Energetic variational approaches for inviscid multiphase flow systems with surface flow and tension
Author:
Hajime Koba
Journal:
Quart. Appl. Math. 83 (2025), 159-188
MSC (2020):
Primary 49Q20, 76-10, 35A15, 49S05
DOI:
https://doi.org/10.1090/qam/1694
Published electronically:
May 6, 2024
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider the governing equations for the motion of the inviscid fluids in two moving domains and an evolving surface from an energetic point of view. We employ our energetic variational approaches to derive inviscid multiphase flow systems with surface flow and tension. More precisely, we calculate the variation of the flow maps to the action integral for our model to derive both surface flow and tension. We also study the conservation and energy laws of our multiphase flow systems. The key idea of deriving the pressure of the compressible fluid on the surface is to make use of the feature of the barotropic fluid, and the key idea of deriving the pressure of the incompressible fluid on the surface is to apply a generalized Helmholtz-Weyl decomposition on a closed surface. In Appendix, we introduce one of the candidates for the viscous terms of viscous multiphase flow with a tangential compressible surface flow.
References
- V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361 (French). MR 202082, DOI 10.5802/aif.233
- V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, [1989?]. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein; Corrected reprint of the second (1989) edition. MR 1345386, DOI 10.1007/978-1-4757-2063-1
- David E. Betounes, Kinematics of submanifolds and the mean curvature normal, Arch. Rational Mech. Anal. 96 (1986), no. 1, 1–27. MR 853973, DOI 10.1007/BF00251411
- Dieter Bothe and Jan Prüss, On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid, J. Math. Fluid Mech. 12 (2010), no. 1, 133–150. MR 2602917, DOI 10.1007/s00021-008-0278-x
- G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR 2317005, DOI 10.1093/imanum/drl023
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- Renée Gatignol and Roger Prud’homme, Mechanical and thermodynamical modeling of fluid interfaces. World Scientific, Singapore, 2001. xviii,+248 pp. ISBN=9810243057.
- Morton E. Gurtin, Allan Struthers, and William O. Williams, A transport theorem for moving interfaces, Quart. Appl. Math. 47 (1989), no. 4, 773–777. MR 1031691, DOI 10.1090/qam/1031691
- I. Gyarmati, Non-equilibrium thermodynamics, Springer, 1970, ISBN:978-3-642-51067-0.
- Yunkyong Hyon, Do Young Kwak, and Chun Liu, Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst. 26 (2010), no. 4, 1291–1304. MR 2600746, DOI 10.3934/dcds.2010.26.1291
- Hajime Koba, On derivation of compressible fluid systems on an evolving surface, Quart. Appl. Math. 76 (2018), no. 2, 303–359. MR 3769898, DOI 10.1090/qam/1491
- Hajime Koba, On generalized diffusion and heat systems on an evolving surface with a boundary, Quart. Appl. Math. 78 (2020), no. 4, 617–640. MR 4148821, DOI 10.1090/qam/1564
- Hajime Koba, On generalized compressible fluid systems on an evolving surface with a boundary, Quart. Appl. Math. 81 (2023), no. 4, 721–749. MR 4644537, DOI 10.1090/qam/1648
- Hajime Koba, Thermodynamical modeling of multiphase flow system with surface tension and flow, Math. Model. Nat. Phenom. 18 (2023), Paper No. 32, 20. MR 4672099, DOI 10.1051/mmnp/2023036
- Hajime Koba, Chun Liu, and Yoshikazu Giga, Energetic variational approaches for incompressible fluid systems on an evolving surface, Quart. Appl. Math. 75 (2017), no. 2, 359–389. MR 3614501, DOI 10.1090/qam/1452
- Hajime Koba and Kazuki Sato, Energetic variational approaches for non-Newtonian fluid systems, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 143, 28. MR 3869845, DOI 10.1007/s00033-018-1039-1
- L. Onsager, Reciprocal relations in irreversible processes. I, Physical Review 37 (1931), 405–109, DOI:https://doi.org/10.1103/PhysRev.37.405.
- L. Onsager, Reciprocal relations in irreversible processes. II, Physical Review 38 (1931), 2265–79, DOI:https://doi.org/10.1103/PhysRev.38.2265.
- Sebastian Reuther and Axel Voigt, Incompressible two-phase flows with an inextensible Newtonian fluid interface, J. Comput. Phys. 322 (2016), 850–858. MR 3534892, DOI 10.1016/j.jcp.2016.07.023
- James Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik [Encyclopedia of Physics], Bd. 8/1, Strömungsmecha, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. Herausgegeben von S. Flügge; Mitherausgeber C. Truesdell. MR 108116
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- John C. Slattery, Leonard Sagis, and Eun-Suok Oh, Interfacial transport phenomena, 2nd ed., Springer, New York, 2007. MR 2284654
- J. W. Strutt, Some General Theorems relating to Vibrations, Proc. Lond. Math. Soc. 4 (1871/73), 357–368. MR 1575554, DOI 10.1112/plms/s1-4.1.357
References
- V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361 (French). MR 202082
- V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, [1989?]. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein; Corrected reprint of the second (1989) edition. MR 1345386
- David E. Betounes, Kinematics of submanifolds and the mean curvature normal, Arch. Rational Mech. Anal. 96 (1986), no. 1, 1–27. MR 853973, DOI 10.1007/BF00251411
- Dieter Bothe and Jan Prüss, On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid, J. Math. Fluid Mech. 12 (2010), no. 1, 133–150. MR 2602917, DOI 10.1007/s00021-008-0278-x
- G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR 2317005, DOI 10.1093/imanum/drl023
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- Renée Gatignol and Roger Prud’homme, Mechanical and thermodynamical modeling of fluid interfaces. World Scientific, Singapore, 2001. xviii,+248 pp. ISBN=9810243057.
- Morton E. Gurtin, Allan Struthers, and William O. Williams, A transport theorem for moving interfaces, Quart. Appl. Math. 47 (1989), no. 4, 773–777. MR 1031691, DOI 10.1090/qam/1031691
- I. Gyarmati, Non-equilibrium thermodynamics, Springer, 1970, ISBN:978-3-642-51067-0.
- Yunkyong Hyon, Do Young Kwak, and Chun Liu, Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst. 26 (2010), no. 4, 1291–1304. MR 2600746, DOI 10.3934/dcds.2010.26.1291
- Hajime Koba, On derivation of compressible fluid systems on an evolving surface, Quart. Appl. Math. 76 (2018), no. 2, 303–359. MR 3769898, DOI 10.1090/qam/1491
- Hajime Koba, On generalized diffusion and heat systems on an evolving surface with a boundary, Quart. Appl. Math. 78 (2020), no. 4, 617–640. MR 4148821, DOI 10.1090/qam/1564
- Hajime Koba, On generalized compressible fluid systems on an evolving surface with a boundary, Quart. Appl. Math. 81 (2023), no. 4, 721–749. MR 4644537
- Hajime Koba, Thermodynamical modeling of multiphase flow system with surface tension and flow, Math. Model. Nat. Phenom. 18 (2023), Paper No. 32, 20. MR 4672099, DOI 10.1051/mmnp/2023036
- Hajime Koba, Chun Liu, and Yoshikazu Giga, Energetic variational approaches for incompressible fluid systems on an evolving surface, Quart. Appl. Math. 75 (2017), no. 2, 359–389. MR 3614501, DOI 10.1090/qam/1452
- Hajime Koba and Kazuki Sato, Energetic variational approaches for non-Newtonian fluid systems, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 143, 28. MR 3869845, DOI 10.1007/s00033-018-1039-1
- L. Onsager, Reciprocal relations in irreversible processes. I, Physical Review 37 (1931), 405–109, DOI:https://doi.org/10.1103/PhysRev.37.405.
- L. Onsager, Reciprocal relations in irreversible processes. II, Physical Review 38 (1931), 2265–79, DOI:https://doi.org/10.1103/PhysRev.38.2265.
- Sebastian Reuther and Axel Voigt, Incompressible two-phase flows with an inextensible Newtonian fluid interface, J. Comput. Phys. 322 (2016), 850–858. MR 3534892, DOI 10.1016/j.jcp.2016.07.023
- James Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik [Encyclopedia of Physics], Bd. 8/1, Strömungsmecha, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. Herausgegeben von S. Flügge; Mitherausgeber C. Truesdell. MR 108116
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- John C. Slattery, Leonard Sagis, and Eun-Suok Oh, Interfacial transport phenomena, 2nd ed., Springer, New York, 2007. MR 2284654
- J. W. Strutt, Some General Theorems relating to Vibrations, Proc. Lond. Math. Soc. 4 (1871/73), 357–368. MR 1575554, DOI 10.1112/plms/s1-4.1.357
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2020):
49Q20,
76-10,
35A15,
49S05
Retrieve articles in all journals
with MSC (2020):
49Q20,
76-10,
35A15,
49S05
Additional Information
Hajime Koba
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
MR Author ID:
1013948
ORCID:
0000-0003-3116-4844
Email:
koba.hajime.es@osaka-u.ac.jp
Keywords:
Mathematical modeling,
energetic variational approach,
multiphase flow system,
surface flow,
surface tension,
inviscid fluid
Received by editor(s):
January 6, 2024
Received by editor(s) in revised form:
March 31, 2024
Published electronically:
May 6, 2024
Additional Notes:
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP21K03326
Article copyright:
© Copyright 2024
Brown University