HV geometry for signal comparison
Authors:
Ruiyu Han, Dejan Slepčev and Yunan Yang
Journal:
Quart. Appl. Math. 82 (2024), 391-430
MSC (2020):
Primary 49J45, 58E10, 58E30, 65D18; Secondary 49K40, 58E50
DOI:
https://doi.org/10.1090/qam/1672
Published electronically:
June 16, 2023
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In order to compare and interpolate signals, we investigate a Riemannian geometry on the space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals, which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We characterize the metric properties of the space of signals and establish the regularity and stability of geodesics. Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several experiments which highlight the nature of the metric.
References
- Luigi Ambrosio and Gianluca Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1191–1244. MR 3283066, DOI 10.1017/S0308210513000085
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600
- Martin Bauer, Martins Bruveris, Philipp Harms, and Peter W. Michor, Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics, Comm. Math. Phys. 389 (2022), no. 2, 899–931. MR 4369721, DOI 10.1007/s00220-021-04264-y
- Martin Bauer, Philipp Harms, and Peter W. Michor, Fractional Sobolev metrics on spaces of immersions, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 62, 27. MR 4073208, DOI 10.1007/s00526-020-1719-5
- A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, Ark. Mat. 59 (2021), no. 2, 275–306. MR 4339668, DOI 10.4310/arkiv.2021.v59.n2.a2
- B. Berkels, A. Effland, and M. Rumpf, Time discrete geodesic paths in the space of images, SIAM J. Imaging Sci. 8 (2015), no. 3, 1457–1488. MR 3371350, DOI 10.1137/140970719
- Paul T. Boggs and Jon W. Tolle, Sequential quadratic programming, Acta numerica, 1995, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 1–51. MR 1352470, DOI 10.1017/s0962492900002518
- Martins Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom. Mech. 7 (2015), no. 2, 125–150. MR 3356589, DOI 10.3934/jgm.2015.7.125
- Martins Bruveris, Peter W. Michor, and David Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves, Forum Math. Sigma 2 (2014), Paper No. e19, 38. MR 3264258, DOI 10.1017/fms.2014.19
- B. Charlier, N. Charon, and A. Trouvé, The Fshape framework for the variability analysis of functional shapes, Found. Comput. Math. 17 (2017), no. 2, 287–357. MR 3627451, DOI 10.1007/s10208-015-9288-2
- N. Charon, B. Charlier, and A. Trouvé, Metamorphoses of functional shapes in Sobolev spaces, Found. Comput. Math. 18 (2018), no. 6, 1535–1596. MR 3875846, DOI 10.1007/s10208-018-9374-3
- Xiuqing Chen, Ansgar Jüngel, and Jian-Guo Liu, A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math. 133 (2014), 33–43. MR 3255076, DOI 10.1007/s10440-013-9858-8
- L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulation, 2015.
- G. D. Clifford, C. Liu, B. Moody, L.-W. H. Lehman, I. Silva, Q. Li, A. E. Johnson, and R. G. Mark, AF classification from a short single lead ECG recording: the physionet/computing in cardiology challenge 2017, 2017 Computing in Cardiology (CinC), 2017, pp. 1–4.
- Björn Engquist, Brittany D. Froese, and Yunan Yang, Optimal transport for seismic full waveform inversion, Commun. Math. Sci. 14 (2016), no. 8, 2309–2330. MR 3576276, DOI 10.4310/CMS.2016.v14.n8.a9
- Björn Engquist and Yunan Yang, Seismic inversion and the data normalization for optimal transport, Methods Appl. Anal. 26 (2019), no. 2, 133–147. MR 4088770, DOI 10.4310/MAA.2019.v26.n2.a3
- Björn Engquist and Yunan Yang, Optimal transport based seismic inversion: beyond cycle skipping, Comm. Pure Appl. Math. 75 (2022), no. 10, 2201–2244. MR 4491871, DOI 10.1002/cpa.21990
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Irene Fonseca and Giovanni Leoni, Modern methods in the calculus of variations: $L^p$ spaces, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2341508
- Anton François, Pietro Gori, and Joan Glaunès, Metamorphic image registration using a semi-Lagrangian scheme, Geometric science of information, Lecture Notes in Comput. Sci., vol. 12829, Springer, Cham, [2021] ©2021, pp. 781–788. MR 4424386, DOI 10.1007/978-3-030-80209-7_{8}4
- A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Physiobank, physiotoolkit, and physionet, Circulation 101 (2000), e215–e220.
- Darryl D. Holm, Alain Trouvé, and Laurent Younes, The Euler-Poincaré theory of metamorphosis, Quart. Appl. Math. 67 (2009), no. 4, 661–685. MR 2588229, DOI 10.1090/S0033-569X-09-01134-2
- Peter D. Lax, Gibbs phenomena, J. Sci. Comput. 28 (2006), no. 2-3, 445–449. MR 2272639, DOI 10.1007/s10915-006-9075-y
- Matthias Liero, Alexander Mielke, and Giuseppe Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math. 211 (2018), no. 3, 969–1117. MR 3763404, DOI 10.1007/s00222-017-0759-8
- Jian-Guo Liu, Robert L. Pego, and Dejan Slepčev, Least action principles for incompressible flows and geodesics between shapes, Calc. Var. Partial Differential Equations 58 (2019), no. 5, Paper No. 179, 43. MR 4018311, DOI 10.1007/s00526-019-1636-7
- David G. Luenberger and Yinyu Ye, Linear and nonlinear programming, 4th ed., International Series in Operations Research & Management Science, vol. 228, Springer, Cham, 2016. MR 3363684, DOI 10.1007/978-3-319-18842-3
- L. Métivier, R. Brossier, Q. Mérigot, and E. Oudet, A graph space optimal transport distance as a generalization of $L^p$ distances: application to a seismic imaging inverse problem, Inverse Problems 35 (2019), no. 8, 085001, 49. MR 3987717, DOI 10.1088/1361-6420/ab206f
- Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 1–48. MR 2201275, DOI 10.4171/JEMS/37
- Michael I. Miller, Alain Trouvé, and Laurent Younes, Geodesic shooting for computational anatomy, J. Math. Imaging Vision 24 (2006), no. 2, 209–228. MR 2227097, DOI 10.1007/s10851-005-3624-0
- M. I. Miller and L. Younes, Group actions, homeomorphisms, and matching: a general framework, International Journal of Computer Vision 41 (2001), 61–84.
- Giacomo Nardi, Gabriel Peyré, and François-Xavier Vialard, Geodesics on shape spaces with bounded variation and Sobolev metrics, SIAM J. Imaging Sci. 9 (2016), no. 1, 238–274. MR 3463696, DOI 10.1137/15100518X
- Martin Rumpf and Benedikt Wirth, Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects, SIAM J. Imaging Sci. 6 (2013), no. 4, 2581–2602. MR 3139609, DOI 10.1137/120870864
- Martin Rumpf and Benedikt Wirth, Variational time discretization of geodesic calculus, IMA J. Numer. Anal. 35 (2015), no. 3, 1011–1046. MR 3407252, DOI 10.1093/imanum/dru027
- Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K. Rohde, and Dejan Slepčev, A transportation $L^p$ distance for signal analysis, J. Math. Imaging Vision 59 (2017), no. 2, 187–210. MR 3694804, DOI 10.1007/s10851-017-0726-4
- Alain Trouvé, Action de groupe de dimension infinie et reconnaissance de formes, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1031–1034 (French, with English and French summaries). MR 1360567
- Alain Trouvé and Laurent Younes, Local geometry of deformable templates, SIAM J. Math. Anal. 37 (2005), no. 1, 17–59. MR 2176922, DOI 10.1137/S0036141002404838
- Alain Trouvé and Laurent Younes, Metamorphoses through Lie group action, Found. Comput. Math. 5 (2005), no. 2, 173–198. MR 2149415, DOI 10.1007/s10208-004-0128-z
- P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl. 109 (2001), no. 3, 475–494. MR 1835069, DOI 10.1023/A:1017501703105
- Yu Wang, Wotao Yin, and Jinshan Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput. 78 (2019), no. 1, 29–63. MR 3902876, DOI 10.1007/s10915-018-0757-z
- Benedikt Wirth, Leah Bar, Martin Rumpf, and Guillermo Sapiro, A continuum mechanical approach to geodesics in shape space, Int. J. Comput. Vis. 93 (2011), no. 3, 293–318. MR 2787012, DOI 10.1007/s11263-010-0416-9
- Laurent Younes, Shapes and diffeomorphisms, Applied Mathematical Sciences, vol. 171, Springer-Verlag, Berlin, 2010. MR 2656312, DOI 10.1007/978-3-642-12055-8
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
References
- Luigi Ambrosio and Gianluca Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1191–1244. MR 3283066, DOI 10.1017/S0308210513000085
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600
- Martin Bauer, Martins Bruveris, Philipp Harms, and Peter W. Michor, Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics, Comm. Math. Phys. 389 (2022), no. 2, 899–931. MR 4369721, DOI 10.1007/s00220-021-04264-y
- Martin Bauer, Philipp Harms, and Peter W. Michor, Fractional Sobolev metrics on spaces of immersions, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 62, 27. MR 4073208, DOI 10.1007/s00526-020-1719-5
- A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, Ark. Mat. 59 (2021), no. 2, 275–306. MR 4339668, DOI 10.4310/arkiv.2021.v59.n2.a2
- B. Berkels, A. Effland, and M. Rumpf, Time discrete geodesic paths in the space of images, SIAM J. Imaging Sci. 8 (2015), no. 3, 1457–1488. MR 3371350, DOI 10.1137/140970719
- Paul T. Boggs and Jon W. Tolle, Sequential quadratic programming, Acta numerica, 1995, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 1–51. MR 1352470, DOI 10.1017/s0962492900002518
- Martins Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom. Mech. 7 (2015), no. 2, 125–150. MR 3356589, DOI 10.3934/jgm.2015.7.125
- Martins Bruveris, Peter W. Michor, and David Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves, Forum Math. Sigma 2 (2014), Paper No. e19, 38. MR 3264258, DOI 10.1017/fms.2014.19
- B. Charlier, N. Charon, and A. Trouvé, The Fshape framework for the variability analysis of functional shapes, Found. Comput. Math. 17 (2017), no. 2, 287–357. MR 3627451, DOI 10.1007/s10208-015-9288-2
- N. Charon, B. Charlier, and A. Trouvé, Metamorphoses of functional shapes in Sobolev spaces, Found. Comput. Math. 18 (2018), no. 6, 1535–1596. MR 3875846, DOI 10.1007/s10208-018-9374-3
- Xiuqing Chen, Ansgar Jüngel, and Jian-Guo Liu, A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math. 133 (2014), 33–43. MR 3255076, DOI 10.1007/s10440-013-9858-8
- L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulation, 2015.
- G. D. Clifford, C. Liu, B. Moody, L.-W. H. Lehman, I. Silva, Q. Li, A. E. Johnson, and R. G. Mark, AF classification from a short single lead ECG recording: the physionet/computing in cardiology challenge 2017, 2017 Computing in Cardiology (CinC), 2017, pp. 1–4.
- Björn Engquist, Brittany D. Froese, and Yunan Yang, Optimal transport for seismic full waveform inversion, Commun. Math. Sci. 14 (2016), no. 8, 2309–2330. MR 3576276, DOI 10.4310/CMS.2016.v14.n8.a9
- Björn Engquist and Yunan Yang, Seismic inversion and the data normalization for optimal transport, Methods Appl. Anal. 26 (2019), no. 2, 133–147. MR 4088770, DOI 10.4310/MAA.2019.v26.n2.a3
- Björn Engquist and Yunan Yang, Optimal transport based seismic inversion: beyond cycle skipping, Comm. Pure Appl. Math. 75 (2022), no. 10, 2201–2244. MR 4491871
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Irene Fonseca and Giovanni Leoni, Modern methods in the calculus of variations: $L^p$ spaces, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2341508
- Anton François, Pietro Gori, and Joan Glaunès, Metamorphic image registration using a semi-Lagrangian scheme, Geometric science of information, Lecture Notes in Comput. Sci., vol. 12829, Springer, Cham, [2021] ©2021, pp. 781–788. MR 4424386, DOI 10.1007/978-3-030-80209-7_84
- A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Physiobank, physiotoolkit, and physionet, Circulation 101 (2000), e215–e220.
- Darryl D. Holm, Alain Trouvé, and Laurent Younes, The Euler-Poincaré theory of metamorphosis, Quart. Appl. Math. 67 (2009), no. 4, 661–685. MR 2588229, DOI 10.1090/S0033-569X-09-01134-2
- Peter D. Lax, Gibbs phenomena, J. Sci. Comput. 28 (2006), no. 2-3, 445–449. MR 2272639, DOI 10.1007/s10915-006-9075-y
- Matthias Liero, Alexander Mielke, and Giuseppe Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math. 211 (2018), no. 3, 969–1117. MR 3763404, DOI 10.1007/s00222-017-0759-8
- Jian-Guo Liu, Robert L. Pego, and Dejan Slepčev, Least action principles for incompressible flows and geodesics between shapes, Calc. Var. Partial Differential Equations 58 (2019), no. 5, Paper No. 179, 43. MR 4018311, DOI 10.1007/s00526-019-1636-7
- David G. Luenberger and Yinyu Ye, Linear and nonlinear programming, 4th ed., International Series in Operations Research & Management Science, vol. 228, Springer, Cham, 2016. MR 3363684, DOI 10.1007/978-3-319-18842-3
- L. Métivier, R. Brossier, Q. Mérigot, and E. Oudet, A graph space optimal transport distance as a generalization of $L^p$ distances: application to a seismic imaging inverse problem, Inverse Problems 35 (2019), no. 8, 085001, 49. MR 3987717, DOI 10.1088/1361-6420/ab206f
- Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 1–48. MR 2201275, DOI 10.4171/JEMS/37
- Michael I. Miller, Alain Trouvé, and Laurent Younes, Geodesic shooting for computational anatomy, J. Math. Imaging Vision 24 (2006), no. 2, 209–228. MR 2227097, DOI 10.1007/s10851-005-3624-0
- M. I. Miller and L. Younes, Group actions, homeomorphisms, and matching: a general framework, International Journal of Computer Vision 41 (2001), 61–84.
- Giacomo Nardi, Gabriel Peyré, and François-Xavier Vialard, Geodesics on shape spaces with bounded variation and Sobolev metrics, SIAM J. Imaging Sci. 9 (2016), no. 1, 238–274. MR 3463696, DOI 10.1137/15100518X
- Martin Rumpf and Benedikt Wirth, Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects, SIAM J. Imaging Sci. 6 (2013), no. 4, 2581–2602. MR 3139609, DOI 10.1137/120870864
- Martin Rumpf and Benedikt Wirth, Variational time discretization of geodesic calculus, IMA J. Numer. Anal. 35 (2015), no. 3, 1011–1046. MR 3407252, DOI 10.1093/imanum/dru027
- Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K. Rohde, and Dejan Slepčev, A transportation $L^p$ distance for signal analysis, J. Math. Imaging Vision 59 (2017), no. 2, 187–210. MR 3694804, DOI 10.1007/s10851-017-0726-4
- Alain Trouvé, Action de groupe de dimension infinie et reconnaissance de formes, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 8, 1031–1034 (French, with English and French summaries). MR 1360567
- Alain Trouvé and Laurent Younes, Local geometry of deformable templates, SIAM J. Math. Anal. 37 (2005), no. 1, 17–59. MR 2176922, DOI 10.1137/S0036141002404838
- Alain Trouvé and Laurent Younes, Metamorphoses through Lie group action, Found. Comput. Math. 5 (2005), no. 2, 173–198. MR 2149415, DOI 10.1007/s10208-004-0128-z
- P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl. 109 (2001), no. 3, 475–494. MR 1835069, DOI 10.1023/A:1017501703105
- Yu Wang, Wotao Yin, and Jinshan Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput. 78 (2019), no. 1, 29–63. MR 3902876, DOI 10.1007/s10915-018-0757-z
- Benedikt Wirth, Leah Bar, Martin Rumpf, and Guillermo Sapiro, A continuum mechanical approach to geodesics in shape space, Int. J. Comput. Vis. 93 (2011), no. 3, 293–318. MR 2787012, DOI 10.1007/s11263-010-0416-9
- Laurent Younes, Shapes and diffeomorphisms, Applied Mathematical Sciences, vol. 171, Springer-Verlag, Berlin, 2010. MR 2656312, DOI 10.1007/978-3-642-12055-8
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
49J45,
58E10,
58E30,
65D18,
49K40,
58E50
Retrieve articles in all journals
with MSC (2020):
49J45,
58E10,
58E30,
65D18,
49K40,
58E50
Additional Information
Ruiyu Han
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
Email:
ruiyuh@andrew.cmu.edu
Dejan Slepčev
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
MR Author ID:
704615
ORCID:
0000-0002-7600-1144
Email:
slepcev@math.cmu.edu
Yunan Yang
Affiliation:
Institute for Theoretical Studies, ETH Zürich, 8092 Zürich, Switzerland
MR Author ID:
1188047
ORCID:
0000-0001-7238-7978
Email:
yunan.yang@eth-its.ethz.ch
Received by editor(s):
April 12, 2023
Received by editor(s) in revised form:
April 22, 2023
Published electronically:
June 16, 2023
Additional Notes:
The first and second authors were syupported by NSF grant DMS 2206069. This work was done in part while the second and third authors were visiting the Simons Institute for the Theory of Computing in fall 2021. The third author was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.
Dedicated:
Dedicated to Bob Pego whose knowledge and love of mathematics greatly inspire us
Article copyright:
© Copyright 2023
Brown University