A Fourier-Legendre spectral method for approximating the minimizers of $\sigma _{2,p}$-energy
Authors:
M. Taghavi and M. S. Shahrokhi-Dehkordi
Journal:
Quart. Appl. Math. 82 (2024), 563-582
MSC (2020):
Primary 35J57, 35Q74, 70S20
DOI:
https://doi.org/10.1090/qam/1674
Published electronically:
June 22, 2023
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: This paper proposes a Fourier-Legendre spectral method to find the minimizers of a variational problem, called $\sigma _{2,p}$-energy, in polar coordinates. Let ${\mathbb {X}}\subset \mathbb {R}^n$ be a bounded Lipschitz domain and consider the energy functional $(1.1)$ whose integrand is defined by ${\mathbf {W}}(\nabla u(x))≔(\sigma _2(u))^{\frac {p}{2}}+\Phi (\det \nabla u)$ over an appropriate space of admissible maps, $\mathcal {A}_p({\mathbb {X}})$. Using Fourier and Legendre interpolation errors, we obtain an error estimate for the energy functional and prove a convergence theorem for the proposed method. Furthermore, we apply the gradient descent method to solve a nonlinear algebraic system which is obtained by discretizing the Euler-Lagrange equations. The numerical experiments are performed to demonstrate the accuracy and effectiveness of our method.
References
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976) Res. Notes in Math., No. 17, Pitman, London-San Francisco, Calif.-Melbourne, 1977, pp. 187–241. MR 478899
- J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982), no. 1496, 557–611. MR 703623, DOI 10.1098/rsta.1982.0095
- John M. Ball, Some open problems in elasticity, Geometry, mechanics, and dynamics, Springer, New York, 2002, pp. 3–59. MR 1919825, DOI 10.1007/0-387-21791-6_{1}
- Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR 917480, DOI 10.1007/978-3-642-84108-8
- A. N. Gent and P. B. Lindley, Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond., Ser. A 249 (1958), 195–205.
- Sigal Gottlieb, Jae-Hun Jung, and Saeja Kim, A review of David Gottlieb’s work on the resolution of the Gibbs phenomenon, Commun. Comput. Phys. 9 (2011), no. 3, 497–519. MR 2726815, DOI 10.4208/cicp.301109.170510s
- Weijie Huang and Zhiping Li, A mixed finite element method for multi-cavity computation in incompressible nonlinear elasticity, J. Comput. Math. 37 (2019), no. 5, 609–628. [Paging previously given as 611–630]. MR 3923240, DOI 10.4208/jcm.1807-m2018-0137
- David A. Kopriva, Implementing spectral methods for partial differential equations, Scientific Computation, Springer, Berlin, 2009. Algorithms for scientists and engineers. MR 2510411, DOI 10.1007/978-90-481-2261-5
- Yijiang Lian and Zhiping Li, A dual-parametric finite element method for cavitation in nonlinear elasticity, J. Comput. Appl. Math. 236 (2011), no. 5, 834–842. MR 2853508, DOI 10.1016/j.cam.2011.05.020
- Liang Wei and Zhiping Li, Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity, Front. Math. China 13 (2018), no. 1, 203–226. MR 3741662, DOI 10.1007/s11464-017-0664-x
- Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999. MR 1713114, DOI 10.1007/b98874
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- George M. Phillips, Interpolation and approximation by polynomials, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 14, Springer-Verlag, New York, 2003. MR 1975918, DOI 10.1007/b97417
- M. S. Shahrokhi-Dehkordi and J. Shaffaf, $\sigma _2$-energy as a polyconvex functional on a space of self-maps of annuli in the multi-dimensional calculus of variations, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 5, 23. MR 3459131, DOI 10.1007/s00030-016-0372-3
- Jeyabal Sivaloganathan and Scott J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material, J. Elasticity 67 (2002), no. 1, 25–49 (2003). MR 1966315, DOI 10.1023/A:1022594705279
- T. H. R. Skyrme, A non-linear field theory, Proc. Roy. Soc. London Ser. A 260 (1961), 127–138. MR 128862, DOI 10.1098/rspa.1961.0018
- Radu Slobodeanu, On the geometrized Skyrme and Faddeev models, J. Geom. Phys. 60 (2010), no. 4, 643–660. MR 2602378, DOI 10.1016/j.geomphys.2009.12.012
- Chunmei Su and Zhiping Li, Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity, SIAM J. Numer. Anal. 53 (2015), no. 3, 1629–1649. MR 3361440, DOI 10.1137/140971142
- Chunmei Su and Zhiping Li, A meshing strategy for a quadratic iso-parametric FEM in cavitation computation in nonlinear elasticity, J. Comput. Appl. Math. 330 (2018), 630–647. MR 3717617, DOI 10.1016/j.cam.2017.09.006
- Robert G. Voigt, David Gottlieb, and M. Yousuff Hussaini (eds.), Spectral methods for partial differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984. MR 758260
- Anders Vretblad, Fourier analysis and its applications, Graduate Texts in Mathematics, vol. 223, Springer-Verlag, New York, 2003. MR 1992764, DOI 10.1007/b97452
- Xianmin Xu and Duvan Henao, An efficient numerical method for cavitation in nonlinear elasticity, Math. Models Methods Appl. Sci. 21 (2011), no. 8, 1733–1760. MR 2826471, DOI 10.1142/S0218202511005556
References
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Res. Notes in Math., No. 17, Pitman, London, 1977, pp. 187–241. MR 0478899
- J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982), no. 1496, 557–611. MR 703623, DOI 10.1098/rsta.1982.0095
- John M. Ball, Some open problems in elasticity, Geometry, mechanics, and dynamics, Springer, New York, 2002, pp. 3–59. MR 1919825, DOI 10.1007/0-387-21791-6_1
- Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR 917480, DOI 10.1007/978-3-642-84108-8
- A. N. Gent and P. B. Lindley, Internal rupture of bonded rubber cylinders in tension, Proc. R. Soc. Lond., Ser. A 249 (1958), 195–205.
- Sigal Gottlieb, Jae-Hun Jung, and Saeja Kim, A review of David Gottlieb’s work on the resolution of the Gibbs phenomenon, Commun. Comput. Phys. 9 (2011), no. 3, 497–519. MR 2726815, DOI 10.4208/cicp.301109.170510s
- Weijie Huang and Zhiping Li, A mixed finite element method for multi-cavity computation in incompressible nonlinear elasticity, J. Comput. Math. 37 (2019), no. 5, 609–628. [Paging previously given as 611–630]. MR 3923240, DOI 10.4208/jcm.1807-m2018-0137
- David A. Kopriva, Implementing spectral methods for partial differential equations, Scientific Computation, Springer, Berlin, 2009. Algorithms for scientists and engineers. MR 2510411, DOI 10.1007/978-90-481-2261-5
- Yijiang Lian and Zhiping Li, A dual-parametric finite element method for cavitation in nonlinear elasticity, J. Comput. Appl. Math. 236 (2011), no. 5, 834–842. MR 2853508, DOI 10.1016/j.cam.2011.05.020
- Liang Wei and Zhiping Li, Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity, Front. Math. China 13 (2018), no. 1, 203–226. MR 3741662, DOI 10.1007/s11464-017-0664-x
- Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999. MR 1713114, DOI 10.1007/b98874
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- George M. Phillips, Interpolation and approximation by polynomials, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 14, Springer-Verlag, New York, 2003. MR 1975918, DOI 10.1007/b97417
- M. S. Shahrokhi-Dehkordi and J. Shaffaf, $\sigma _2$-energy as a polyconvex functional on a space of self-maps of annuli in the multi-dimensional calculus of variations, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 5, 23. MR 3459131, DOI 10.1007/s00030-016-0372-3
- Jeyabal Sivaloganathan and Scott J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material, J. Elasticity 67 (2002), no. 1, 25–49 (2003). MR 1966315, DOI 10.1023/A:1022594705279
- T. H. R. Skyrme, A non-linear field theory, Proc. Roy. Soc. London Ser. A 260 (1961), 127–138. MR 128862, DOI 10.1098/rspa.1961.0018
- Radu Slobodeanu, On the geometrized Skyrme and Faddeev models, J. Geom. Phys. 60 (2010), no. 4, 643–660. MR 2602378, DOI 10.1016/j.geomphys.2009.12.012
- Chunmei Su and Zhiping Li, Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity, SIAM J. Numer. Anal. 53 (2015), no. 3, 1629–1649. MR 3361440, DOI 10.1137/140971142
- Chunmei Su and Zhiping Li, A meshing strategy for a quadratic iso-parametric FEM in cavitation computation in nonlinear elasticity, J. Comput. Appl. Math. 330 (2018), 630–647. MR 3717617, DOI 10.1016/j.cam.2017.09.006
- Robert G. Voigt, David Gottlieb, and M. Yousuff Hussaini (eds.), Spectral methods for partial differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984. MR 758260
- Anders Vretblad, Fourier analysis and its applications, Graduate Texts in Mathematics, vol. 223, Springer-Verlag, New York, 2003. MR 1992764, DOI 10.1007/b97452
- Xianmin Xu and Duvan Henao, An efficient numerical method for cavitation in nonlinear elasticity, Math. Models Methods Appl. Sci. 21 (2011), no. 8, 1733–1760. MR 2826471, DOI 10.1142/S0218202511005556
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
35J57,
35Q74,
70S20
Retrieve articles in all journals
with MSC (2020):
35J57,
35Q74,
70S20
Additional Information
M. Taghavi
Affiliation:
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
Email:
m.taqavi67@gmail.com
M. S. Shahrokhi-Dehkordi
Affiliation:
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
MR Author ID:
864025
ORCID:
0000-0002-2676-0425
Email:
m_shahrokhi@sbu.ac.ir
Keywords:
Fourier-Legendre spectral method,
gradient descent method,
$\sigma _{2,p}$-energy,
polyconvexity,
interpolation error
Received by editor(s):
July 24, 2022
Received by editor(s) in revised form:
May 13, 2023
Published electronically:
June 22, 2023
Additional Notes:
The authors’ research was partially supported by the Iran National Science Foundation (No.$~99024355$).
The second author is the corresponding author.
Article copyright:
© Copyright 2023
Brown University