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THE SHARP CONSTANT IN THE REVERSE HÖLDER INEQUALITY
FOR MUCKENHOUPT WEIGHTS

V. VASYUNIN

Abstract. Coifman and Fefferman proved that the “reverse Hölder inequality” is
fulfilled for any weight satisfying the Muckenhoupt condition. In order to illustrate
the power of the Bellman function technique, Nazarov, Volberg, and Treil showed
(among other things) how this technique leads to the reverse Hölder inequality for
the weights satisfying the dyadic Muckenhoupt condition on the real line. In this
paper the proof of the reverse Hölder inequality with sharp constants is presented for
the weights satisfying the usual (rather than dyadic) Muckenhoupt condition on the
line. The results are a consequence of the calculation of the true Bellman function
for the corresponding extremal problem.

In [1] Coifman and Fefferman proved that for any weight (i.e., for any nonnegative
function) w on Rn satisfying the Muckenhoupt condition

(Ap) sup
Q⊂Rn

{
〈w〉Q〈w

1
1−p 〉p−1

Q

}
<∞

(the supremum is taken over all cubes Q with edges parallel to the coordinate axes) the
“reverse Hölder inequality” is fulfilled:

〈wq〉Q ≤ C〈w〉qQ
for some q > 1, with a constant C independent of the cube Q. Here and later, 〈ϕ〉Q
stands for the average of the function ϕ over the set Q:

〈f〉Q def=
1
|Q|

∫
Q

ϕ(t) dt, |Q| def=
∫
Q

dt.

In [2] Nazarov, Treil, and Volberg illustrated the power of the Bellman function tech-
nique. In particular, they deduced the reverse Hölder inequality for dyadic A∞-weights
on the real line by constructing a Bellman function. In the present paper we refine this
technique to prove the reverse Hölder inequality for arbitrary Ap-weights (1 ≤ p ≤ ∞) on
the real line with a sharp constant C depending on p and q (the exponent in the reverse
Hölder inequality), and on the Ap-“norm” δ of w. Furthermore, we find the sharp bound
for the exponents q for which the reverse Hölder inequality is true. Instead of Mucken-
houpt’s original definition of A∞-weights (used, e.g., in [1]), we employ the equivalent
definition introduced by Khrushchëv [3]. Namely, the symbol Aδ∞(J) will denote the set
of all nonnegative functions w ∈ L1(J) such that

(1) sup
I⊂J

{
〈w〉I exp(−〈logw〉I)

}
≤ δ <∞.

2000 Mathematics Subject Classification. Primary 42B20, 42B25.
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Here J and I are intervals on the real line R. Condition (1) is the limit case (as p→∞)
of the Ap-condition

(2) sup
I⊂J

{
〈w〉I 〈w1−p′〉p−1

I

}
≤ δ <∞, 1

p
+

1
p′

= 1.

In the other limit case (p = 1), we get the A1-condition, which will be written in the
form

(3) sup
I⊂J

{
〈w〉I sup

t∈I

1
w(t)

}
≤ δ <∞.

The set of all nonnegative functions w ∈ L1(J) satisfying (2)–(3) will be denoted by
Aδp(J).

To become familiar with the general ideology of the Bellman function technique, the
reader may address not only the paper [2] mentioned above, but also the earlier survey
[4] by Nazarov and Treil. The role of the Muckenhoupt condition and the reverse Hölder
inequality in the theory of singular integrals is described in any book concerning this
subject, for example, in the monograph “Harmonic Analysis” by Stein [5], or in the
survey [6] by Dyn′kin and Osilenker.

To state the main result of the paper, we need some more notation. For p > 1 we
introduce two functions u±p as the functions inverse to

t 7→ (1− t)
(

1− t

p

)−p
(to t 7→ (1 − t)et for p = ∞) and defined on the following domains: u+

p : [0, 1]→ [0, 1],
u−p : [0, 1] → [−∞, 0]. In other words, the values u±p (t) are two solutions (the positive
and the negative) of the equation (1− u)(1− u/p)−p = t, 0 ≤ t ≤ 1.

For 1 < p < ∞, the Hölder inequality 〈wp1〉1/p〈w
p′

2 〉1/p
′ ≥ 〈w1w2〉 implies that δ ≥ 1

for the constant in (2). For p = ∞, the same estimate for the constant δ in (1) follows
from the Jensen inequality 〈eϕ〉 ≥ e〈ϕ〉. Therefore, for p > 1 we can define s± = s±p (δ) def=

u±p (1/δ). Finally, we introduce yet another parameter, putting γ = γ(p, q) def= pq−q+1
p .

Now we state the main result of the paper.

Theorem 1. For any weight w in Aδp(J), 1 < p <∞, the following inequalities are true:

(4) Cmin(p, q, δ)〈w〉qJ ≤ 〈wq〉J ≤ Cmax(p, q, δ)〈w〉qJ ,
where the constants

Cmin(p, q, δ)

=

1, q ∈ (−∞, 0] ∪ [1,+∞),

δ
1−q
p

(1 − s+)γ

1− γs+
, q ∈ [0, 1],

(5)

Cmax(p, q, δ)

=



+∞, q ∈
(
−∞, p− s−

s−(p− 1)

]
∪
[ p− s+

s+(p− 1)
,+∞

)
,

δ
1−q
p

(1 − s+)γ

1− γs+
, q ∈

[
− 1
p− 1

, 0
]
∪
[
1,

p− s+

s+(p− 1)

)
,

δ
1−q
p

(1 − s−)γ

1− γs− , q ∈
( p− s−
s−(p− 1)

,− 1
p− 1

]
,

1, q ∈ [0, 1],

(6)

are sharp.
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We state the limit cases of Theorem 1 for p =∞ and p = 1 separately.

Theorem 1∞. For any weight w in Aδ∞(J), inequalities (4) are true with the sharp
constants

Cmin(∞, q, δ) =

1, q ∈ (−∞, 0] ∪ [1,+∞),
(1 − s+)q

1− qs+
, q ∈ [0, 1],

(7)

Cmax(∞, q, δ) =



+∞, q ∈
(
−∞, 1

s−

]
∪
[ 1
s+
,+∞

)
,

(1 − s+)q

1− qs+
, q ∈

[
1,

1
s+

)
,

(1 − s−)q

1− qs− , q ∈
( 1
s−
, 0
]
,

1, q ∈ [0, 1].

(8)

Theorem 11. For any weight w in Aδ1(J), inequalities (4) are true with the sharp con-
stants

Cmin(1, q, δ) =

1, q ∈ (−∞, 0] ∪ [1,+∞),
δ1−q

q + (1− q)δ , q ∈ [0, 1],
(9)

Cmax(1, q, δ) =


+∞, q ∈

[ δ

δ − 1
,+∞

)
,

δ1−q

q + (1− q)δ , q ∈ (−∞, 0] ∪
[
1,

δ

δ − 1

)
,

1, q ∈ [0, 1].

(10)

In spite of the fact that formulas (7)–(8) and (9)–(10) are limit cases of formulas (5)–
(6) (this is easy for p → ∞, and not so easy, but also true for p → 1) and the general
method of the proof is the same for all p, we shall consider the case of 1 < p <∞ first,
and then show how it should be modified to get the proof for p =∞ and for p = 1.

So, assume that 1 < p < ∞. The Hölder inequality implies that if w ∈ Aδp(I), then
the point x = (〈w〉I , 〈w1−p′〉I) is in the domain

Ωδ(p)
def= {x = (x1, x2) : x2 > 0, 1 ≤ x1x

p−1
2 ≤ δ}.

On Ωδ we define two functions:

Bmax(x; p, q, δ) def= sup
w∈Aδp(I)

{
〈wq〉I : 〈w〉I = x1, 〈w1−p′〉I = x2

}
,(11)

Bmin(x; p, q, δ) def= inf
w∈Aδp(I)

{
〈wq〉I : 〈w〉I = x1, 〈w1−p′〉I = x2

}
.(12)

Since for every x ∈ Ωδ there exists a weight w with 〈w〉I = x1 and 〈w1−p′ 〉I = x2 (for
instance, such a weight will be constructed in the proof of Lemma 1), the functions B are
well defined on the entire domain Ωδ (making some assertions concerning both functions
Bmax and Bmin, we shall omit the subscripts max and min).

It is obvious that the functions B do not depend on I. Indeed, for any two intervals
I1 and I2, an affine mapping of one interval onto another puts the classes Aδp(I1) and
Aδp(I2) in one-to-one correspondence, and such a change of the variable preserves the
averages. Therefore, the supremum in (11) and the infimum in (12) do not depend on I.
In spite of the fact that B depends on δ, p, and q essentially, sometimes we shall omit
these parameters if it is clear that they are fixed.
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The functions defined in (11)–(12) are none other than the Bellman functions men-
tioned above. There are very few cases where the expression for a Bellman function
can be written explicitly. Usually, instead of the “true” Bellman function, some simple
analog of it is constructed in such a way that it still possesses certain key properties of
the genuine Bellman function. Generally, these properties suffice if we do not aim at the
sharp constants (see [2], [4]). The emphasis of this paper is on finding explicit expressions
for the Bellman functions (11)–(12); see Theorem 2. We use the following notation:

r± = r±p (x; δ) def= u±p

(1
δ
x1x

p−1
2

)
.

Note that s± = r±(x; δ)|x1=x1−p
2

.

Theorem 2. For x1 = x1−p
2 we have

Bmax(x; p, q, δ) = Bmin(x; p, q, δ) = xq1.

Otherwise
Bmax(x; p, q, δ)

=


xγ1x

1−γ
2

(1− s+

1− r+

)γ 1− γr+

1− γs+
, γ ∈

(
0,

1
p

]
∪
[
1,

1
s+

)
,

xγ1x
1−γ
2

(1− s−
1− r−

)γ 1− γr−
1− γs− , γ ∈

( 1
s−
, 0
]
∪
[1
p
, 1
]
,

+∞, γ ∈
(
−∞, 1

s−

]
∪
[ 1
s+
,+∞

)
,

(13)

and
Bmin(x; p, q, δ)

=


xγ1x

1−γ
2

(1− s−
1− r−

)γ 1− γr−
1 − γs− , γ ∈

(
0,

1
p

]
∪ [1,+∞),

xγ1x
1−γ
2

(1− s+

1− r+

)γ 1− γr+

1− γs+
, γ ∈ (−∞, 0] ∪

[1
p
, 1
]
.

(14)

Theorem 1 is an immediate consequence of Theorem 2. To deduce Theorem 1 from
Theorem 2, we must merely calculate the supremum of x−q1 Bmax(x; p, q, δ) and the infi-
mum of x−q1 Bmin(x; p, q, δ) when x runs over Ωδ.

Before we do this, one more remark concerning notation is in order. In Theorems 1 and
2, the same five critical points are written in different form, in terms of q in Theorem 1
and in terms of γ = pq−q−1

p in Theorem 2:

q :
p− s−
s−(p− 1)

− 1
p− 1

0 1
p− s+

s+(p− 1)
,

γ :
1
s−

0
1
p

1
1
s+
.

Now, using the definitions of r and s (for both indices ±), i.e.,
1
δ
x1x

p−1
2 = (1 − r)

(
1− r

p

)−p
,

1
δ

= (1− s)
(

1− s

p

)−p
,

we arrive at the relation

(15) x1x
p−1
2 = δ

1− r(
1− r/p

)p =
1− r
1− s

(p− s
p− r

)p
.

Thus, we can rewrite (13) or (14) differently:

(16) B = xγ1x
1−γ
2

(1− s
1− r

)γ 1− γr
1 − γs = xq1

(1− s
1− r

)q(p− r
p− s

)q−1 p− (pq − q + 1)r
p− (pq − q + 1)s

.
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To get the constants Cmin and Cmax, we must investigate

(17) g
def= x−q1 B =

(1− s
1− r

)q(p− r
p− s

)q−1 p− (pq − q + 1)r
p− (pq − q + 1)s

as functions of the variable r. Since

∂

∂r
log g =

g′

g
= − q(q − 1)(p− 1)2r

p(1− r)(1 − γr)(p− r) ,

the sign of g′ coincides with the sign of q(1−q)r. Indeed, we always have r < 1 < p. Next,
γr < 1 for r ∈ [s−, 0] and 1/s− < γ < +∞ as well as for r ∈ [0, s+] and −∞ < γ < 1/s+.
Therefore, the function g(r) is monotone increasing on (s−, 0] and monotone decreasing
on [0, s+) for q 6∈ [0, 1], and it has the opposite behavior for q ∈ (0, 1). We shall mark
the function g by the upper index + or − depending on the choice of the sign for r and
by the lower index max or min depending on the corresponding index of the function B.
Hence, for q < − 1

p−1 the function g+ = gmin takes its minimum value at r+ = s+, and
g− = gmax takes its maximum value at r− = 0, i.e.,

xq1 ≤ Bmin(x; p, q, δ) ≤ Bmax(x; p, q, δ) ≤ (1 − s−)q

1− γs−
(

1− s−

p

)1−q
xq1.

For q > 1 and for − 1
p−1 < q < 0, the function g− = gmin takes its minimum value at

r− = s−, and g+ = gmax takes its maximum value at r+ = 0, i.e.,

xq1 ≤ Bmin(x; p, q, δ) ≤ Bmax(x; p, q, δ) ≤ (1 − s+)q

1− γs+

(
1− s+

p

)1−q
xq1.

For 0 < q < 1, the function g+ = gmin takes its minimum value at r+ = 0, and g− = gmax

takes its maximum value at r− = s−, i.e.,

(1− s+)q

1− γs+

(
1− s+

p

)1−q
xq1 ≤ Bmin(x; p, q, δ) ≤ Bmax(x; p, q, δ) ≤ xq1.

To get the constants Cmin, Cmax in the form (5)–(6), it suffices to observe that

(1− s)q
(

1− s

p

)1−q
= δ

1−q
p (1− s)γ .

We note that the functions B depend continuously on the parameter q. Moreover, at
the endpoints of intervals with different analytical expressions these functions coincide,
namely

B(x; p, 1− p′, δ) = x2,

B(x; p, 0, δ) = 1,

B(x; p, 1, δ) = x1.

Corollary to Theorem 1. For the weights w ∈ Aδp(J), the Muckenhoupt condition

(Ap) is fulfilled for every p > p(1−s−)
p−s− with the sharp constant

sup
I⊂J
〈w〉I〈w1−p′〉p−1

I =

(
1− s/p

)p
(1− s)

(
1− p−p

p(p−1)s
)p−1 ,

where s = s− for p ≤ p and s = s+ for p ≥ p.

To obtain this estimate, it suffices to apply Theorem 1 with q = 1− p′.
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Outline of the proof of Theorem 2. Immediately after the introductory remarks, a
rigorous proof of formulas (13)–(14) will be presented. However, it conceals a part of
the truth because it requires the prior knowledge of the above explicit formulas for the
Bellman functions. The procedure leading to this “guess” is described in Appendix 1. In
a standard way the matter is reduced to the Bellman equation. By the specific character
of the problem, this equation turns into the ordinary differential equation (45), which,
moreover, admits explicit solution. However, the deduction of formulas (13)–(14) in
Appendix 1 is not a proof, because it is based on a series of voluntary assumptions (e.g.,
the Bellman function is assumed to be sufficiently smooth, which is not clear a priori).
For this reason, the heuristic arguments in Appendix 1 must be supplemented with a
rigorous proof, to which we pass now.

We denote by Bmax(x; p, q, δ) and Bmin(x; p, q, δ) the functions on the right-hand side
of (13) and (14), respectively, i.e., we put

Bmax(x; p, q, δ) def=


xγ1x

1−γ
2

(1− s+

1− r+

)γ 1− γr+

1 − γs+
, γ ∈

(
0,

1
p

]
∪
[
1,

1
s+

)
,

xγ1x
1−γ
2

(1− s−
1− r−

)γ 1− γr−
1− γs− , γ ∈

( 1
s−
, 0
]
∪
[1
p
, 1
]
,

+∞, γ ∈
(
−∞, 1

s−

]
∪
[ 1
s+
,+∞

)
,

Bmin(x; p, q, δ) def=


xγ1x

1−γ
2

(1− s−
1− r−

)γ 1− γr−
1− γs− , γ ∈

(
0,

1
p

]
∪ [1,∞),

xγ1x
1−γ
2

(1− s+

1− r+

)γ 1− γr+

1 − γs+
, γ ∈

(
−∞, 0

]
∪
[1
p
, 1
]
.

The identities Bmax = Bmax and Bmin = Bmin will be obtained from the inequalities
“≤” and “≥”. We shall start with verifying two easier estimates among the four.

Lemma 1. The inequalities

Bmax(x; p, q, δ) ≥ Bmax(x; p, q, δ), Bmin(x; p, q, δ) ≤ Bmin(x; p, q, δ)

are true for every x ∈ Ωδ and every q ∈ R, 1 < p <∞.

These inequalities will be proved by exhibiting an explicit extremal function (in Ap-
pendix 2 it will be explained how to find it). The reverse inequalities resist direct verifica-
tion, and an approximation procedure will be used; namely, we shall prove the following
lemma.

Lemma 2. The inequalities

Bmax(x; p, q, δ) ≤ Bmax(x; p, q, ε), Bmin(x; p, q, δ) ≥ Bmin(x; p, q, ε)

are true for every x ∈ Ωδ, every q ∈ R, 1 < p <∞, and every ε > δ.

Passage to the limit as ε → δ is possible here, which yields the second pair of in-
equalities. Indeed, Bmin is a continuous function of the parameter δ. As to Bmax, we
consider the finite and the infinite values of this function separately. If γ ≥ 1/s+(δ) (or
γ ≤ 1/s−(δ)), then γ ≥ 1/s+(ε) (respectively, γ ≤ 1/s−(ε)) for all ε > δ. Therefore,
Bmax(x; p, q, δ) = Bmax(x; p, q, ε) = +∞, and there is nothing to prove. If 1/s−(δ) < γ <
1/s+(δ), then 1/s−(ε) < γ < 1/s+(ε) for ε sufficiently close to δ (because the functions
δ 7→ s±(δ) are continuous and |s±(δ)| monotonically increases with δ). Therefore, if we
restrict ourselves to ε sufficiently close to δ, then Bmax becomes finite and continuous in
the parameter δ, and we can pass to the limit as ε→ δ.

We start the proof of Lemma 2 with verifying that the function Bmax is concave and
the function Bmin is convex.
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Lemma 3. Let x± be two arbitrary points in Ωδ. If the entire interval [x−, x+] between
these two points is in Ωδ, then the inequalities

Bmax(α−x− + α+x+) ≥ α−Bmax(x−) + α+Bmax(x+),(18)

Bmin(α−x− + α+x+) ≤ α−Bmin(x−) + α+Bmin(x+)(19)

are true for an arbitrary pair of nonnegative numbers α± such that α− + α+ = 1.

In the proof of Lemma 2 we shall encounter the following situation. Given a weight
w ∈ Aδp(J), we split an arbitrary interval I, I ⊂ J , into two parts I = I− ∪ I+ and get
two points in Ωδ, x± = (〈w〉I± , 〈w1−p′ 〉I±), to which we want to apply Lemma 3. To do
this, we need the whole interval [x−, x+] be inside Ωδ, but, generally speaking, this is not
so. Then we enlarge the domain a bit and try to split the interval I in such a way that
the interval [x−, x+] would be inside Ωε, ε > δ. The existence of the required splitting is
ensured by the following lemma.

Lemma 4. If a parameter δ > 1 is given, then for an arbitrary ε > δ and an arbitrary
weight w ∈ Aδp(I) there exists a splitting I = I− ∪ I+, |I±| = α±|I|, such that the entire
interval with the endpoints x± = (〈w〉I± , 〈w1−p′ 〉I±) is in Ωε. Moreover, the splitting
parameters α± can be chosen bounded away from 0 and 1 uniformly with respect to w
and, therefore, with respect to I as well.

Now we begin to realize the program outlined above.

Proof of Lemma 1. Since x2 = x1−p′
1 if and only if w = x1 = const, it is clear that

B(x1, x
1−p′
1 ; p, q, δ) = B(x1, x

1−p′
1 ; p, q, δ) = xq1 for all x1 > 0, q ∈ R, and p ∈ (1,+∞).

So we need to consider δ > 1 and the points x with x1x
p−1
2 > 1.

Fix an arbitrary point x in Ωδ with x1x
p−1
2 > 1. Let a ∈ (0, 1] and J = [0, 1]. We put

wc,a,ν(t) =

{
caνt−ν if 0 ≤ t ≤ a,
c if a ≤ t ≤ 1.

Direct calculation shows that

(20) 〈wθc,a,ν〉J =

cθ
1− (1 − a)θν

1− θν if θν < 1,

∞ if θν ≥ 1.

So, if we would like to get a function with a finite Ap-“norm”, we must restrict ourselves
to ν ∈ (1 − p, 1). For such ν the Ap-“norm” of wc,a,ν is finite indeed (the calculation of
it is moved to Appendix 3). To get an extremal function for B, we take

(21) ν =
(p− 1)s
p− s , a =

(s− r)p
(p− r)s , c =

(p− r)(1 − s)
(p− s)(1 − r)x1

with an appropriate choice of the signs for s and r; namely, in accordance with (13)–(14),

s = s+
p (δ), r = r+

p (x; δ)

{
for Bmax if q ∈ [1− p′, 0] ∪ [1,+∞),
for Bmin if q ∈ (−∞, 1− p′] ∪ [0, 1],

s = s−p (δ), r = r−p (x; δ)

{
for Bmin if q ∈ [1− p′, 0] ∪ [1,+∞),
for Bmax if q ∈ (−∞, 1− p′] ∪ [0, 1].

Recall that s± = u±(p, 1/δ), i.e., δ(1 − s)
(
1 − s/p

)−p = 1, and r± = u±(p, 1
δx1x

p−1
2 ),

i.e., δ(1 − r)
(
1− r/p

)−p = x1x
p−1
2 . Since the condition δ > 1 has been assumed, we are

sure that s± 6= 0 and a is well defined. Moreover, a ∈ (0, 1]. Indeed, on the one hand,
r/s < 1 (since we have assumed that x1x

p−1
2 > 1), i.e., s−r

s > 0, and p > 1 > r, so that
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a > 0. On the other hand, r/s ≥ 0 and p > 1 > s, whence 1−a = (p−s)r
(p−r)s ≥ 0, i.e., a ≤ 1.

As to the parameter ν, it is easily seen that the condition s < 1 implies that ν is inside
the admissible interval 1− p < ν < 1.

In Appendix 3 the Ap-“norm” of the function wc,a,ν will be calculated: it is equal
to 1

1−ν
(
1 + ν

p−1

)1−p. Since this is equal to δ for the value of ν chosen above, we have
wc,a,ν ∈ Aδp(I).

Now, using (20), we check that the weight wc,a,ν represents the point x = (x1, x2) in
Ωδ. First, we have

〈wc,a,ν〉J = c
1− (1− a)ν

1− ν = x1.

To calculate the second coordinate, we rewrite the expression for c by using (15):

(22) c =
(p− s
p− r

)p−1

x1−p
2 .

Then

〈w1−p′
c,a,ν〉J = c1−p

′ · 1− (1− a)(1 − p′)ν
1− (1− p′)ν =

p− r
p− s · x2 ·

p− s
p− r = x2.

So, for q ≥ 1/ν+ = p−s+
(p−1)s+ and for q ≤ 1/ν− = p−s−

(p−1)s− we get Bmax(x; p, q, δ) =
Bmax(x; p, q, δ) =∞. By (22) and (15), for qν < 1 we obtain

〈wqc,a,ν〉J = cq
1− (1− a)qν

1− qν =
(p− s
p− r

)q(p−1)

x
q(1−p)
2

1− (p−s)r
(p−r)sq

(p−1)s
p−s

1− q (p−1)s
p−s

=
(p− s
p− r

)γp−1

x1−γp
2

1− (γp−1)r
p−r

1− (γp−1)s
p−s

= x1−γ
2 x

γ(1−p)
2

(p− s
p− r

)γp 1− γr
1− γs

= x1−γ
2 xγ1

(1− s
1− r

)γ 1− γr
1 − γs = B(x; p, q, δ),

where we put s = s+ and r = r+ or s = s− and r = r− in accordance with (13) and (14).
Now, the required inequalities follow from the definition of B. �

Proof of Lemma 3. To prove the lemma, we need to check that the matrix

(23)
{ ∂2B

∂xi∂xj

}2

i,j=1

is nonpositive for Bmax and nonnegative for Bmin. Direct calculation yields

∂r

∂x1
= − (1− r)(p− r)

(p− 1)rx1
,

∂r

∂x2
= − (1− r)(p − r)

rx2
,

∂B

∂x1
=

γq(1− r)
x1(1 − γr)B,

∂B

∂x2
=

(γp− 1)(γ − 1)
x2(1− γr) B,

∂2B

∂x2
1

= −γq(q − 1)
xγ−2

1 x1−γ
2

r(1 − r)γ−2

(1− s)γ

1− γs ,

∂2B

∂x1∂x2
= −γq(q − 1)(p− 1)

xγ−1
1 x−γ2

r(1 − r)γ−1

(1 − s)γ

1− γs ,

∂2B

∂x2
2

= −γq(q − 1)(p− 1)2 x
γ
1x
−γ−1
2

r(1 − r)γ
(1− s)γ

1− γs .
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Therefore, the quadratic form of the matrix (23) is

(24)
2∑

i,j=1

∂2B

∂xi∂xj
∆i∆j = −γq(q − 1)xγ−2

1 x1−γ
2

r(1 − γs)
(1− s

1− r
)γ(

x2(1− r)∆1 + (p− 1)x1∆2

)2
.

This expression has the required sign, because the value of 1− γs is always positive and
the sign of r coincides with the sign of γq(q − 1) for Bmax and is opposite to the latter
for Bmin. �

Proof of Lemma 4. For any interval I, we describe a procedure of splitting it into two
parts I− and I+, |I±| = α±|I|. As before, we put x±1 = 〈w〉I± and x±2 = 〈w1−p′ 〉I± . For
all α+ the interval with the endpoints x± (to be denoted by [x−, x+]) contains the point
x0 = α−x− + α+x+ whose coordinates are the corresponding averages over the entire
interval I: x0

1 = 〈w〉I , x0
2 = 〈w1−p′ 〉I .

We start with taking α− = α+ = 1/2. If the entire segment [x−, x+] is in the domain
Ωε, we fix this splitting. In the remaining part of the proof we assume that this is not
the case, i.e., there exists a point x on this interval with x1x

p−1
2 > ε. Since any straight

line intersects the graph of a power function at two points at most, we can choose ξ to be
the endpoint of our segment such that all points x with x1x

p−1
2 > ε are between x0 and

ξ. We define a function ρ(α+) as follows: given α+, we put ρ(α+) to be the maximum
value of x1x

p−1
2 , where x runs over the segment between x0 and ξ. By our assumption,

ρ(1/2) > ε. We begin to change α+ so as to make ξ go towards x0, i.e., we increase α+

if ξ = x+, and reduce it if ξ = x−. We stop at the moment when the relation ρ(α+) = ε
occurs for the first time. This finishes the description of the splitting procedure. Now, we
must check that the moment indicated above does exist and, moreover, the corresponding
value of α+ is bounded away from 0 and 1 uniformly with respect to w and I.

Since x0
1(x0

2)p−1 ≤ δ, we have x1x
p−1
2 < ε on the entire segment between x0 and ξ if

ξ is sufficiently close to x0, i.e., ρ(α+) < ε for the corresponding α+. The function ρ is
continuous, which implies the existence of α+ such that ρ(α+) = ε.

Thus, we have proved that the “stopping time” described above exists, and we must
check that the corresponding α+ is not too close to 0 and 1. If ξ = x+, then α+ > 1/2
and ξ1 − x0

1 = x+
1 − x0

1 = α−(x+
1 − x−1 ). Symmetrically, if ξ = x−, then α− > 1/2 and

ξ1 − x0
1 = x−1 − x0

1 = α+(x−1 − x+
1 ). Thus, |ξ1 − x0

1| = min{α±}|x−1 − x+
1 |.

For the “stopping” value of α+ the straight line that passes through the points x± and
x0 is tangent to the graph x1x

p−1
2 = ε and touches it at some point, say τ . The equation

of the line tangent to the graph x1x
p−1
2 = const at the point τ is τ2x1+(p−1)τ1x2 = pτ1τ2.

This line intersects the graph x1x
p−1
2 = δ at the points

x(δ)± =
(
τ1

[
1− u±1−p

(δ
ε

)]
, τ2

[
1 +

1
p− 1

u±1−p

(δ
ε

)])
and the graph x1x

p−1
2 = 1 at the points

x(1)± =
(
τ1

[
1− u±1−p

(1
ε

)]
, τ2

[
1 +

1
p− 1

u±1−p

(1
ε

)])
.

So, we have got the following embedded segments of our line: [x(δ)−, x(δ)+] ⊂ [x0, ξ] ⊂
[x−, x+] ⊂ [x(1)−, x(1)+]. Therefore,

|x(δ)+
1 − x(δ)−1 | ≤ |x0

1 − ξ1| = min{α±}|x+
1 − x−1 | ≤ min{α±}|x(1)+

1 − x(1)−1 |
and

min{α±} ≥ |x(δ)+
1 − x(δ)−1 |

|x(1)+
1 − x(1)−1 |

=
|u+

1−p
(
δ/ε
)
− u−1−p

(
δ/ε
)
|

|u+
1−p
(
1/ε
)
− u−1−p

(
1/ε
)
|
.
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We see that this estimate depends on p, δ, and ε only, but not on the choice of w and
I. �

Remark. In the proof, we have used the functions u±p for negative p without formal
definition. But it is easy to check that the mapping t 7→ (1 − t)(1 − t/p)−p has two
inverses defined on [0, 1] not only for p > 1, but also for p < 0. For negative p the
function u+

p maps [0, 1] onto [0, 1], but u−p maps [0, 1] onto [p, 0]. There exists a simple
rational relation between the functions up and u1−p:

(25)
(

1− up
p

)(
1− u1−p

1− p
)

= 1.

Indeed, if we define the function u1−p with p > 1 by (25), then

(1 − u1−p)
(

1− u1−p
1− p

)p−1

=
(

1− (p− 1)up
p− up

)(
1 +

up
p− up

)p−1

=
p(1− up)
p− up

( p

p− up

)p−1

= (1− up)
(

1− up
p

)−p
.

Since in (25) up and u1−p have the same sign, the definition of u±p for negative p as
the inverses to the mapping t 7→ (1 − t)(1 − t/p)−p is equivalent to the definition by
formula (25).

Now, we are ready to prove the main lemma.

Proof of Lemma 2. The statement of the lemma means that the inequalities

(26) Bmin(x; p, q, ε) ≤ 〈wq〉I ≤ Bmax(x; p, q, ε)

are true for an arbitrary weight w ∈ Aδp(I) and an arbitrary ε > δ. Here x = (x1, x2) =
(〈w〉I , 〈w1−p′〉I). It suffices to prove (26) for step functions w because an arbitrary weight
w can be approximated by a sequence of step functions wn so that all averages converge:
〈wqn〉 → 〈wq〉 and (〈wn〉I , 〈w1−p′

n 〉I) → (〈w〉I , 〈w1−p′ 〉I), and we can pass to the limit
in (26) because Bmin is continuous in x, and so is Bmax if it is finite, but for infinite Bmax

the inequality clearly holds.
So, we fix an interval I, a step function w ∈ Aδp(I), and a number ε > δ. Starting

with the interval I = I0,0, we construct a chain of intervals In,m in accordance with
the rule in Lemma 4. For the intervals in the nth generation, we use the notation In,m:
In,2k = (In−1,k)− and In,2k+1 = (In−1,k)+, and so the second index runs from 0 to
2n − 1. The corresponding mean values will be labeled by the same pair of indices, and
αn,m = |In,m|/|I|. By Lemma 3, we can write the following chain of inequalities:

Bmax(x0,0; p, q, ε) ≥ α1,0Bmax(x1,0; p, q, ε) + α1,1Bmax(x1,1; p, q, ε)

≥
2n−1∑
m=0

αn,mBmax(xn,m; p, q, ε).
(27)

For Bmin we get a similar chain of reverse inequalities. The latter sum tends to 〈wq〉I as
n→∞. Indeed, for a fixed step function w ∈ Aδp(J), the set {x = (〈w〉I , 〈w1−p′ 〉I) : I⊂J}
is a compact subset of Ωδ, and, therefore, the continuous function B is bounded on this
subset, say, B ≤ M , i.e., B(xn,m; p, q, ε) ≤ M (we exclude the case of B = Bmax = ∞,
when we have nothing to prove). So, if N is the number of discontinuity points for the
step function w, then the number of the intervals In,m where w is not a constant is at most
N . On all other intervals w is a constant, so that B(xn,m; p, q, ε) = (xn,m1 )q = wq , i.e.,
the corresponding summand is 1

|I|
∫
In,m

w(t)q dt, and the entire sum differs from 〈wq〉I
at most by NM maxm αm,n. The latter quantity tends to zero, because by Lemma 4
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the values α± are bounded away from 0 and 1, and the maximum length of the nth
generation intervals tends to 0 as n→∞. �

Now we consider the case of p = ∞. By the Jensen inequality, we see that e〈logw〉 ≤
〈w〉. Therefore, for arbitrary w ∈ Aδ∞(I) the point x = (x1, x2) = (〈w〉I , 〈logw〉I) is in
the domain

Ωδ(∞) def= {(x1, x2) : x2 ∈ R, 1 ≤ x1e
−x2 ≤ δ}.

On Ωδ(∞) we define the following functions:

Bmax(x; q, δ)

= Bmax(x;∞, q, δ) def= sup
w∈Aδ∞(I)

{
〈wq〉I : 〈w〉I = x1, 〈logw〉I = x2

}
,

(28)

Bmin(x; q, δ)

= Bmin(x;∞, q, δ) def= inf
w∈Aδ∞(I)

{
〈wq〉I : 〈w〉I = x1, 〈logw〉I = x2

}
.

(29)

To keep continuity as p→∞, for finite p we should have chosen

x2 = −(p− 1) log〈w
1

1−p 〉I
rather than x2 = 〈w 1

1−p 〉I , because

−(p− 1) log〈w
1

1−p 〉I ≈ −(p− 1) log
(

1− 1
p− 1

〈logw〉I
)
→ 〈logw〉I .

For this choice of x2 the domain Ωδ(p) becomes the same for all p. Nevertheless, the choice
of x2 was made with the purpose to obtain a simple concavity/convexity condition for
the functions B (see Lemma 3) rather than to get continuity as p→∞. So, comparison
of the expressions for B(x; p, q, δ) and B(x;∞, q, δ) requires the substitute xp−1

2 → e−x2 .
In the following theorem the explicit expression for the functions B(x;∞, q, δ) will

be given. In the statement and subsequently, we use the following notation: r± =
r±∞(x; δ) def= u±∞

(
1
δx1e

−x2
)

and s± = s±∞(δ) def= u±∞(1/δ).

Theorem 2∞. For x1 = ex2 , we have

Bmax(x; q, δ) = Bmin(x; q, δ) = xq1.

Otherwise

(30) Bmax(x; q, δ) =



+∞ if q ≥ 1
s+
,

xq1

(
1− s+

1− r+

)q 1− qr+

1− qs+
if 1 ≤ q < 1

s+
,

xq1

(
1− s−
1− r−

)q 1− qr−
1− qs− if

1
s−

< q ≤ 1,

+∞ if q ≤ 1
s−

;

and

(31) Bmin(x; q, δ) =


xq1

(
1− s−
1− r−

)q 1− qr−
1− qs− if q ≥ 1,

xq1

(
1− s+

1− r+

)q 1− qr+

1− qs+
if q ≤ 1.

Now, Theorem 1∞ is an easy consequence. Indeed, for x ∈ Ωδ the parameter r+ runs
over the interval [0, s+] and r− runs over the interval [s−, 0]. If q > 1, then the function
r 7→ 1−rq

(1−r)q is monotone increasing on [s−, 0] and monotone decreasing on [0, s+]. Hence,
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Bmin takes its minimum value at r− = s− and Bmax takes its maximum value at r+ = 0,
i.e.,

xq1 ≤ Bmin(x; q, δ) ≤ Bmax(x; q, δ) ≤ (1− s+)q

1− qs+
xq1.

If 0 < q < 1, then the function r 7→ 1−rq
(1−r)q is monotone decreasing on [s−, 0] and

monotone increasing on [0, s+]. Hence, Bmin takes its minimum value at r+ = 0 and
Bmax takes its maximum value at r− = s−, i.e.,

(1 − s+)q

1− qs+
xq1 ≤ Bmin(x; q, δ) ≤ Bmax(x; q, δ) ≤ xq1.

If q < 0, then the function r 7→ 1−rq
(1−r)q is monotone increasing on [s−, 0] and monotone

decreasing on [0, s+]. Hence, Bmin takes its minimum value at r+ = s+ and Bmax takes
its maximum value at r− = 0, i.e.,

xq1 ≤ Bmin(x; q, δ) ≤ Bmax(x; q, δ) ≤ (1− s−)q

1− qs− xq1.

Corollary to Theorem 1∞. For the weights w ∈ Aδ∞(J), the Muckenhoupt condition
(Ap) is fulfilled for all p > 1− s− with the sharp constant

sup
I⊂J
〈w〉I〈w−

1
p−1 〉p−1

I =
1

(1− s−)(1 + s−

p−1)p−1
.

To obtain this estimate, it suffices to apply Theorem 1∞ with q = − 1
p−1 . Comparison

with the corollary to Theorem 1 shows that this result is the limit case of that statement
as p→∞.

Outline of the proof of Theorem 2∞. We modify the arguments used in the proof
of Theorem 2. As before, we denote by Bmax(x; q, δ) and Bmin(x; q, δ) the functions on
the right-hand side of (30) and (31), respectively. The four lemmas for p = ∞ are the
same as for p ∈ (1,∞). The only formal change occurs in Lemma 4∞, where instead of
the points x± = (〈w〉I± , 〈w1−p′ 〉I±) we must use x± = (〈w〉I± , 〈logw〉I±).

We shall not justify the limit passage as p→∞; it seems easier to prove Lemmas 1–4
for p =∞ independently by the same method as for p ∈ (1,∞).

Proof of Lemma 1∞. Since x2 = log x1 if and only if w = x1 = const, it is clear that
B(x1, log x1; q, δ) = B±(x1, log x1; q, δ) = xq1 for all x1 > 0 and all q ∈ R. So, we need to
consider δ > 1 and the points x with x2 < log x1.

Fix an arbitrary point x ∈ Ωδ with x2 < log x1. Taking a ∈ (0, 1] and s ∈ (−∞, 1),
we choose J = [0, 1] and put

wa,s(t) =

{
ex2−saast−s if 0 ≤ t ≤ a,
ex2−sa if a ≤ t ≤ 1.

In Appendix 3 it will be shown that wa,s ∈ Aδ∞(J) with δ = 1
1−se

−s. Direct calculation
yields 〈logwa,s〉J = x2. To get an extremal function for B, we take

s = s+, a = 1− r+

s+
for Bmax if q > 1 and for Bmin if q < 1,

s = s−, a = 1− r−

s−
for Bmax if q < 1 and for Bmin if q > 1.
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Recall that s± = u±(1/δ), i.e., δ(1− s)es = 1, and r± = u±(1
δx1e

−x2), i.e., δ(1− r)er =
x1e
−x2. Since δ is assumed to be strictly greater than 1, we have s± 6= 0, and a is well

defined. We check that 〈wa,s〉 = x1 in all cases. Indeed,

〈wa,s〉J =
1− (1 − a)s

1− s ex2−as = δ
(
1− (1 − a)s

)
ex2+(1−a)s

= δex2(1− r)er = δex2
1
δ
x1e
−x2 = x1.

By (20), we have

〈wqa,s〉J =


1− (1 − a)qs

1− qs eq(x2−as) if qs < 1;

∞ if qs ≥ 1.

Hence, for q ≥ 1/s+ and for q ≤ 1/s− we get Bmax(x; q, δ) = Bmax(x; q, δ) = ∞. And
for qs < 1 we have the identity

〈wqa,s〉I =
1− (1− a)qs

1− qs

( 1− s
1− (1− a)s

)q
〈wa,s〉qJ

=
1− qr
1− qs

(1− s
1− r

)q
xq1 = B(x; q, δ).

As has already been mentioned, here we must take s = s+ and r = r+ for Bmax(x; q, δ) if
q > 1 and for Bmin(x; q, δ) if q < 1, and s = s−, r = r− for Bmax(x; q, δ) if q < 1 and for
Bmin(x; q, δ) if q > 1. Now, the required inequalities follow from the definition of B. �

Proof of Lemma 3∞. To prove the lemma, we need to show that the matrix

(32)
{ ∂2B

∂xi∂xj

}2

i,j=1

is nonpositive for Bmax and nonnegative for Bmin. Direct calculation yields

∂r

∂x1
= −1− r

rx1
,

∂r

∂x2
=

1− r
r

,

∂B

∂x1
= q2xq−1

1

(1− s)q
(1− qs)(1− r)q−1

,

∂B

∂x2
= −q(q − 1)xq1

(1− s)q
(1− qs)(1 − r)q ,

∂2B

∂x2
1

= −q2(q − 1)xq−2
1

(1− s)q
(1− qs)r(1 − r)q−2

,

∂2B

∂x1∂x2
= q2(q − 1)xq−1

1

(1 − s)q
(1− qs)r(1 − r)q−1

,

∂2B

∂x2
2

= −q2(q − 1)xq1
(1− s)q

(1 − qs)r(1 − r)q .

Therefore, the quadratic form of the matrix (32) is

(33)
2∑

i,j=1

∂2B

∂xi∂xj
∆i∆j = −q

2(q − 1)xq−2
1

r(1 − qs)
(1− s

1− r
)q(

(1 − r)∆1 − x1∆2

)2
.

This expression has the required sign, because the quantity 1− qs is always positive and
the sign of r coincides with the sign of q − 1 for Bmax and is opposite to the latter for
Bmin. �
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Proof of Lemma 4∞. This is a word-for-word repetition of the proof of Lemma 4. We
must only replace the expression x1x

p−1
2 by x1e

−x2 . The equation of the line tangent to
the graph x1e

−x2 = ε at a point τ is x1 − τ1x2 = τ1(1 − τ2). This line intersects the
graph x1e

−x2 = δ at the points

x(δ)± =
(
τ1

[
1− u±∞

(δ
ε

)]
, τ2 − u±∞

(δ
ε

))
.

Finally, we get the same estimate

minα± ≥
|u+
∞
(
δ/ε
)
− u−∞

(
δ/ε
)
|

|u+
∞
(
1/ε
)
− u−∞

(
1/ε
)
|
.

�

Proof of Lemma 2∞. It also follows the lines of the proof of Lemma 2. Here the changes
are even slighter; namely, x2 = 〈w1−p′ 〉I must be replaced by x2 = 〈logw〉I . �

We pass to the other limit case: p = 1. Now the changes to be made are far more
extensive. To any weight w in Aδ1(I), we assign the point x = (x1, x2) = (〈w〉I , supI 1/w);
these points fill the domain

Ωδ(1) def= {(x1, x2) : x2 ∈ R, 1 ≤ x1x2 ≤ δ}

as the weight w runs over Aδ1(I). On Ωδ(1) we define the following functions:

Bmax(x; q, δ)(34)

= Bmax(x; 1, q, δ) def= sup
w∈Aδ∞(I)

{
〈wq〉I : 〈w〉I = x1, sup

I

1
w

= x2

}
,

Bmin(x; q, δ)(35)

= Bmin(x; 1, q, δ) def= inf
w∈Aδ∞(I)

{
〈wq〉I : 〈w〉I = x1, sup

I

1
w

= x2

}
.

To compare the expressions for B(x; p, q, δ) with p ∈ (1,∞) and B(x; 1, q, δ), we now
replace xp−1

2 with x2 and then pass to the limit as p → 1. It should be noted that if
p = 1 + ε, ε→ 0, then asymptotically we have

s+ ≈ 1− ε

δ − 1
, s− ≈ −δ 1

ε ,

r+ ≈ 1− εx1x2

δ − x1x2
, r− ≈ −

( δ

x1x2

) 1
ε

.

Limit passage as p→ 1 in (13)–(14) provides the expression for B(x; 1, q, δ). In Appendix
1 it will be explained how to find these expressions from the Bellman equation. Now we
state the result.

Theorem 21. For x1x2 = 1 we have

Bmax(x; p, q, δ) = Bmin(x; p, q, δ) = xq1.

Otherwise

(36) Bmax(x; q, δ) =


+∞ if q ∈

[ δ

δ − 1
,+∞

)
,

x−q2

qx1x2 − (q − 1)δ
q − (q − 1)δ

if q ∈
(
−∞, 0

]
∪
[
1,

δ

δ − 1

)
,

xq1 if q ∈ [0, 1],
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and

(37) Bmin(x; q, δ) =

x
q
1 if q ∈ (−∞, 0) ∪ [1,+∞),

x−q2

qx1x2 − (q − 1)δ
q − (q − 1)δ

if q ∈ [0, 1].

Before proving this theorem, we deduce Theorem 11 from it. If B = xq1, there is
nothing to prove; we consider the case where

B = x−q2

qx1x2 − (q − 1)δ
q − (q − 1)δ

.

Then

B(x)x−q1 = y−q
qy − (q − 1)δ
q − (q − 1)δ

, y = x1x2 ∈ [1, δ].

We calculate the derivative of the function y 7→ y−q
(
qy − (q − 1)δ

)
:

∂

∂y

(
qy−q+1 − (q − 1)δy−q

)
= q(q − 1)y−q−1(δ − y).

Therefore, this function is monotone increasing if q /∈ [0, 1] and monotone decreasing
otherwise. Since at the point y = δ this function is equal to δ1−q, we obtain the constant
Cmax = δ1−q(q − (q − 1)δ

)−1 if q /∈ [0, 1] and the same expression for Cmin for q ∈ (0, 1).

Corollary to Theorem 11. For the weights w, w ∈ Aδ1(J), the Muckenhoupt condition
(Ap) is fulfilled for all p > 1 with the sharp constant

sup
I⊂J
〈w〉I〈w−

1
p−1 〉p−1

I =
δp(

1 + p′(δ − 1)
)p−1 .

To obtain this formula, it suffices to apply Theorem 11 with q = 1− p′. The result is
easily seen to be the limit case of the corollary to Theorem 1 as p→ 1. To verify this, we
use the asymptotic behavior of s+ and r+ mentioned above for obtaining the following
two limit relations:

1− s+

p

1− s+
→ δ,

1− p−p
p(p−1)s

+

1− s+
= 1 + p′

p− 1
p(1− s+)

→ 1 + p′(δ − 1).

Therefore, (
1− s

p

)p
(1− s)

(
1− p−p

p(p−1)s
)p−1 →

δp(
1 + p′(δ − 1)

)p−1 .

Outline of the proof of Theorem 21. Again we shall use the method of the proof
of Theorem 2. As in that theorem, we denote by Bmax(x; q, δ) and Bmin(x; q, δ) the
functions on the right-hand sides of (36) and (37), respectively. Now only the statements
of the first two lemmas for p = 1 remain the same as for p ∈ (1,∞).

Two other lemmas must be modified for the following reasons. Before, when splitting
an interval I into two parts I = I− ∪ I+, we had a proportional splitting of the interval
[x−, x+] (x± = (〈w〉I± , 〈w1−p′ 〉I±)) by the point x0 = (〈w〉I , 〈w1−p′〉I). But now this is
not the case, and the point x0 may even fail to be on the interval with the endpoints x−

and x+. In the situation under study, a proportional splitting arises only for the first
coordinate x0

1 = α−x−1 + α+x+
1 , whereas for the second coordinate we have

x0
2 = sup

I

1
w

= max
{

sup
I−

1
w
, sup
I+

1
w

}
= max{x−2 , x+

2 }.



64 V. VASYUNIN

For this reason, for p = 1 we restate Lemma 3 as follows.

Lemma 31. Let x± be two arbitrary points in Ωδ, and let α± be a pair of nonnegative
numbers such that α−+α+ = 1. Put x0 = (x0

1, x
0
2) def= (α−x−1 +α+x+

1 ,max{x−2 , x+
2 }). If

both points (x±1 , x
0
2) are in Ωδ, then

Bmax(x0) ≥ α−Bmax(x−) + α+Bmax(x+),(38)

Bmin(x0) ≤ α−Bmin(x−) + α+Bmin(x+).(39)

Lemma 4 must be changed as follows.

Lemma 41. If a parameter δ > 1 is given, then for an arbitrary ε > δ and an arbitrary
weight w ∈ Aδ1(I) there exists a splitting I = I− ∪ I+, |I±| = α±|I|, such that x±1 x

0
2 ≤

ε, where x± = (〈w〉I± , 〈w1−p′〉I±) and x0 = (〈w〉I , 〈w1−p′〉I). Moreover, the splitting
parameters α± can be chosen bounded away from 0 to 1, uniformly with respect to w and,
therefore, with respect to I.

Proof of Lemma 11. Now the cases of B = x−q2
qx1x2−(q−1)δ
q−(q−1)δ and of B = xq1 are entirely

different. In the first case, we can take the limit (as p → 1) of the expression for the
extremal function we already know:

wc,a,ν(t) =

{
caνt−ν if 0 ≤ t ≤ a,
c if a ≤ t ≤ 1,

with the limit values of the parameters in (21) for s = s+ and r = r+:

ν =
δ − 1
δ

, a =
x1x2 − 1
δ − 1

, c =
1
x2
.

We check that this weight w is in Aδ1. For any monotone decreasing weight w, we have

sup
0≤α<β≤1

{
〈w〉(α,β) · sup

(α,β)

1
w

}
= sup

0≤α<β≤1

{
〈w〉(α,β) ·

1
w(β)

}
= sup

0≤β≤1

{
〈w〉(0,β) ·

1
w(β)

}
.

(40)

Since our weight satisfies w(β) = const for β > a, we have

sup
I⊂[0,1]

{
〈w〉I · sup

I

1
w

}
= sup

0≤β≤a

{
〈w〉(0,β) ·

1
w(β)

}
.

Furthermore, 〈w〉(0,β) = c
1−ν (a/β)ν if β ≤ a, whence

sup
I⊂[0,1]

{
〈w〉I · sup

I

1
w

}
= sup

0≤β≤a

{ c

1− ν
( a
β

)ν
· 1
c

(β
a

)ν}
=

1
1− ν = δ.

Now, we check that the weight w represents the point x = (x1, x2) in Ωδ(1):

〈w〉[0,1] =
ca

1− ν + (1− a)c = x1,

sup
[0,1]

1
w

= x2.
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Thus, for q ≥ δ
δ−1 we get Bmax(x; q, δ) = Bmax(x; q, δ) =∞. For q < δ

δ−1 , substituting
θ = q and the chosen values of ν, a, and c in (20), we obtain

〈wq〉[0,1] = cq
1− (1− a)qν

1− qν = x−q2

1− δ−x1x2
δ−1 q δ−1

δ

1− q δ−1
δ

= x−q2

qx1x2 − δ(q − 1)
q − δ(q − 1)

= B(x; q, δ),

which implies the inequalities of Lemma 11 for Bmax, q /∈ [0, 1] and for Bmin, q ∈ (0, 1).
The case of B = xq1 looks more difficult, because the relation 〈wq〉 = 〈w〉q = xq1 occurs

if and only if w is a constant function, and this means that there is no extremal function
for an arbitrary point of Ωδ(1) except the boundary x1x2 = 1. Nevertheless, we can
construct a family of weights in Aδ1 representing a given point (x1, x2) and approximating
the maximum or minimum value of 〈wq〉. Using the weight w constructed above, consider
the following family of weights {wλ}0<λ<1:

wλ(t) =

{
〈w〉(0,λ) if 0 ≤ t ≤ λ,
w(t) if λ < t ≤ 1.

For every monotone decreasing weight w on [0, 1], we introduce the following function on
the same interval:

ϕw(β) = 〈w〉(0,β) ·
1

w(β)
.

Clearly,

ϕwλ(β) =

{
1 if 0 ≤ β ≤ λ,
ϕw(β) if λ < β ≤ 1.

By (40), the A1-“norm” of w is equal to the supremum of the function ϕw; therefore, the
A1-“norm” of all wλ never exceeds the A1-“norm” of w, i.e., wλ ∈ Aδ1. It is clear that all
wλ represent the same point (x1, x2) because neither the average of the weight nor its
minimum value changes under the construction of wλ. But the functions wλ tend almost
everywhere to the constant function w1(t) = x1 as λ→ 1. Therefore, 〈wqλ〉[0,1] → xq1, i.e.,
{wλ} is the required approximating family of weights. �

Remark. Note that Lemma 11 completes the proof of Theorem 21 not only in the evident
case where Bmax = ∞, but also in the case where B = xq1, because in this case the
reverse inequalities are valid for an arbitrary weight w:

(41)

{
〈wq〉 ≥ 〈w〉q if q /∈ (0, 1),
〈wq〉 ≤ 〈w〉q if q ∈ [0, 1].

Indeed, for q > 1 this is the Hölder inequality applied to the product w · 1 with the
exponent q, for 0 < q < 1 this is the Hölder inequality applied to the product wq · 1
with the exponent 1/q, and for q < 0 this is the Hölder inequality applied to the product
1 = w

q
q−1 · w

q
1−q with the exponent q−1

q .

Proof of Lemma 31. In spite of the fact that we do not need this lemma in the case
where B(x) = xq1 (see the above remark), the lemma is obvious in this case because B(x)
depends only of x1, and with respect to this variable the function is concave for q /∈ [0, 1]
and convex for q ∈ (0, 1). So, in the remaining part of the proof we shall consider the
case where B(x) = x−q2

qx1x2−(q−1)δ
q−(q−1)δ .
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Since the roles of the points x± are symmetric, there is no loss of generality in assuming
that, say, x+

2 = max{x±2 } = x0
2. Then, since B is linear in x1, we have

B(x0)−
(
α−B(x−) + α+B(x+)

)
=
(
α−B(x−1 , x

+
2 ) + α+B(x+

1 , x
+
2 )
)
−
(
α−B(x−1 , x

−
2 ) + α+B(x+

1 , x
+
2 )
)

= α−
(
B(x−1 , x

+
2 )−B(x−1 , x

−
2 )
)
.

The sign of this expression coincides with the sign of the derivative

∂B(x−1 , x2)
∂x2

= q(q − 1)x−q−1
2

δ − x−1 x2

q − (q − 1)δ
,

which coincides with the sign of q(q−1) because by assumption the point (x−1 , x
+
2 ) (and,

therefore, the entire interval {(x−1 , x2) : x−2 ≤ x2 ≤ x+
2 }) is in Ωδ, i.e., x−1 x2 ≤ δ. This

implies inequality (38) for q /∈ [0, 1] and inequality (39) for q ∈ (0, 1). �
Proof of Lemma 41. Without loss of generality we may assume that ε < 2δ, because if
the lemma is true for some ε, it is also true for all larger ε. Since x0

2 = max{x±2 } and
both points x± are in Ωδ, at least one of the inequalities x±1 x

0
2 ≤ ε is always true. First

we take α− = α+ = 1/2; if the required inequalities are both true, we fix this splitting.
Otherwise, we start to change α, namely, we increase α+ if the point (x+

1 , x
0
2) is outside

Ωε and reduce it (i.e., increase α−) in the opposite case. By symmetry, it suffices to
examine one of the possible situations, say, the case where x+

1 x
0
2 > ε for α+ = 1/2. So,

we begin to enlarge the interval I+ (i.e., to increase α+) and stop at the moment when
x+

1 x
0
2 = ε for the first time. This will be our splitting procedure. Now we must check

that such a moment does exist, and, moreover, the corresponding value of α+ is bounded
away from 0 and 1 uniformly with respect to w and I.

For p = 1 the points x± do not depend continuously on α+ in general, but the first
coordinates x±1 do. We check that x+

1 x
0
2 < ε for α+ = δ/ε, which implies that the

required value of α+ exists and is in (1/2, δ/ε). Since x0
1 = α−x−1 + α+x+

1 , we have

x+
1 <

x0
1

α+
=

x0
1x

0
2

α+x0
2

≤ δ

α+x0
2

,

whence for α+ = δ/ε we get

x+
1 x

0
2 <

δ

α+
= ε.

So, we can conclude that

max{α±} ≤ δ

ε
,

and this estimate only depends on δ and ε, but not on the choice of the interval I or the
weight w. �

Proof of Lemma 21. It follows the lines of the proof of Lemma 2. Here only x2 = 〈w1−p′ 〉I
must be replaced by x2 = supI 1/w. �
Appendix 1: how to find the Bellman functions (13)–(14), (30)–(31), and
(36)–(37). First, consider the case where 1 < p < ∞. We begin with explaining why
we look for a concave function Bmax and a convex function Bmin. If an interval I is
split into two parts I = I+ ∪ I−, |I±| = α±|I|, we consider two extremal weights w±

(or “almost extremal” if there is no extremal function) defined on I±, respectively, and
write the identity

〈wq〉I = α−〈wq〉I− + α+〈wq〉I+

for the weight w on I coinciding with w+ on I+ and with w− on I−. We see that on the
right-hand side we have a convex combination of the values of the Bellman function B at
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the points x± (or almost these values if there is no extremal function), but the average
on the left-hand side is between Bmin(x0) and Bmax(x0), x0 = α−x− + α+x+, by the
definition of the Bellman function. This leads to the concavity condition for Bmax and
to the convexity condition for Bmin. Of course, it is not quite clear why the above weight
w is in Aδp on the entire interval I. However, the heuristic nature of the forthcoming
arguments allows us to drop this question.

Next, we check that the functions B must be of the following form:

(42) B(x1, x2; p, q, δ) = xq1g(x1x
p−1
2 ; p, q, δ),

where g( · ; p, q, δ) is a function on [1, δ] such that g ≥ 1 for q 6∈ (0, 1), 0 ≤ g ≤ 1 for
q ∈ [0, 1], and the boundary condition g(1; p, q, δ) = 1 is satisfied.

Indeed, if a weight w runs over the entire class Aδp(J), then so does the weight w̃ = tw,
where t is an arbitrary positive constant. For the averages of these weights we have
〈w̃〉 = t〈w〉, 〈w̃1−p′ 〉 = t1−p

′〈w1−p′ 〉, and 〈w̃q〉 = tq〈wq〉. Taking the supremum (or
infimum) in the latter identity, we get

B(tx1, t
1−p′x2; p, q, δ) = tqB(x1, x2; p, q, δ).

Putting t = xp−1
2 , we obtain the relation

B(x1x
p−1
2 , 1; p, q, δ) = x

q(p−1)
2 B(x1, x2; p, q, δ).

Therefore, B(x) = xq1g(x1x
p−1
2 ), where g is a function on [1, δ] defined by the identity

g(y) = y−qB(y, 1). By the Hölder inequality we have 〈w〉q ≤ 〈wq〉 for q 6∈ (0, 1) and
〈w〉q ≥ 〈wq〉 for q ∈ [0, 1] (see (41)). Therefore, B(x) ≥ xq1 for q 6∈ (0, 1) and B(x) ≤ xq1
for q ∈ [0, 1], which implies that g ≥ 1 for q 6∈ (0, 1) and 0 ≤ g ≤ 1 for q ∈ [0, 1].
Moreover, since the relation x2 = x1−p′

1 occurs if and only if w = x1 = const, we have
B(x1, x

1−p′
1 ; p, q, δ) = xq1, i.e., g(1; p, q, δ) = 1.

Now, we introduce the variable y = x1x
p−1
2 and calculate the matrix of the second

derivatives (23) for the “true” Bellman function B in terms of g. Using the representa-
tion (42), we obtain

∂y

∂x1
=

y

x1
,

∂y

∂x2
= (p− 1)

y

x2
,

∂B
∂x1

= qxq−1
1 g + xq1g

′ ∂y

∂x1
= xq−1

1 (qg + yg′),

∂B
∂x2

= xq1g
′ ∂y

∂x2
= (p− 1)xq1x

−1
2 yg′,

∂2B
∂x2

1

= (q − 1)xq−2
1 (qg + yg′) + xq−1

1 (qg′ + g′ + yg′′)
∂y

∂x1

= xq−2
1

(
q(q − 1)g + 2qyg′ + y2g′′

)
,

∂2B
∂x1∂x2

= xq−1
1 (qg′ + g′ + yg′′)

∂y

∂x2
= (p− 1)xq−1

1 x−1
2

(
(q + 1)yg′ + y2g′′

)
,

∂2B
∂x2

2

= −(p− 1)xq1x
−2
2 yg′ + (p− 1)xq1x

−1
2 (g′ + yg′′)

∂y

∂x2

= (p− 1)xq1x
−2
2

(
(p− 2)yg′ + (p− 1)y2g′′

)
,

and the matrix (23) turns into

(43)

(
∂2B
∂x2

1

∂2B
∂x1∂x2

∂2B
∂x1∂x2

∂2B
∂x2

2

)
=
xq−2

1

p− 1

(
1 1
0 (p− 1)x1x

−1
2

)
R

(
1 0
1 (p− 1)x1x

−1
2

)
,
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where

(44) R =
(
pq(γ − 1)g − pyg′ pγyg′

pγyg′ (p− 2)yg′ + (p− 1)y2g′′

)
.

If this matrix were nonsingular, equality in (18)–(19) could not occur except for the case
where x− = x+. However, for an extremal function w for Bmax (if such a function exists)
we have

Bmax(x0) = 〈wq〉I = α−〈wq〉I− +α+〈wq〉I+ ≤ α−Bmax(x−) +α+Bmax(x+) ≤ Bmax(x0).

So, for a nonsingular matrix (43) this leads to the identity x+ = x− for every splitting
of the initial interval I, which means that the weight w is constant. Since for any point
of Ωδ except for the boundary x1x

p−1
2 = 1 this is not the case, the matrix (43) must be

singular.
It is possible to analyze the situation more carefully in the case where there is no

extremal weight and we have only a sequence of weights whose qth powers tend to the
value of B, but we omit this, again by the heuristic nature of the arguments in this
appendix: the said above already justifies looking for a singular matrix (43). So, we
equate the determinant of the matrix (44) to zero:

(45) (q(γ − 1)g − yg′)
(
(p− 2)yg′ + (p− 1)y2g′′

)
= p
(
γyg′

)2
.

The concavity condition for Bmax and the convexity condition for Bmin take the form

(46) yg′min − q(γ − 1)gmin ≤ 0 ≤ yg′max − q(γ − 1)gmax.

Let us solve equation (45). We introduce a new variable h = yg′/g. Then y2g′′/g =
yh′ + h2 − h, and (45) takes the form(

pq(γ − 1)− ph
)(

(p− 1)(h2 + yh′)− h
)

= (pγh)2;

therefore,

(p− 1)yh′
(
q(q − 1)(p− 1)− ph

)
= (pq − q + 1)2h2 −

(
q(q − 1)(p− 1)− ph

)(
(p− 1)h2 − h

)
= p(p− 1)h3 + (p2q − p− q + 1)h2 + q(q − 1)(p− 1)h

= (p− 1)h(h+ q)(ph+ q − 1),

q(q − 1)(p− 1)− ph
h(h+ q)(ph+ q − 1)

dh =
dy

y
,(p− 1

h
+

1
h+ q

− p2

ph+ q − 1

)
dh =

dy

y
,

(p− 1) log |h|+ log |h+ q| − p log |ph+ q − 1| = log |y|+ const,

y = C
|h+ q||h|p−1

|ph+ q − 1|p .(47)

Since g > 0, (46) can be rewritten as follows:

(48) hmin ≤ q(γ − 1) ≤ hmax.

Now we introduce a more convenient variable r by the formula

(49) r =
h− q(γ − 1)

γh
or h =

q(γ − 1)
1− γr .

Rewriting (47) in terms of r, we get

(50) y = δ
1− r

(1 − r/p)p ,
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where δ is a new constant parameter, so that r = r±p = u±p (y/δ). The new parameter is
denoted by δ because then the natural domain where g will be defined turns out to be
precisely the interval [1, δ]. The sign of r will be chosen depending on the value of q and
on whether we consider Bmax or Bmin. Note that y = 1 if r = s = up(1/δ).

Now, we rewrite the equation for g in terms of r:

d(log g) = hd(log y) =
q(γ − 1)
1− γr

( 1
1− r/p −

1
1− r

)
dr

=
(

q

1− r −
q − 1
p− r −

γ

1− γr

)
dr.

With the initial condition g|y=1 = g|r=s = 1, we get

log g =
∫ s

r

(
q

1− t −
q − 1
p− t −

γ

1− γt

)
dt

= q log
1− s
1− r + (q − 1) log

p− r
p− s + log

1− γr
1− γs ,

i.e.,

g(x; p, q, δ) =
(

1− s
1− r

)q (
p− r
p− s

)q−1 1− γr
1 − γs .

So, we arrive at the expression for the Bellman function B as in (16). It only remains to
choose the signs of r and s so as to ensure (48).

After differentiating (49), we see that the derivative

∂h

∂r
=
qγ(γ − 1)
(1 − γr)2

does not change its sign. For Bmax condition (34) can be rewritten as h(r) ≥ h(0); for
Bmin the reverse inequality comes into play. Therefore, for Bmax the sign of ∂h∂r (i.e., the
sign of qγ(γ−1)) coincides with the sign of r. Thus, r = r+ for q ∈ [1−p′, 0]∪ [1,∞) and
r = r− for q ∈ (−∞, 1− p′] ∪ [0, 1]. Accordingly, for Bmin we must choose the opposite
sign for r.

Note that, for y to run over the interval [1, δ], the variable r+ must run over [0, s+] or
r− must run over [s−, 0]. Condition (48) imposed on h allows r to vary in the interval
(−∞, 1/γ) for positive γ or in (1/γ,∞) for negative γ; hence, r+ can run over the entire
interval [0, s+] only for γ < 1/s+ (i.e., for q < p−s+

(p−1)s+ ), and r− can run over the entire

interval [s−, 0] only for γ > 1/s− (i.e., for q > p−s−
(p−1)s− ). Therefore, we can use the

variable r+ only when γ < 1/s+ and the variable r− only when γ > 1/s−. We arrive
at the necessary condition 1/s− < γ < 1/s+ or p−s−

(p−1)s− < q < p−s+
(p−1)s+ for the function

y 7→ hmax(y) to be well defined for y ∈ [1, δ]. But we already know that, for q (or γ)
outside of the intervals mentioned, the function Bmax(x; p, q, δ) is infinite everywhere
except for the curve x1x

p−1
2 = 1.

Thus, we have constructed the Bellman function as in Theorem 2 for 1 < p < ∞.
An easy way to visualize the Bellman function for p = ∞ in Theorem 2∞ is to pass to
the limit as p→∞ in (13)–(14) taking into account that the variable x1 should stay as
it is, but xp−1

2 should be replaced by e−x2 (i.e., x2 → 0). This means that we simply
replace r±p = u±p (x1x

p−1
2 ) by r±∞ = u±∞(x1e

−x2) and, therefore, s±p by s±∞. Since γ → q
as p→∞, we pass from (13)–(14) to (36)–(37).

A more rigorous way to get these expressions is to repeat the procedure of finding an
appropriate solution of the Bellman equation, as it was done for 1 < p <∞. As before,
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we look for a concave function Bmax and a convex function Bmin on some domain Ωδ.
Now, the function B has the form

(51) B(x1, x2; q, δ) = xq1g(x1e
−x2 ; q, δ),

where g( · ; q, δ) is a function on [1, δ] such that g ≥ 1 for q 6∈ (0, 1), 0 ≤ g ≤ 1 for
q ∈ [0, 1], and the boundary condition g(1; q, δ) = 1 is fulfilled. All this is a consequence
of the relation

B(tx1, x2 + log t; q, δ) = tqB(x1, x2; q, δ),

which follows from the simultaneous consideration of two families of weights: w, w ∈
Aδ∞(J), and w̃ = tw, where t is an arbitrary positive constant. The boundary condition
g(1; q, δ) = 1 follows from the fact that the relation x1 = ex2 occurs if and only if
w = x1 = const, i.e., B(x1, log x1; q, δ) = xq1.

Again we introduce the new variable y = x1e
−x2 and calculate the matrix (32) by

using the representation (51):

∂y

∂x1
=

y

x1
,

∂y

∂x2
= −y,

∂B
∂x1

= qxq−1
1 g + xq1g

′ ∂y

∂x1
= xq−1

1 (qg + yg′),

∂B
∂x2

= xq1g
′ ∂y

∂x2
= −xq1yg′,

∂2B
∂x2

1

= (q − 1)xq−2
1 (qg + yg′) + xq−1

1 (qg′ + g′ + yg′′)
∂y

∂x1

= xq−2
1

(
q(q − 1)g + 2qyg′ + y2g′′

)
,

∂2B
∂x1∂x2

= −qxq−1
1 yg′ − xq1(g′ + yg′′)

∂y

∂x1
= −xq−1

1

(
(q + 1)yg′ + y2g′′

)
,

∂2B
∂x2

2

= −xq1(yg′)′
∂y

∂x2
= xq1(yg′ + y2g′′).

The matrix (32) turns into

(52)

(
∂2B
∂x2

1

∂2B
∂x1∂x2

∂2B
∂x1∂x2

∂2B
∂x2

2

)
= xq−2

1

(
1 −1
0 x1

)
R

(
1 0
−1 x1

)
,

where

R =
(
q(q − 1)g − yg′ −qyg′
−qyg′ yg′ + y2g′′

)
.

As before, we require that this matrix be singular:

(53) (q(q − 1)g − yg′)(yg′ + y2g′′) = (qyg′)2,

and negative definite (for Bmax) or positive definite (for Bmin):

(54) yg′min − q(q − 1)gmin ≤ 0 ≤ yg′max − q(q − 1)gmax.

It is natural that (53) and (54) are the limit cases of (45) and (46) as p→∞.
As before, we make the substitution h = yg′/g and solve equation (53):

(55) y = y∞
h+ q

h
exp

(
−q − 1

h

)
;

inequality (54) turns into

(56) hmin − q(q − 1) ≤ 0 ≤ hmax − q(q − 1).
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Again we introduce a new variable r by putting

r =
h− q(q − 1)

qh
or h =

q(q − 1)
1− qr .

Then (55) turns into
y = δ(1 − r)er,

where δ = y∞
q
q−1 exp(−1/q), so that r = r± = u±(y/δ). As before, the sign of r is

determined by (56). Finally, we have

B(x; q, δ) = xq1g(y; q, δ) = xq1
1− qr
1− qs

(
1− r
1− s

)q
.

Now, we pass to the more difficult limit case of p = 1. Of course, to find a candidate
for the Bellman function we can pass to the limit as p → 1 in formulas (13)–(14). How
to do this was explained immediately before the statement of Theorem 21. However, we
try to adapt the arguments used above to the particular case in question. The situation
is noteworthy, because condition (38) is no longer the usual concavity, and (39) is not
the usual convexity.

As before, we consider three points in Ωδ(1): x± and x0 = (α−x−1 + α+x+
1 ,maxx±2 ).

For a given weight w, we get such a triple if we take x0 = (〈w〉I , supI 1/w), x± =
(〈w〉I± , supI± 1/w), where I = I− ∪ I+ is a splitting with |I±| = α±|I|.

Assuming that the function B is sufficiently smooth, we take its Taylor expansion near
the point x0 up to the second order terms:

(57) B(x±) ≈ B(x0) +
2∑
i=1

∂B
∂xi

(x0)(x±i − x0
i ) +

1
2

2∑
i,j=1

∂2B
∂xi∂xj

(x0)(x±i − x0
i )(x

±
j − x0

j ).

Since one of the values x±2 coincides with x0
2, for definiteness we assume that x+

2 = x0
2

and ∆2
def= x0

2 − x−2 ≥ 0. Recalling that x0
1 = α−x−1 + α+x+

1 , we put ∆1 = x+
1 − x−1 .

Then, taking the linear combination of the expressions (57) with the coefficients α±, we
get

α−B(x−) + α+B(x+)−B(x0)

≈ −α− ∂B
∂x2

∆2 +
1
2
α−α+ ∂

2B
∂x2

1

∆2
1 + α−α+ ∂2B

∂x1∂x2
∆1∆2 +

1
2
α−

∂2B
∂x2

∆2
2.

For Bmax this expression must be nonpositive for all small ∆1 and small positive ∆2.
This yields

∂Bmax

∂x2
≥ 0,

∂2Bmax

∂x2
1

≤ 0.

For Bmin the reverse inequalities must be true. Supplementing this by the singularity
condition (which just provides the Bellman equation, as a matter of fact), we get two
possibilities:

∂2B
∂x2

1

= 0,
∂Bmax

∂x2
≥ 0,

∂Bmin

∂x2
≤ 0;(58)

∂B
∂x2

= 0,
∂2Bmax

∂x2
1

≤ 0,
∂2Bmin

∂x2
1

≥ 0.(59)

Together with a weight w ∈ Aδ1 we consider the family of weights w̃ = tw; this yields
the identity

B
(
tx1,

x2

t
; p, q, δ

)
= tqB(x1, x2; p, q, δ), t > 0.
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Putting t = x2 we obtain the relation

B(x1x2, 1; p, q, δ) = xq2B(x1, x2; p, q, δ),

whence B(x) = xq1g(x1x2), where g is a function on [1, δ] defined by the formula g(y) =
y−qB(y, 1).

As before, by the Hölder inequality (see (41)) we have B(x) ≥ xq1 for q 6∈ (0, 1) and
B(x) ≤ xq1 for q ∈ [0, 1], which implies that g ≥ 1 for q 6∈ (0, 1) and 0 ≤ g ≤ 1 for
q ∈ [0, 1]. Moreover, since the relation x1x2 = 1 occurs if and only if w = x1 = const, we
have B(x1, x

−1
1 ; q, δ) = xq1, i.e., g(1; q, δ) = 1.

First we find a solution satisfying (58). This must be a linear function in x1, i.e.,

B(x) = a(x2) + b(x2)x1 = xq1g(x1x2).

Putting x1 = x−1
2 , we get a(x2) = x−q2 − b(x2)x−1

2 , whence

x−q2 + b(x2)(x1x2 − 1)x−1
2 = xq1g(x1x2).

Therefore,

b(x2)xq−1
2 =

(x1x2)qg(x1x2)− 1
x1x2 − 1

def= c = const,

and

B(x) = cx1x
1−q
2 + (1− c)x−q2 ,

g(y) = cy1−q + (1− c)y−q.

Since the function y 7→ yq−1
y−1 increases monotonically for q /∈ (0, 1) and decreases mono-

tonically for q ∈ [0, 1], and

g(y)− 1 = y−q(y − 1)
(
c− yq − 1

y − 1

)
,

the constant c satisfies the condition

c ≥ δq − 1
δ − 1

> q for q /∈ [0, 1],

c ≤ δq − 1
δ − 1

< q for q ∈ (0, 1).
(60)

Now we examine the sign of the derivative

∂B
∂x2

= c(1− q)x1x
−q
2 − (1− c)qx−q−1

2 = x−q−1
2

[
c(1 − q)x1x2 − (1− c)q

]
.

The linear function ϕ : y 7→ c(1 − q)y − (1 − c)q must keep its sign on the interval
y ∈ [1, δ]. But we know its sign at the point y = 1, because by (60) we have c− q > 0 for
q /∈ [0, 1] and c − q < 0 for q ∈ (0, 1). Therefore, this function is a candidate for Bmax

if q /∈ [0, 1] and for Bmin if q ∈ (0, 1). Note that there is no admissible value of c for
q ≥ δ

δ−1 , because then (1− q)δ+ q ≤ 0 and the restriction ϕ(δ) = c[(1− q)δ+ q]− q ≥ 0
contradicts condition (60). For the other q it is natural to choose c in such a way that
[1, δ] be the maximum interval where the function ϕ does not change its sign, i.e., to
solve the equation δ = (1−c)q

c(1−q) , whence

c =
q

q + (1− q)δ ,

and for B we get the expression written in formulas (36)–(37).
Now we consider the second case, where conditions (59) are fulfilled. This implies

immediately that in the representation B = xq1g(x1x2) the function g is constant and,



THE SHARP CONSTANT IN THE REVERSE HÖLDER INEQUALITY 73

consequently, g = 1, i.e., B = xq1. To understand which of the two functions Bmin or
Bmax it represents, we need only to find the sign of its second derivative. Since

∂2B
∂x2

1

= q(q − 1)xq−2
1 ,

we have Bmin = xq1 for q 6∈ (0, 1) and Bmax = xq1 for q ∈ [0, 1]. This yields the second
half of formulas (36)–(37).

Appendix 2: how to find an extremal function. In the proof of Lemma 1 the
required extremal function appeared without any explanations. Now we explain how to
find it.

Since for an extremal function we have equality in (26) on the corresponding side
(of course, each of Bmin and Bmax has its own extremal function), we need to have
equality on each splitting step in the chain of inequalities (27). This means that in the
splitting process we “go” only along the vector field determined by the kernel vectors
of the matrix (23). From (24) we get the equation for the trajectories on which the
functions B are linear:

(61) x2(1 − r)dx1 + (p− 1)x1dx2 = 0.

The corresponding trajectories are the family of the segments of the tangent lines

(62) bpx1 + δ(p− 1)x2 = δbp

to the graph x1x
p−1
2 = δ between the points (δpb1−p 1−s

p−s ,
bp
p−s) and (δb1−p, b). We check

this claim.
Together with (61), we use the definition of r: r = u±p (1

δx1x
p−1
2 ), i.e.,

(63) δ(1− r)
(

1− r

p

)−p
= x1x

p−1
2 ,

whence

− (p− 1)rdr
(1− r)(p − r) =

dx1

x1
+ (p− 1)

dx2

x2
.

Combined with (61), this equation yields

(64) x1(r) = x1(0)p
1− r
p− r , x2(r) =

x2(0)p
p− r .

If we take x2(0) = b as a free parameter, then from (63) with r = 0 we get x1(0) = δb1−p,
and excluding r from (64) we obtain equation (62). In fact, we have got two families of
straight segments:

ω+
δ (b) =

{
x =

(
δpb1−p

1− r
p− r ,

bp

p− r
)

: 0 ≤ r ≤ s+
}
,

ω−δ (b) =
{
x =

(
δpb1−p

1− r
p− r ,

bp

p− r
)

: s− ≤ r ≤ 0
}
.

Each of them covers the entire domain Ωδ:

Ωδ =
⋃
b>0

ω+
δ (b) =

⋃
b>0

ω−δ (b).

The functions Bmax and Bmin are linear on the corresponding segments (we must take
the same sign for ω that is taken for r in the expression for B in accordance with
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formulas (13)–(14)). Indeed,

xγ1x
1−γ
2

(
1− s
1− r

)γ 1− γr
1 − γs =

(
δpb1−p

1− r
p− r

)γ (
bp

p− r

)1−γ (1− s
1− r

)γ 1− γr
1− γs

= δγpb1−pγ
(1− s)γ
1− γs

1− γr
p− r

= δγb−pγ
(1− s)γ
1− γs

(
bpγ + (1 − γp)x2

)
.

Note that we have yet another “admissible trajectory”, which is the envelope of the
segments ω+

δ (b) (or ω−δ (b)): x1x
p−1
2 = δ.

First we consider the case of points on this critical line: x0
2 is an arbitrary positive

number and x0
1 = δ(x0

2)1−p. Let I = [0, 1]. We split this interval at a point a: I− = [0, a],
I+ = [a, 1]. The points x± must be on our “admissible trajectory”, i.e., on the graph
x1x

p−1
2 = δ on one side of x0, and on the straight line x0

2x1 + (p − 1)x0
1x2 = px0

1x
0
2 on

the other side. By symmetry, we may assume that x− is on the graph x1x
p−1
2 = δ. Then

for all a ∈ [0, 1] we have

(65)
(1
a

∫ a

0

w(t) dt
)(1

a

∫ a

0

w(t)1−p′ dt
)p−1

= δ.

If we introduce

v(a) =
∫ a

0

w(t)1−p′ dt,

then, substituting
∫ a

0
w(t)1−p′ dt = v in (65), we get(1

a

∫ a

0

v′(t)1−p dt
)(v

a

)p−1

= δ,∫ a

0

v′(t)1−p dt = δapv1−p,

(v′)1−p = δptp−1v1−p + δtp(1− p)v−pv′,

1 = δ
(
p− (p− 1)

tv′

v

)( tv′
v

)p−1

,

(1− s)
(

1− s

p

)−p
=

1
δ

=
[
1− p

(
1− v

tv′

)]( v

tv′

)−p
.

Therefore,

p
(

1− v

tv′

)
= s,

dv

v
=

p

p− s
dt

t
,

v = const · t
p
p−s ,

w1−p′ = v′ = const · t
s
p−s ,

w = const · t
s(1−p)
p−s .

To normalize the solution by the condition 〈w〉I = x0
1, we must take const = x0

1
p(1−s)
p−s ,

and finally we obtain

(66) w(t) = x0
1

p(1− s)
p− s t

s(1−p)
p−s .
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Note that s(1−p)
p−s > −1 (since s < 1), whence w ∈ L1(I). We check that also w1−p′ ∈

L1(I) and x0
1(x0

2)p−1 = δ. Since

s(1− p)
p− s · (1 − p′) =

s

p− s > −1,

the function w1−p′ is integrable, and

x0
2 = 〈w1−p′ 〉 =

(
x0

1

p(1− s)
p− s

)1−p′ ∫ 1

0

t
s
p−s dt =

(
x0

1(1− s)
)1−p′(p− s

p

)p′
,

x0
1(x0

2)p−1 = x0
1

(
x0

1(1 − s)
)−1
(p− s

p

)p′(p−1)

=
1

1− s
(

1− s

p

)p
= δ.

Now, let x0 be an arbitrary point in Ωδ. Then we make the following splitting:
x− = (δ(x−2 )1−p, x−2 ) and x+ = ((x+

2 )1−p, x+
2 ), where both points x± are on the line (62)

with b = x−2 , i.e., on the tangent line to the graph x1x
p−1
2 = δ at the point x−, to

guarantee equality in (18) (or in (19)). Since the point x+ corresponds to the value
r = s in (64), and the point x0 corresponds to the value r = r0 = up(1

δx
0
1(x0

2)p−1),
equations (64) yield

x0
1 = x−1 p

1− r0

p− r0
, x+

1 = x−1 p
1− s
p− s ,

x0
2 =

px−2
p− r0

, x+
2 =

px−2
p− s .

For the splitting point a = α− we have

x0
2 − x+

2 = α−(x−2 − x+
2 ),

whence

a = α− =
p(s− r0)
s(p− r0)

.

Since x+
1 (x+

2 )p−1 = 1, the function w is constant on I+, i.e.,

w|I+ = x+
1 = x0

1

(1− s)(p− r0)
(1− r0)(p− s) ,

and for the interval I− we must take the extremal function (66) renormed to this interval:

w|I− = x−1
p(1− s)
p− s

( t
a

) s(1−p)
p−s

= x0
1

(1− s)(p− r0)
(1− r0)(p− s)

( t
a

) s(1−p)
p−s

.

This yields the extremal function we used in the proof of Lemma 1.
Passing to the limit as p→∞, we get the extremal function

w(t) =

{
x+

1

(a
t

)s
if 0 ≤ t ≤ a,

x+
1 if a ≤ t ≤ 1,

that was used in the proof of Lemma 1∞.
Of course, this extremal function can be obtained by repeating the construction for

p <∞, which clarifies the situation to a greater extent than a formal limit passage. The
trajectories where the functions B are linear (i.e., the vector field given by the kernel
of (32)) are

ω+
δ (b) = {x = (δeb(1 − r), b− r) : 0 ≤ r ≤ s+},
ω−δ (b) = {x = (δeb(1 − r), b− r) : s− ≤ r ≤ 0}.
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They are the segments of the tangent line

x1 = δeb(x2 − b + 1)

to the graph x1 = δex2 between the points (eb−s, b− s) and (δeb, b).
After the above analysis it is useful to repeat the remark made before the statement of

Theorem 2∞: it would be more natural to consider the variable x2 = −(p− 1) log〈w 1
1−p 〉I

rather than x2 = 〈w 1
1−p 〉I . But this becomes clear a posteriori , when we have found and

investigated the Bellman function for various p. We review briefly the changes that
happen if we take x2 = −(p− 1) log〈w 1

1−p 〉I as the second variable. For such a choice of
x2 the domain Ωδ(p) is the same for all p, namely,

Ωδ = {(x1, x2) : x2 ∈ R, 1 ≤ x1e
−x2 ≤ δ}.

For all p the Bellman function has the form

B(x; p, q, δ) = xq1g(y; p, q, δ)

with y = x1e
−x2. Now, in Lemma 3 we must consider “generalized” convexity/concavity:

(67)
Bmax(x0) ≥ α−Bmax(x−) + α+Bmax(x+),

Bmin(x0) ≤ α−Bmin(x−) + α+Bmin(x+),

where
x0

1 = α−x−1 + α+x+
1 ,

x0
2 = −(p− 1) log

(
α−e−

x
−
2

p−1 + α+e−
x
+
2

p−1
)
,

(68)

i.e., the three points x±, x0 are on the curve

(69) x2 = −(p− 1) log(ax1 + b),

which now plays the role of a straight line. Any two points x± can be joined by a unique
curve of this form with the parameters

a =
e−

x
+
2

p−1 − e−
x
−
2

p−1

x+
1 − x−1

, b =
x+

1 e
− x

+
2

p−1 − x−1 e−
x
−
2

p−1

x+
1 − x−1

,

and the point x0 given by (68) is on the same curve. The concavity/convexity condi-
tion (67) is concavity/convexity along the lines of the form (69). Surely, the quadratic
form responsible for the corresponding property changes. Now, the role of the matrix
in (23) will be played by the matrix

(70)

(
∂2B
∂x2

1

∂2B
∂x1∂x2

∂2B
∂x1∂x2

∂2B
∂x2

2
+ 1

p−1 ·
∂B
∂x2

)
.

Calculating the quadratic form of this matrix, we get

−γq(q − 1)xq−2
1

r(1 − γs)
(1− s

1− r
)q(p− r

p− s
)q−1(

(1− r)∆1 − x1∆2

)2
.

Now, the trajectories ω± determined by the kernel of the matrix (70) are the pieces of
a logarithmic curve that touches the graph x2 = log x1

δ . If the tangency point is denoted
by κ = (κ1, κ2) (κ1e

−κ2 = δ), then

ω+
δ (κ) =

{
x =

(
κ1
p(1− r)
p− r , κ2 + (p− 1) log

p− r
p

)
: 0 ≤ r ≤ s+

}
,

ω−δ (κ) =
{
x =

(
κ1
p(1− r)
p− r , κ2 + (p− 1) log

p− r
p

)
: s− ≤ r ≤ 0

}
.
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In the limit case as p→∞, these segments of the logarithmic curve tend to segments of
the straight line that touches the boundary of Ωδ at the point κ.

To consider the other limit case (p → 1), we need to renormalize the basis in which
we calculate the matrix (70), namely, we divide the second vector by

√
p− 1. Then we

can pass to the limit(
∂2B
∂x2

1

√
p− 1 ∂2B

∂x1∂x2√
p− 1 ∂2B

∂x1∂x2
(p− 1)∂

2B
∂x2

2
+ ∂B

∂x2

)
−→

(
∂2B
∂x2

1
0

0 ∂B
∂x2

)
.

Since the limit matrix is diagonal, the Bellman equation “factorizes” and we get two
independent equations: ∂2B

∂x2
1

= 0 and ∂B
∂x2

= 0.
In this limit the curve ω+(κ) turns into a horizontal straight segment and ω−(κ) into

a vertical one:

ω+
δ (κ) =

{
x = (κ1t, κ2) :

1
δ
≤ t ≤ 1

}
,

ω−δ (κ) = {x = (κ1, κ2 + t) : 0 ≤ t ≤ log δ}.

Appendix 3: how to calculate the “Ap-norm” of the extremal function. Since
the “Ap-norm” (2) (or (1) for p =∞) does not change after multiplication of the weight
by a constant, we calculate the supremum of the expression

(71) 〈w〉I〈w1−p′ 〉p−1
I

for the weight

wa,ν(t) =

{
aνt−ν if 0 ≤ t ≤ a,
1 if a ≤ t ≤ 1.

We shall consider I = [α, β] with 0 ≤ α < a ≤ β ≤ 1. The average 〈w〉[0,1] is finite if
ν < 1, and 〈w1−p′ 〉p−1

I is finite if ν > 1−p; in what follows we assume that 1−p < ν < 1.
Direct calculation yields

〈w〉I =
β(1− ν) + aν − α1−νaν

(1− ν)(β − α)
,

〈w1−p′ 〉I =
β[1 + ν(p′ − 1)]− aν(p′ − 1)− α1+ν(p′−1)a−ν(p′−1)

[1 + ν(p′ − 1)](β − α)
.

We introduce two new variables

λ =
α1−νaν

β(1− ν) + aν
, µ =

α1+ν(p′−1)a−ν(p′−1)

β[1 + ν(p′ − 1)]− aν(p′ − 1)
.

The restriction 0 ≤ α < a ≤ β implies 0 ≤ λ < 1, 0 ≤ µ < 1. We introduce yet another
parameter

K =
(

1− ν +
aν

β

)[
1 + ν(p′ − 1)− aν(p′ − 1)

β

]p−1

= (1− τ)
(

1 +
τ

p− 1

)p−1

,

where the variable τ = ν(1 − a/β) is in the same interval 1 − p < τ < 1 as ν. Then
0 < K ≤ 1. Indeed, the function τ 7→ K(τ) increases monotonically from 0 to 1 when τ
runs from 1− p to 0, and decreases monotonically from 1 to 0 when τ runs from 0 to 1.
Rewriting (71) in these new terms, we obtain

〈w〉I〈w1−p′ 〉p−1
I =

K(1− λ)(1 − µ)p−1

(1− α/β)p
δ,

where

(72) δ =
1

(1− ν)[1 + ν(p′ − 1)]p−1
.
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We replace the fraction α/β in the denominator by K1/pλ1/pµ1/p′ . We can do this
because

λ1/pµ1/p′ =
α

1−ν
p aν/p(

β(1− ν) + aν
)1/p α

1+ν(p′−1)
p′ a

−ν p
′−1
p′(

β[1 + ν(p′ − 1)]− aν(p′ − 1)
)1/p′ =

α

βK1/p
.

Finally, we get

(73) 〈w〉I 〈w1−p′〉p−1
I = δ

K(1− λ)(1 − µ)p−1

(1−K1/pλ1/pµ1/p′)p
.

To show that the “Ap-norm” of wa,ν is δ, we need only to check that the above
fraction does not exceed 1. Indeed, this fraction is equal to 1 for α = 0 and β = a,
when K = 1 and λ = µ = 0. Observe that the intervals with β < a do not require any
special treatment, because for such β the expression (71) does not depend on a (aν is a
multiplicative constant) and we can take the expression (72) with a = β.

The remaining arguments are formal and easy. We consider the function

ϕ(λ, µ) =
(1− λ)(1 − µ)p−1

(1−K1/pλ1/pµ1/p′)p

on the square 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1. Since

∂ϕ

∂λ
=
λ−1/p′(1− µ)p−1(K1/pµ1/p′ − λ1/p′ )

(1 −K1/pλ1/pµ1/p′)p
,

ϕ takes its maximum value for λ = Kp′−1µ:

ϕ(Kp′−1µ, µ) =
( 1− µ

1−Kp′−1µ

)p−1

.

Since the latter function is monotone decreasing in µ, its maximum value is 1 for µ = 0,
i.e.,

〈w〉I〈w1−p′ 〉p−1
I ≤ Kδ ≤ δ =

1
(1− ν)[1 + ν(p′ − 1)]p−1

.

Note that the “Ap-norm” of wa,ν does not depend on a. So, fixing δ (i.e., ν) and
varying c and a, we can get an example of a weight representing any point of the domain
Ωδ. If we need a function wa,ν of a prescribed “Ap-norm” δ, we must solve the equation

1
δ

= (1− ν)[1 + ν(p′ − 1)]p−1 = (1− ν)
(
1− ν

1− p
)−(1−p)

,

whence

ν = u1−p
(1
δ

)
.

Using relation (25) and the notation s = up(1/δ), we can rewrite this solution in the
form

ν =
(p− 1)s
p− s ,

which was used in the proof of Lemma 1.
We do not present independent estimations in the case of p =∞, but simply pass to

the limit in the expression for δ (formula (72)). As a result, we see that the “A∞-norm”
of our weight is equal to δ = e−ν

1−ν .
I would like to thank S. V. Kislyakov who called my attention to the possibility of

including the limit case where p = 1 in the general framework; this case was absent in
the initial version of the paper.
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