeng Ren and Chong Wang, Stationary disk assemblies in a ternary system with long range interaction, Commun. Contemp. Math. 21 (2019), no. 6, 1850046, 46. MR 3996974, DOI 10.1142/S0219199718500463
- Xiaofeng Ren and Juncheng Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal. 31 (2000), no. 4, 909–924. MR 1752422, DOI 10.1137/S0036141098348176
- X. Ren and J. Wei, Triblock copolymer theory: ordered $ABC$ lamellar phase, J. Nonlinear Sci. 13 (2003), no. 2, 175–208. MR 1978196, DOI 10.1007/s00332-002-0521-1
- Xiaofeng Ren and Juncheng Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys. 19 (2007), no. 8, 879–921. MR 2349026, DOI 10.1142/S0129055X07003139
- Xiaofeng Ren and Juncheng Wei, A double bubble assembly as a new phase of a ternary inhibitory system, Arch. Ration. Mech. Anal. 215 (2015), no. 3, 967–1034. MR 3302114, DOI 10.1007/s00205-014-0798-x
- Xiaofeng Ren and Juncheng Wei, Asymmetric and symmetric double bubbles in a ternary inhibitory system, SIAM J. Math. Anal. 46 (2014), no. 4, 2798–2852. MR 3238496, DOI 10.1137/140955720
- H. A. Schwarz, Beweis des Satze, dass die Kugel kleinere Oberfläche besitzt, als jeder andere Körper gleichen Volumens, Nach. Königlichen Ges. Wiss. Göttingen, 1884, pp. 1–13.
- Peter Sternberg and Ihsan Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions, Interfaces Free Bound. 13 (2011), no. 1, 155–169. MR 2793856, DOI 10.4171/IFB/252
- Ihsan Topaloglu, On a nonlocal isoperimetric problem on the two-sphere, Commun. Pure Appl. Anal. 12 (2013), no. 1, 597–620. MR 2972445, DOI 10.3934/cpaa.2013.12.597
- Wacharin Wichiramala, Proof of the planar triple bubble conjecture, J. Reine Angew. Math. 567 (2004), 1–49. MR 2038304, DOI 10.1515/crll.2004.011
References
- E. Acerbi, N. Fusco, V. Julin, and M. Morini, Nonlinear stability results for the modified Mullins-Sekerka and the surface diffusion flow, J. Differential Geom. 113 (2019), no. 1, 1–53. MR 3998906, DOI 10.4310/jdg/1567216953
- E. Acerbi, N. Fusco, and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Comm. Math. Phys. 322 (2013), no. 2, 515–557. MR 3077924, DOI 10.1007/s00220-013-1733-y
- Stanley Alama, Lia Bronsard, Xinyang Lu, and Chong Wang, Periodic minimizers of a ternary non-local isoperimetric problem, Indiana Univ. Math. J. 70 (2021), no. 6, 2557–2601. MR 4359919, DOI 10.1512/iumj.2021.70.8720
- Stan Alama, Lia Bronsard, and Ihsan Topaloglu, Sharp interface limit of an energy modelling nanoparticle-polymer blends, Interfaces Free Bound. 18 (2016), no. 2, 263–289. MR 3549008, DOI 10.4171/IFB/364
- Stan Alama, Lia Bronsard, Rustum Choksi, and Ihsan Topaloglu, Droplet breakup in the liquid drop model with background potential, Commun. Contemp. Math. 21 (2019), no. 3, 1850022, 23. MR 3947064, DOI 10.1142/S0219199718500220
- Stan Alama, Lia Bronsard, Rustum Choksi, and Ihsan Topaloglu, Droplet phase in a nonlocal isoperimetric problem under confinement, Commun. Pure Appl. Anal. 19 (2020), no. 1, 175–202. MR 4025940, DOI 10.3934/cpaa.2020010
- Giovanni Alberti, Rustum Choksi, and Felix Otto, Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Amer. Math. Soc. 22 (2009), no. 2, 569–605. MR 2476783, DOI 10.1090/S0894-0347-08-00622-X
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
- F. S. Bates and G. H. Fredrickson, Block copolymers — designer soft materials, Phys. Today 52 (1999), no. 2, 32–38.
- M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on $\mathbb {R}^N$, SIAM J. Math. Anal. 46 (2014), no. 4, 2310–2349. MR 3226747, DOI 10.1137/130929898
- Marco Bonacini and Hans Knüpfer, Ground states of a ternary system including attractive and repulsive Coulomb-type interactions, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 114, 31. MR 3549920, DOI 10.1007/s00526-016-1047-y
- Rustum Choksi, Robin Neumayer, and Ihsan Topaloglu, Anisotropic liquid drop models, Adv. Calc. Var. 15 (2022), no. 1, 109–131. MR 4385589, DOI 10.1515/acv-2019-0088
- Rustum Choksi and Mark A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional, SIAM J. Math. Anal. 42 (2010), no. 3, 1334–1370. MR 2653253, DOI 10.1137/090764888
- Rustum Choksi and Xiaofeng Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, J. Statist. Phys. 113 (2003), no. 1-2, 151–176. MR 2012976, DOI 10.1023/A:1025722804873
- Rustum Choksi and Xiaofeng Ren, Diblock copolymer/homopolymer blends: derivation of a density functional theory, Phys. D 203 (2005), no. 1-2, 100–119. MR 2135136, DOI 10.1016/j.physd.2005.03.006
- Rustum Choksi and Peter Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. Reine Angew. Math. 611 (2007), 75–108. MR 2360604, DOI 10.1515/CRELLE.2007.074
- Marco Cicalese and Emanuele Spadaro, Droplet minimizers of an isoperimetric problem with long-range interactions, Comm. Pure Appl. Math. 66 (2013), no. 8, 1298–1333. MR 3069960, DOI 10.1002/cpa.21463
- Riccardo Cristoferi, On periodic critical points and local minimizers of the Ohta-Kawasaki functional, Nonlinear Anal. 168 (2018), 81–109. MR 3759471, DOI 10.1016/j.na.2017.11.004
- Mouhamed Moustapha Fall, Periodic patterns for a model involving short-range and long-range interactions, Nonlinear Anal. 175 (2018), 73–107. MR 3830723, DOI 10.1016/j.na.2018.05.009
- A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507. MR 3322379, DOI 10.1007/s00220-014-2244-1
- Joel Foisy, Manuel Alfaro, Jeffrey Brock, Nickelous Hodges, and Jason Zimba, The standard double soap bubble in $\mathbf {R}^2$ uniquely minimizes perimeter, Pacific J. Math. 159 (1993), no. 1, 47–59. MR 1211384
- Rupert L. Frank and Elliott H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model, SIAM J. Math. Anal. 47 (2015), no. 6, 4436–4450. MR 3425373, DOI 10.1137/15M1010658
- Karl Glasner, Evolution and competition of block copolymer nanoparticles, SIAM J. Appl. Math. 79 (2019), no. 1, 28–54. MR 3899175, DOI 10.1137/18M1192809
- Karl Glasner and Rustum Choksi, Coarsening and self-organization in dilute diblock copolymer melts and mixtures, Phys. D 238 (2009), no. 14, 1241–1255. MR 2532405, DOI 10.1016/j.physd.2009.04.006
- Dorian Goldman, Cyrill B. Muratov, and Sylvia Serfaty, The $\Gamma$-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density, Arch. Ration. Mech. Anal. 210 (2013), no. 2, 581–613. MR 3101793, DOI 10.1007/s00205-013-0657-1
- Joel Hass and Roger Schlafly, Double bubbles minimize, Ann. of Math. (2) 151 (2000), no. 2, 459–515. MR 1765704, DOI 10.2307/121042
- Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros, Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), no. 2, 459–489. MR 1906593, DOI 10.2307/3062123
- Michael Helmers, Barbara Niethammer, and Xiaofeng Ren, Evolution in off-critical diblock copolymer melts, Netw. Heterog. Media 3 (2008), no. 3, 615–632. MR 2425075, DOI 10.3934/nhm.2008.3.615
- Cyril Isenberg, The science of soap films and soap bubbles, Tieto Ltd., Clevedon, 1978. With a foreword by George Porter. MR 620322
- Vesa Julin, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J. 63 (2014), no. 1, 77–89. MR 3218265, DOI 10.1512/iumj.2014.63.5185
- Vesa Julin and Giovanni Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, J. Reine Angew. Math. 729 (2017), 81–117. MR 3680371, DOI 10.1515/crelle-2014-0117
- Vesa Julin, Remark on a nonlocal isoperimetric problem, Nonlinear Anal. 154 (2017), 174–188. MR 3614649, DOI 10.1016/j.na.2016.10.011
- J. Lu and F. Otto, An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus, preprint, arXiv:1508.07172, 2015.
- Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term I: The planar case, Comm. Pure Appl. Math. 66 (2013), no. 7, 1129–1162. MR 3055587, DOI 10.1002/cpa.21451
- Hans Knüpfer and Cyrill B. Muratov, On an isoperimetric problem with a competing nonlocal term II: The general case, Comm. Pure Appl. Math. 67 (2014), no. 12, 1974–1994. MR 3272365, DOI 10.1002/cpa.21479
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Massimiliano Morini and Peter Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains, SIAM J. Math. Anal. 46 (2014), no. 3, 2033–2051. MR 3223928, DOI 10.1137/130932594
- H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers, Macromolecules 26 (1993), no. 20, 5503–5511.
- Yasumasa Nishiura and Isamu Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Phys. D 84 (1995), no. 1-2, 31–39. MR 1334695, DOI 10.1016/0167-2789(95)00005-O
- Francesco Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory. MR 2976521, DOI 10.1017/CBO9781139108133
- N. Min, T. Choi, S. Kim, Bicolored Janus microparticles created by phase separation in emulsion drops, Macromol. Chem. Phys. 218 (2017), 1600265.
- Y. Mogi et al., Superlattice structures in morphologies of the ABC Triblock copolymers, Macromolecules 27 (1994), no. 23, 6755–6760.
- Cyrill B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions, Comm. Math. Phys. 299 (2010), no. 1, 45–87. MR 2672798, DOI 10.1007/s00220-010-1094-8
- Yoshihito Oshita, Singular limit problem for some elliptic systems, SIAM J. Math. Anal. 38 (2007), no. 6, 1886–1911. MR 2299434, DOI 10.1137/060656632
- T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986), no. 10, 2621–2632.
- Xiaofeng Ren and Chong Wang, A stationary core-shell assembly in a ternary inhibitory system, Discrete Contin. Dyn. Syst. 37 (2017), no. 2, 983–1012. MR 3583508, DOI 10.3934/dcds.2017041
- Xiaofeng Ren and Chong Wang, Stationary disk assemblies in a ternary system with long range interaction, Commun. Contemp. Math. 21 (2019), no. 6, 1850046, 46. MR 3996974, DOI 10.1142/S0219199718500463
- Xiaofeng Ren and Juncheng Wei, On the multiplicity of solutions of two nonlocal variational problems, SIAM J. Math. Anal. 31 (2000), no. 4, 909–924. MR 1752422, DOI 10.1137/S0036141098348176
- X. Ren and J. Wei, Triblock copolymer theory: ordered $ABC$ lamellar phase, J. Nonlinear Sci. 13 (2003), no. 2, 175–208. MR 1978196, DOI 10.1007/s00332-002-0521-1
- Xiaofeng Ren and Juncheng Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys. 19 (2007), no. 8, 879–921. MR 2349026, DOI 10.1142/S0129055X07003139
- Xiaofeng Ren and Juncheng Wei, A double bubble assembly as a new phase of a ternary inhibitory system, Arch. Ration. Mech. Anal. 215 (2015), no. 3, 967–1034. MR 3302114, DOI 10.1007/s00205-014-0798-x
- Xiaofeng Ren and Juncheng Wei, Asymmetric and symmetric double bubbles in a ternary inhibitory system, SIAM J. Math. Anal. 46 (2014), no. 4, 2798–2852. MR 3238496, DOI 10.1137/140955720
- H. A. Schwarz, Beweis des Satze, dass die Kugel kleinere Oberfläche besitzt, als jeder andere Körper gleichen Volumens, Nach. Königlichen Ges. Wiss. Göttingen, 1884, pp. 1–13.
- Peter Sternberg and Ihsan Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions, Interfaces Free Bound. 13 (2011), no. 1, 155–169. MR 2793856, DOI 10.4171/IFB/252
- Ihsan Topaloglu, On a nonlocal isoperimetric problem on the two-sphere, Commun. Pure Appl. Anal. 12 (2013), no. 1, 597–620. MR 2972445, DOI 10.3934/cpaa.2013.12.597
- Wacharin Wichiramala, Proof of the planar triple bubble conjecture, J. Reine Angew. Math. 567 (2004), 1–49. MR 2038304, DOI 10.1515/crll.2004.011
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
49J45,
49J10,
49Q05
Retrieve articles in all journals
with MSC (2020):
49J45,
49J10,
49Q05
Additional Information
Stanley Alama
Affiliation:
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
MR Author ID:
268087
Email:
alama@mcmaster.ca
Lia Bronsard
Affiliation:
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
MR Author ID:
293679
ORCID:
0000-0002-0356-1714
Email:
bronsard@mcmaster.ca
Xinyang Lu
Affiliation:
Department of Mathematical Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
MR Author ID:
974881
Email:
xlu8@lakeheadu.ca
Chong Wang
Affiliation:
Department of Mathematics, Washington and Lee University, Chavis Hall, 204 W Washington Street, Lexington, VA 24450-1799
Email:
cwang@wlu.edu
Received by editor(s):
March 5, 2023
Received by editor(s) in revised form:
May 28, 2023
Published electronically:
July 3, 2023
Additional Notes:
The first, second, and third authors were supported by the Natural Science and Engineering Research Council (Canada) through the Discovery Grants program.
Dedicated:
This paper is a heartfelt tribute to Bob Pego, acknowledging his profound and enduring contributions to the field of PDEs and applied mathematics.
Article copyright:
© Copyright 2023
Brown University