Linear stability of elastic $2$-line solitons for the KP-II equation
Author:
Tetsu Mizumachi
Journal:
Quart. Appl. Math. 82 (2024), 115-226
MSC (2020):
Primary 35B35, 37K40; Secondary 35Q35
DOI:
https://doi.org/10.1090/qam/1676
Published electronically:
July 20, 2023
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The KP-II equation was derived by Kadomtsev and Petviashvili to explain stability of line solitary waves of shallow water. Using the Darboux transformations, we study linear stability of $2$-line solitons whose line solitons interact elastically each other. Time evolution of resonant continuous eigenfunctions is described by a damped wave equation in the transverse variable which is supposed to be a linear approximation of the local phase shifts of modulating line solitons.
References
- Mark J. Ablowitz and Christopher W. Curtis, Conservation laws and non-decaying solutions for the Benney-Luke equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2152, 20120690, 16. MR 3023494, DOI 10.1098/rspa.2012.0690
- Miguel A. Alejo and Claudio Muñoz, Nonlinear stability of MKdV breathers, Comm. Math. Phys. 324 (2013), no. 1, 233–262. MR 3116324, DOI 10.1007/s00220-013-1792-0
- Miguel A. Alejo and Claudio Muñoz, Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE 8 (2015), no. 3, 629–674. MR 3353827, DOI 10.2140/apde.2015.8.629
- J. C. Alexander, R. L. Pego, and R. L. Sachs, On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A 226 (1997), no. 3-4, 187–192. MR 1435907, DOI 10.1016/S0375-9601(96)00921-8
- M. Boiti, F. Pempinelli, and A. K. Pogrebkov, Extended resolvent of the heat operator with a multisolution potential, Theoret. and Math. Phys. 172 (2012), no. 2, 1037–1051. Russian version appears in Teoret. Mat. Fiz. 172 (2012), no. 2, 181–197. MR 3170079, DOI 10.1007/s11232-012-0094-6
- M. Boiti, F. Pempinelli, and A. K. Pogrebkov, IST of KPII equation for perturbed multisoliton solutions, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 234, Amer. Math. Soc., Providence, RI, 2014, pp. 49–73. MR 3307143, DOI 10.1090/trans2/234/04
- J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal. 3 (1993), no. 4, 315–341. MR 1223434, DOI 10.1007/BF01896259
- T. J. Bridges, Transverse instability of solitary-wave states of the water-wave problem, J. Fluid Mech. 439 (2001), 255–278. MR 1849635, DOI 10.1017/S0022112001004530
- S. P. Burtsev, Damping of soliton oscillations in media with a negative dispersion law, Zh. Èksper. Teoret. Fiz. 88 (1985), no. 2, 461–469 (Russian); English transl., Soviet Phys. JETP 61 (1985), no. 2, 270–274. MR 807330
- S. Chakravarty and Y. Kodama, Soliton solutions of the KP equation and application to shallow water waves, Stud. Appl. Math. 123 (2009), no. 1, 83–151. MR 2538287, DOI 10.1111/j.1467-9590.2009.00448.x
- Hsing Hen Chen, A Bäcklund transformation in two dimensions, J. Mathematical Phys. 16 (1975), no. 12, 2382–2384. MR 387784, DOI 10.1063/1.522503
- Andres Contreras and Dmitry Pelinovsky, Stability of multi-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ. 11 (2014), no. 2, 329–353. MR 3214610, DOI 10.1142/S0219891614500106
- Anne de Bouard and Yvan Martel, Non existence of $L^2$-compact solutions of the Kadomtsev-Petviashvili II equation, Math. Ann. 328 (2004), no. 3, 525–544. MR 2036335, DOI 10.1007/s00208-003-0498-6
- L. A. Dickey, Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1964513, DOI 10.1142/5108
- N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique, Proc. Roy. Soc. London Ser. A 389 (1983), no. 1797, 319–329. MR 726202, DOI 10.1098/rspa.1983.0112
- Larry Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978), 385–394. MR 461206, DOI 10.1090/S0002-9947-1978-0461206-1
- Martin Hadac, Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6555–6572. MR 2434299, DOI 10.1090/S0002-9947-08-04515-7
- Martin Hadac, Sebastian Herr, and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 3, 917–941. MR 2526409, DOI 10.1016/j.anihpc.2008.04.002
- Mariana Haragus, Jin Li, and Dmitry E. Pelinovsky, Counting unstable eigenvalues in Hamiltonian spectral problems via commuting operators, Comm. Math. Phys. 354 (2017), no. 1, 247–268. MR 3656518, DOI 10.1007/s00220-017-2898-6
- Ryogo Hirota, The direct method in soliton theory, Cambridge Tracts in Mathematics, vol. 155, Cambridge University Press, Cambridge, 2004. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson; With a foreword by Jarmo Hietarinta and Nimmo. MR 2085332, DOI 10.1017/CBO9780511543043
- Pedro Isaza and Jorge Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), no. 5-6, 1027–1054. MR 1843294, DOI 10.1081/PDE-100002387
- B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–541.
- Yuji Kodama, Solitons in two-dimensional shallow water, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 92, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018. MR 3908679, DOI 10.1137/1.9781611975529.ch1
- H. Koch and D. Tataru, Multisolitons for the cubic NLS in 1-d and their stability, Preprint, arXiv:2008.13352.
- V. D. Lipovskiĭ, The Hamiltonian structure of the Kadomtsev-Petviashvili-$\textrm {II}$ equation in a class of decreasing Cauchy data, Funktsional. Anal. i Prilozhen. 20 (1986), no. 4, 35–45, 96 (Russian). MR 878043
- F. Merle and L. Vega, $L^2$ stability of solitons for KdV equation, Int. Math. Res. Not. 13 (2003), 735–753. MR 1949297, DOI 10.1155/S1073792803208060
- Tetsu Mizumachi, Stability of line solitons for the KP-II equation in $\Bbb R^2$, Mem. Amer. Math. Soc. 238 (2015), no. 1125, vii+95. MR 3400767, DOI 10.1090/memo/1125
- Tetsu Mizumachi, Stability of line solitons for the KP-II equation in $\Bbb R^2$. II, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 1, 149–198. MR 3749340, DOI 10.1017/S0308210517000166
- Tetsu Mizumachi, The phase shift of line solitons for the KP-II equation, Nonlinear dispersive partial differential equations and inverse scattering, Fields Inst. Commun., vol. 83, Springer, New York, [2019] ©2019, pp. 433–495. MR 3931842
- Tetsu Mizumachi and Robert L. Pego, Asymptotic stability of Toda lattice solitons, Nonlinearity 21 (2008), no. 9, 2099–2111. MR 2430663, DOI 10.1088/0951-7715/21/9/011
- Tetsu Mizumachi and Dmitry Pelinovsky, Bäcklund transformation and $L^2$-stability of NLS solitons, Int. Math. Res. Not. IMRN 9 (2012), 2034–2067. MR 2920823
- Tetsu Mizumachi and Nikolay Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann. 352 (2012), no. 3, 659–690. MR 2885592, DOI 10.1007/s00208-011-0654-3
- Tetsu Mizumachi and Yusuke Shimabukuro, Asymptotic linear stability of Benney-Luke line solitary waves in 2D, Nonlinearity 30 (2017), no. 9, 3419–3465. MR 3694262, DOI 10.1088/1361-6544/aa7cc7
- Tetsu Mizumachi and Yusuke Shimabukuro, Stability of Benney-Luke line solitary waves in 2 dimensions, SIAM J. Math. Anal. 52 (2020), no. 5, 4238–4283. MR 4150270, DOI 10.1137/19M1253848
- Luc Molinet, Jean-Claude Saut, and Nikolay Tzvetkov, Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 5, 653–676. MR 2838395, DOI 10.1016/j.anihpc.2011.04.004
- Claudio Muñoz and José M. Palacios, Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 4, 977–1034. MR 3955109, DOI 10.1016/j.anihpc.2018.10.005
- Robert L. Pego and Michael I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), no. 2, 305–349. MR 1289328, DOI 10.1007/BF02101705
- Jan Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 847–857. MR 743749, DOI 10.1090/S0002-9947-1984-0743749-9
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 493421
- Frederic Rousset and Nikolay Tzvetkov, Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s, J. Math. Pures Appl. (9) 90 (2008), no. 6, 550–590 (English, with English and French summaries). MR 2472893, DOI 10.1016/j.matpur.2008.07.004
- F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 2, 477–496 (English, with English and French summaries). MR 2504040, DOI 10.1016/j.anihpc.2007.09.006
- Robert L. Sachs, Completeness of derivatives of squared Schrödinger eigenfunctions and explicit solutions of the linearized KdV equation, SIAM J. Math. Anal. 14 (1983), no. 4, 674–683. MR 704483, DOI 10.1137/0514051
- Hideo Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), no. 2, 483–499. MR 1739371, DOI 10.3934/dcds.2000.6.483
- H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices 2 (2001), 77–114. MR 1810481, DOI 10.1155/S1073792801000058
- N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Differential Integral Equations 13 (2000), no. 10-12, 1289–1320. MR 1787069, DOI 10.57262/die/1356061127
- Seiji Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 193–209. MR 1014996
- Javier Villarroel and Mark J. Ablowitz, On the initial value problem for the KPII equation with data that do not decay along a line, Nonlinearity 17 (2004), no. 5, 1843–1866. MR 2086153, DOI 10.1088/0951-7715/17/5/015
- Derchyi Wu, The direct scattering problem for perturbed Kadomtsev-Petviashvili multi line solitons, J. Math. Phys. 62 (2021), no. 9, Paper No. 091513, 19. MR 4316548, DOI 10.1063/5.0053911
- Derchyi Wu, The direct scattering problem for the perturbed $\textrm {Gr}(1, 2)_{\geqslant 0}$ Kadomtsev-Petviashvili II solitons, Nonlinearity 33 (2020), no. 12, 6729–6759. MR 4164690, DOI 10.1088/1361-6544/aba88b
- D. Wu, The inverse scattering problem for perturbed Kadomtsev-Petviashvili multi-line solitons I: solvability of the Cauchy integral equation, Preprint, arXiv:2205.07432.
- Yong Liu and Juncheng Wei, Nondegeneracy, Morse index and orbital stability of the KP-I lump solution, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389. MR 4011698, DOI 10.1007/s00205-019-01413-5
- V. Zakharov, Instability and nonlinear oscillations of solitons, JEPT Lett. 22 (1975), 172–173.
References
- Mark J. Ablowitz and Christopher W. Curtis, Conservation laws and non-decaying solutions for the Benney-Luke equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2152, 20120690, 16. MR 3023494, DOI 10.1098/rspa.2012.0690
- Miguel A. Alejo and Claudio Muñoz, Nonlinear stability of MKdV breathers, Comm. Math. Phys. 324 (2013), no. 1, 233–262. MR 3116324, DOI 10.1007/s00220-013-1792-0
- Miguel A. Alejo and Claudio Muñoz, Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE 8 (2015), no. 3, 629–674. MR 3353827, DOI 10.2140/apde.2015.8.629
- J. C. Alexander, R. L. Pego, and R. L. Sachs, On the transverse instability of solitary waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A 226 (1997), no. 3-4, 187–192. MR 1435907, DOI 10.1016/S0375-9601(96)00921-8
- M. Boiti, F. Pempinelli, and A. K. Pogrebkov, Extended resolvent of the heat operator with a multisolution potential, Theoret. and Math. Phys. 172 (2012), no. 2, 1037–1051. Russian version appears in Teoret. Mat. Fiz. 172 (2012), no. 2, 181–197. MR 3170079, DOI 10.1007/s11232-012-0094-6
- M. Boiti, F. Pempinelli, and A. K. Pogrebkov, IST of KPII equation for perturbed multisoliton solutions, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 234, Amer. Math. Soc., Providence, RI, 2014, pp. 49–73. MR 3307143, DOI 10.1090/trans2/234/04
- J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal. 3 (1993), no. 4, 315–341. MR 1223434, DOI 10.1007/BF01896259
- T. J. Bridges, Transverse instability of solitary-wave states of the water-wave problem, J. Fluid Mech. 439 (2001), 255–278. MR 1849635, DOI 10.1017/S0022112001004530
- S. P. Burtsev, Damping of soliton oscillations in media with a negative dispersion law, Zh. Èksper. Teoret. Fiz. 88 (1985), no. 2, 461–469 (Russian); English transl., Soviet Phys. JETP 61 (1985), no. 2, 270–274. MR 807330
- S. Chakravarty and Y. Kodama, Soliton solutions of the KP equation and application to shallow water waves, Stud. Appl. Math. 123 (2009), no. 1, 83–151. MR 2538287, DOI 10.1111/j.1467-9590.2009.00448.x
- Hsing Hen Chen, A Bäcklund transformation in two dimensions, J. Mathematical Phys. 16 (1975), no. 12, 2382–2384. MR 387784, DOI 10.1063/1.522503
- Andres Contreras and Dmitry Pelinovsky, Stability of multi-solitons in the cubic NLS equation, J. Hyperbolic Differ. Equ. 11 (2014), no. 2, 329–353. MR 3214610, DOI 10.1142/S0219891614500106
- Anne de Bouard and Yvan Martel, Non existence of $L^2$-compact solutions of the Kadomtsev-Petviashvili II equation, Math. Ann. 328 (2004), no. 3, 525–544. MR 2036335, DOI 10.1007/s00208-003-0498-6
- L. A. Dickey, Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, vol. 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. MR 1964513, DOI 10.1142/5108
- N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique, Proc. Roy. Soc. London Ser. A 389 (1983), no. 1797, 319–329. MR 726202
- Larry Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978), 385–394. MR 461206, DOI 10.2307/1997792
- Martin Hadac, Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6555–6572. MR 2434299, DOI 10.1090/S0002-9947-08-04515-7
- Martin Hadac, Sebastian Herr, and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 3, 917–941. MR 2526409, DOI 10.1016/j.anihpc.2008.04.002
- Mariana Haragus, Jin Li, and Dmitry E. Pelinovsky, Counting unstable eigenvalues in Hamiltonian spectral problems via commuting operators, Comm. Math. Phys. 354 (2017), no. 1, 247–268. MR 3656518, DOI 10.1007/s00220-017-2898-6
- Ryogo Hirota, The direct method in soliton theory, Cambridge Tracts in Mathematics, vol. 155, Cambridge University Press, Cambridge, 2004. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson; With a foreword by Jarmo Hietarinta and Nimmo. MR 2085332, DOI 10.1017/CBO9780511543043
- Pedro Isaza and Jorge Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), no. 5-6, 1027–1054. MR 1843294, DOI 10.1081/PDE-100002387
- B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–541.
- Yuji Kodama, Solitons in two-dimensional shallow water, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 92, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018. MR 3908679, DOI 10.1137/1.9781611975529.ch1
- H. Koch and D. Tataru, Multisolitons for the cubic NLS in 1-d and their stability, Preprint, arXiv:2008.13352.
- V. D. Lipovskiĭ, The Hamiltonian structure of the Kadomtsev-Petviashvili-$\mathrm {II}$ equation in a class of decreasing Cauchy data, Funktsional. Anal. i Prilozhen. 20 (1986), no. 4, 35–45, 96 (Russian). MR 878043
- F. Merle and L. Vega, $L^2$ stability of solitons for KdV equation, Int. Math. Res. Not. 13 (2003), 735–753. MR 1949297, DOI 10.1155/S1073792803208060
- Tetsu Mizumachi, Stability of line solitons for the KP-II equation in $\mathbb {R}^2$, Mem. Amer. Math. Soc. 238 (2015), no. 1125, vii+95. MR 3400767, DOI 10.1090/memo/1125
- Tetsu Mizumachi, Stability of line solitons for the KP-II equation in $\mathbb {R}^2$. II, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 1, 149–198. MR 3749340, DOI 10.1017/S0308210517000166
- Tetsu Mizumachi, The phase shift of line solitons for the KP-II equation, Nonlinear dispersive partial differential equations and inverse scattering, Fields Inst. Commun., vol. 83, Springer, New York, [2019] ©2019, pp. 433–495. MR 3931842
- Tetsu Mizumachi and Robert L. Pego, Asymptotic stability of Toda lattice solitons, Nonlinearity 21 (2008), no. 9, 2099–2111. MR 2430663, DOI 10.1088/0951-7715/21/9/011
- Tetsu Mizumachi and Dmitry Pelinovsky, Bäcklund transformation and $L^2$-stability of NLS solitons, Int. Math. Res. Not. IMRN 9 (2012), 2034–2067. MR 2920823
- Tetsu Mizumachi and Nikolay Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann. 352 (2012), no. 3, 659–690. MR 2885592, DOI 10.1007/s00208-011-0654-3
- Tetsu Mizumachi and Yusuke Shimabukuro, Asymptotic linear stability of Benney-Luke line solitary waves in 2D, Nonlinearity 30 (2017), no. 9, 3419–3465. MR 3694262, DOI 10.1088/1361-6544/aa7cc7
- Tetsu Mizumachi and Yusuke Shimabukuro, Stability of Benney-Luke line solitary waves in 2 dimensions, SIAM J. Math. Anal. 52 (2020), no. 5, 4238–4283. MR 4150270, DOI 10.1137/19M1253848
- Luc Molinet, Jean-Claude Saut, and Nikolay Tzvetkov, Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 5, 653–676. MR 2838395, DOI 10.1016/j.anihpc.2011.04.004
- Claudio Muñoz and José M. Palacios, Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 4, 977–1034. MR 3955109, DOI 10.1016/j.anihpc.2018.10.005
- Robert L. Pego and Michael I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), no. 2, 305–349. MR 1289328
- Jan Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 847–857. MR 743749, DOI 10.2307/1999112
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
- Frederic Rousset and Nikolay Tzvetkov, Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s, J. Math. Pures Appl. (9) 90 (2008), no. 6, 550–590 (English, with English and French summaries). MR 2472893, DOI 10.1016/j.matpur.2008.07.004
- F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 2, 477–496 (English, with English and French summaries). MR 2504040, DOI 10.1016/j.anihpc.2007.09.006
- Robert L. Sachs, Completeness of derivatives of squared Schrödinger eigenfunctions and explicit solutions of the linearized KdV equation, SIAM J. Math. Anal. 14 (1983), no. 4, 674–683. MR 704483, DOI 10.1137/0514051
- Hideo Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), no. 2, 483–499. MR 1739371, DOI 10.3934/dcds.2000.6.483
- H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices 2 (2001), 77–114. MR 1810481, DOI 10.1155/S1073792801000058
- N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Differential Integral Equations 13 (2000), no. 10-12, 1289–1320. MR 1787069
- Seiji Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 193–209. MR 1014996
- Javier Villarroel and Mark J. Ablowitz, On the initial value problem for the KPII equation with data that do not decay along a line, Nonlinearity 17 (2004), no. 5, 1843–1866. MR 2086153, DOI 10.1088/0951-7715/17/5/015
- Derchyi Wu, The direct scattering problem for perturbed Kadomtsev-Petviashvili multi line solitons, J. Math. Phys. 62 (2021), no. 9, Paper No. 091513, 19. MR 4316548, DOI 10.1063/5.0053911
- Derchyi Wu, The direct scattering problem for the perturbed $\mathrm {Gr}(1, 2)_{\geqslant 0}$ Kadomtsev-Petviashvili II solitons, Nonlinearity 33 (2020), no. 12, 6729–6759. MR 4164690, DOI 10.1088/1361-6544/aba88b
- D. Wu, The inverse scattering problem for perturbed Kadomtsev-Petviashvili multi-line solitons I: solvability of the Cauchy integral equation, Preprint, arXiv:2205.07432.
- Yong Liu and Juncheng Wei, Nondegeneracy, Morse index and orbital stability of the KP-I lump solution, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389. MR 4011698, DOI 10.1007/s00205-019-01413-5
- V. Zakharov, Instability and nonlinear oscillations of solitons, JEPT Lett. 22 (1975), 172–173.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35B35,
37K40,
35Q35
Retrieve articles in all journals
with MSC (2020):
35B35,
37K40,
35Q35
Additional Information
Tetsu Mizumachi
Affiliation:
Division of Mathematical and Information Sciences, Hiroshima University, Kagamiyama 1-7-1, 739 - 8521, Japan
MR Author ID:
617945
ORCID:
0000-0001-5041-7291
Email:
tetsum@hiroshima-u.ac.jp
Received by editor(s):
June 21, 2023
Published electronically:
July 20, 2023
Additional Notes:
This work was supported by JSPS KAKENHI Grant Number JP21K03328. A part of this research was done in the Institute of Mathematics, Academia Sinica in Taiwan.
Dedicated:
Dedicated to Professor Robert L. Pego’s 65th birthday
Article copyright:
© Copyright 2023
Brown University