EXPONENTIAL GROWTH OF SPACES
WITHOUT CONJUGATE POINTS

N. D. LEBEDEVA

§1. INTRODUCTION

An \(n\)-dimensional polyhedral space is a length space \(M\) (with intrinsic metric) triangulated into \(n\)-simplexes with smooth Riemannian metrics. In the definitions below, we assume that the triangulation is fixed.

The boundary of \(M\) is the union of the \((n-1)\)-simplexes of the triangulation that are adjacent to only one \((n-1)\)-simplex.

As usual, a geodesic in \(M\) is a naturally parametrized locally shortest curve defined on an interval. We say that \(M\) has no conjugate points if any two points in the universal covering space \(\tilde{M}\) of \(M\) are joined by a unique geodesic.

We say that the volume entropy of \(\tilde{M}\) is positive if the volume of metric balls in \(\tilde{M}\) has at least exponential growth.

Now, we state the main result of this paper.

Theorem 1. Let \(M\) be an \(n\)-dimensional compact polyhedral space without boundary and without conjugate points. If the triangulation of \(M\) contains three \(n\)-simplexes with a common \((n-1)\)-face, then the volume entropy of \(\tilde{M}\) is positive.

Corollary 1. Under the assumptions of Theorem 1, the fundamental group \(\pi_1(M)\) of \(M\) has at least exponential growth.

§2. GEODESICS IN \(M\): \(G\), \(SM\), ETC.

A geodesic in \(M\) is complete if it is defined on the entire real line \(\mathbb{R}\). A geodesic is generic if it intersects no \((n-2)\)-simplexes and intersects \((n-1)\)-simplexes transversally.

We denote by \(G\) the set of complete generic geodesics in \(M\) and consider the geodesic flow transformation (GFT)

\[\varphi_t : G \to G, \quad \varphi_t \gamma(s) = \gamma(t+s). \]

We observe that a generic geodesic \(\gamma : [a,b] \to M\) with \(\gamma(b) \notin M^{n-1}\) is uniquely continued beyond \(b\). If \(\gamma(b)\) belongs to a common \((n-1)\)-face \(F\) of \(n\)-simplexes \(\Delta_1, \ldots, \Delta_l\), then \(\gamma\) is continued beyond \(b\) in \(l-1\) different ways (uniquely into each of the remaining \(l-1\) simplexes by the rule “the angle of incidence is equal to the angle of reflection”).

The tangent space \(T_xM\) of \(M\) at a point \(x \in M\) is the tangent cone of \(M\) at \(x\). If \(x \in M \setminus M^{n-1}\), then \(T_xM\) is isometric to \(\mathbb{R}^n\).
If x belongs to an $(n-1)$-simplex F that is a common $(n-1)$-face of n-simplexes $\Delta_1, \ldots, \Delta_i$, then T_xM is the union of the half-spaces $T_x\Delta_i$ with common boundary hyperplane $T_x F$. We say that the vectors in $T_x\Delta_i \setminus T_x F$ go in the direction of Δ_i.

For each unit vector $e \in T_xM \setminus T_x F$, there exists a geodesic γ with $\gamma'(0) = e$. Observe that if we “glue together” two geodesic segments with initial velocity vectors making an angle of π, then we obtain a geodesic segment.

In what follows, we consider only tangent vectors at points in $M \setminus M^{n-2}$. For $x \in M$, we let $S_x \subset T_xM$ be the set of unit tangent vectors in T_xM. For any set $K \subset M$, we define $SK := \bigcup_{x \in K} S_x$. Thus, SM is the space of all unit tangent vectors of M.

§3. THE LIOUVILLE MEASURE μ_L

Let M be a polyhedral space. A canonical measure μ_L on the space SM is defined in a standard way as the product of two measures: the Riemannian volume on M and Lebesgue measure λ_x on the unit $(n-1)$-sphere S_x, $x \in M$. This measure is called Liouville measure.

Let $A = \{ \gamma : [a, b] \to M \}$ be a set of generic geodesics. We define

$$A'(t) := \{ \gamma'(t) \mid \gamma \in A \} \subset SM, \quad t \in [a, b].$$

The multiset $A'(t)$ is the pair $(A'(t), 1_{A'(t)})$, where

$$1_{A'(t)} : SM \to \{0\} \cup \mathbb{N}$$

is the “indicator function” acting by the rule

$$e \mapsto \# \{ \gamma \in A \mid \gamma'(t) = e \}.$$

The measure $\mu_L(A'(t))$ of $A'(t)$ is the integral of $1_{A'(t)}$:

$$\mu_L(A'(t)) := \int_{SM} 1_{A'(t)} d\mu_L.$$

If for any two geodesics $\gamma_1, \gamma_2 \in A$ we have $\gamma_1'(t) \neq \gamma_2'(t)$, then $A'(t)$ may be regarded as the usual set $A'(t)$, and $1_{A'(t)}$ is the usual indicator function of $A'(t)$ (equal to 1 on $A'(t)$ and vanishing outside $A'(t)$): $1_{A'(t)} = 1_{A'(t)}$. Obviously, in this case, we have

$$\mu_L(A'(t)) = \mu_L(A'(t)).$$

We say that two generic geodesics defined on the segment $[a, b]$ have one combinatorial type if they traverse the simplexes in the same succession. (In particular, they pass the branchings in the same way.)

Claim. Let $A = \{ \gamma : [a, b] \to M \}$ be a set of generic geodesics of one combinatorial type. Then

$$\mu_L(A'(a)) = \mu_L(A'(b)),$$

i.e., the “transformation of the geodesic flow along A” preserves Liouville measure.

To see this, it suffices to prove that Liouville measure is preserved in a neighborhood of a point of any $(n-1)$-simplex adjacent exactly to two n-simplexes. We give a precise statement.

Lemma 1. Let F be a common $(n-1)$-face of two n-simplexes Δ_1 and Δ_2. Let $U \subset \Delta_1 \cup \Delta_2$ be an open ball with center in F, and let $B = \{ \gamma : [0, c] \to U \}$ be a set of generic geodesics. Then

$$\mu_L(B'(0)) = \mu_L(B'(c)).$$
Proof. The set B is a countable union of sets B_k such that each geodesic in B_k intersects F at an angle greater than $1/k$. It suffices to prove that $\mu_L(B_k(0)) = \mu_L(B_k(\epsilon))$ for each k. Therefore, we may assume that each geodesic in B intersects F once.

Let dx be the volume element on F. We consider the measure μ_F on SF with the density

$$d\mu_F(v) = |\cos \alpha(v)| d\lambda_\epsilon(v) dx,$$

where $\alpha(v)$ is the angle between v and the normal to F (see [4] and [4, Chapter 6]). For $C \subset SF$, $\mu_F(C)$ is equal to the flux across C of the vector field generating the geodesic flow on U.

Let t_γ be the value of the parameter for which $\gamma \in B$ intersects F: $\{t_\gamma\} = \gamma^{-1}(F)$. The mapping

$$B'(0) \to SF \times [0, c], \quad \gamma'(0) \mapsto (\gamma'(t_\gamma), t_\gamma),$$

determines coordinates (v, t) on $B'(0)$.

Since the Liouville measure μ_L is preserved within one simplex, the density of μ_L in the coordinates (v, t) has the form $d\mu_L(v, t) = d\mu_F(v) dt$ (see [4, Chapter 6]). Under the passage from $B'(0)$ to $B'(c)$, the vector $v \in SF$ changes to the opposite one, and the parameter along the flow changes by a constant. Hence, the Liouville measure μ_L is preserved.

\begin{proposition}
Let $A = \{\gamma : [a, b] \to M\}$ be a set of generic geodesics. Then

\begin{equation}
\mu_L(A^1(a)) = \mu_L(A^1(b)). \tag{3.2}
\end{equation}

\end{proposition}

Proof. 1) First, suppose that the geodesics in A have one combinatorial type. Then the velocity vector at t uniquely determines a geodesic in A, so that $1_{A^1(t)} = 1_{A^1(t)}$ for each $t \in [a, b]$, whence

$$\mu_L(A^1(a)) = \mu_L(A^1(a)) \equiv \mu_L(A^1(b)) = \mu_L(A^1(b)).$$

2) In the general case, A splits into countably many subsets A_k in each of which the geodesics have one combinatorial type. For each k, we have

$$\mu_L(A^1_k(a)) = \mu_L(A^1_k(b)).$$

Summing these relations, we obtain (3.2). \hfill \Box

\section{Proof of Theorem 1}

Let X be an $(n - 1)$-simplex that is a common hyperface of n-simplexes $\Upsilon_1, \ldots, \Upsilon_d$, where $d \geq 3$.

\textbf{Notation.} Let $\gamma : (a, b) \to M$ be a generic geodesic. Suppose that γ passes from an n-simplex Δ_1 to an n-simplex Δ_2 and intersects their common $(n - 1)$-face at a point $\gamma(c)$, $c \in (a, b)$. We define

$$\gamma_+(c) := \gamma'(c) \in T_{\gamma(c)} \Delta_2 \subset T_{\gamma(c)} M \quad \text{and} \quad \gamma_-(c) := \gamma'(-c) \in T_{\gamma(c)} \Delta_1 \subset T_{\gamma(c)} M,$$

where $\gamma(t) = \gamma(-t)$.

A tangent vector v at a point of an $(n - 1)$-simplex F is said to be almost orthogonal to F if v makes an angle less than $\pi/10$ with one of the normals of F. We denote by $(\tilde{M}, \tilde{\rho})$ a universal cover of (M, ρ), where $\tilde{\rho}$ is the lifting of the metric ρ.

Let $\Omega \subset X$ be a (sufficiently small) region. We denote by $\tilde{\Omega}$ the preimage of Ω in \tilde{M}.

We recall that \tilde{M} is isometric to the quotient space \hat{M}/Γ, where Γ is a subgroup of the group of isometries of \hat{M} isomorphic to $\pi_1(M)$. We denote by \tilde{M}_0 a fundamental domain in \tilde{M}.
4.1. A special set. For convenience, we introduce a certain subset \(G_{\text{reg}} \subset G \) within which all geodesics extend uniquely in both directions, except the branching on \(\Omega \).

For this, we introduce the following structure. For each \((n-1)\)-simplex \(F \), we cyclically order the \(n \)-simplexes adjacent to \(F \). We say that a generic geodesic \(\gamma \) is regular if for every \(x \in \gamma^{-1}(\mathcal{M}^{n-1}) \) one of the following two conditions is fulfilled:

1) \(\gamma(x) \in \Omega \), and the vector \(\gamma_-'(x) \) is almost orthogonal to \(X \);
2) the point \(\gamma(x) \) belongs to a common \((n-1)\)-face \(F \) of \(n \)-simplexes \(\Delta_1, \ldots, \Delta_l \), and

\[
\gamma_-'(x) \in T_{\gamma(x)} \Delta_i, \quad \gamma_+(x) \in T_{\gamma(x)} \Delta_{i+1}.
\]

(As usual, we set \(\Delta_{l+1} := \Delta_1 \).

We denote by \(G_{\text{reg}} \) the set of complete regular geodesics.

Remark 1.
1) For “almost every” unit tangent vector \(v \in \mathcal{M} \), each regular geodesic with initial velocity vector \(v \) can be continued to a generic regular complete geodesic. (Cf. the Appendix.)
2) The set \(G_{\text{reg}} \) is GFT-invariant.

For \(V \subset \mathcal{M} \), we define

\[
G(V) := \{ \gamma \in G : \gamma'(0) \in V \}, \quad G_{\text{reg}}(V) := \{ \gamma \in G_{\text{reg}} : \gamma'(0) \in V \}.
\]

4.2. A special measure on \(G_{\text{reg}} \). In the Appendix it is proved that there is a measure \(m \) on \(G \) such that \(G_{\text{reg}} \) has full measure in \(G \) and the following properties 1)–3) are fulfilled (an invariant measure on \(G \) satisfying property 2) is described in detail in \([\Pi]\)):

1) the measure \(m \) is GFT-invariant;
2) if \(V \subset \mathcal{M} \) is a measurable subset, then \(m(G_{\text{reg}}(V)) = \mu_L(V) \);
3) let \(j \in \{1, \ldots, d\} \), and let \(\Psi = \{ \gamma : (-\infty, x_\gamma) \to \mathcal{M} \} \) be a set of one-sided regular geodesics such that for each \(\gamma \in \Psi \) we have \(\gamma(x_\gamma) \in \Omega \), the vector \(\gamma_-'(x_\gamma) \) is almost orthogonal to \(X \), and \(\gamma_+(x_\gamma) \in T_{\gamma(x_\gamma)} Y_j \). Furthermore, we assume that none of the geodesics in \(\Psi \) is a continuation of another geodesic. For \(i \in \{1, \ldots, d\} \setminus \{j\} \), let \(\Psi_i \) denote the set of continuations of all geodesics in \(\Psi \) to the simplex \(Y_i \), and further, in all possible ways, up to complete regular geodesics in \(G_{\text{reg}} \), i.e.,

\[
\Psi_i := \{ \gamma \in G_{\text{reg}} : \gamma|_{(-\infty, x_\gamma)} \in \Psi \& \gamma_+(x_\gamma) \in T_{\gamma(x_\gamma)} Y_i \}.
\]

Thus, \(\Psi := \bigcup_i \Psi_i \) is the set of all possible continuations of geodesics in \(\Psi \) to complete geodesics in \(G_{\text{reg}} \). Then

\[
m(\Psi_i) = \frac{m(\Psi)}{d - 1}, \quad i \in \{1, \ldots, d\} \setminus \{j\}.
\]

4.3. Estimating the measure of a set of geodesics. We denote by \(\tilde{G} \) the space of complete generic geodesics \(\gamma : \mathbb{R} \to \mathcal{M} \), we denote by \(\tilde{G}_{\text{reg}} \) the preimage of the set \(G_{\text{reg}} \) in \(\tilde{G} \), and we let \(\pi : \tilde{G}_{\text{reg}} \to G_{\text{reg}} \) be the projection map, which is a covering.

We say that a geodesic \(\gamma \) in \(\mathcal{M} \) is regular if \(\gamma \) is a lifting of a regular geodesic.

Let \(\tilde{m} \) denote the lifting of the measure \(m \) to \(\tilde{G}_{\text{reg}} \) under the covering \(\pi \).

For a set \(A \) of regular generic geodesics in \(\mathcal{M} \) that are defined on segments, we denote by \(\tilde{m}(A) \) the \(\tilde{m} \)-measure of the set of all possible continuations of the geodesics in \(A \) to complete geodesics in \(\tilde{G}_{\text{reg}} \). If for \(\gamma \in A \) we have \(\gamma(a) \in \mathcal{M}_0 \), then the projection of \(A \) to the space of geodesics in \(\mathcal{M} \) is injective, and the measure \(\tilde{\mu}_L(A^l(a)) \) of the multiset \(A^l(a) \) is well defined as the measure of the projection. The following lemma relates the measure \(\tilde{m}(A) \) of some set \(A \) of geodesics defined on a segment to \(\tilde{\mu}_L(A^l) \).
Lemma 2. Let \(l \in \mathbb{N} \), and let \(\mathcal{A} = \{ \gamma : [a, b] \to \tilde{\mathfrak{M}} \} \) be a set of regular generic geodesics with initial points in a fundamental domain \(\mathfrak{M}_0 \). Suppose that for every \(\gamma \in \mathcal{A} \) there exist parameters \(t_1(\gamma) < \cdots < t_i(\gamma) \in (a, b) \) such that \(\gamma(t_i(\gamma)) \in \Omega \) for each \(i \), and \(\gamma'_i(t_i(\gamma)) \) is almost orthogonal to \(\mathfrak{X} \) and goes in the direction of \(\tilde{\mathfrak{X}}_1 \). Then

\[
(\ast) \quad \bar{m}(\mathcal{A}) \leq \frac{\tilde{\mu}_L(A^i(a))}{(d-1)^l} = \frac{\bar{\mu}_L(A^i(b))}{(d-1)^l}.
\]

(The identity \(\bar{\mu}_L(A^i(a)) = \tilde{\mu}_L(A^i(b)) \) was proved earlier.)

Proof. At a point \(t_0(\gamma) \), the geodesic \(\gamma \in \mathcal{A} \) passes to one of the simplices \(\tilde{\mathfrak{X}}_2, \ldots, \tilde{\mathfrak{X}}_d \).
With each geodesic \(\gamma \in \mathcal{A} \) we associate a sequence \(\{i_1, \ldots, i_l\} \) so that \(\gamma \) passes to \(\tilde{\mathfrak{X}}_{i_k} \) at the point \(t_k(\gamma) \). Since the number of such sequences is finite, \(\mathcal{A} \) splits into finitely many subsets \(\mathcal{A}_i \) such that for each \(i \) the geodesics in \(\mathcal{A}_i \) determine one and the same sequence. \(\Box \)

Claim. The subsets \(\mathcal{A}_i \) satisfy the required inequality, namely,

\[
(\ast_i) \quad \bar{m}(\mathcal{A}_i) \leq \frac{\tilde{\mu}_L(A^i(a))}{(d-1)^l}
\]

for each \(i \).

We denote by \(\mathcal{A}_{i,s} \) the set consisting of all complete geodesics in \(\tilde{\mathfrak{G}}_{\text{reg}} \) that are continuations of the restrictions of the geodesics \(\gamma \in \mathcal{A}_i \) to the interval \((a, t_s(\gamma)) \) (this interval is specific for each geodesic \(\gamma \)):

\[
\mathcal{A}_{i,s} := \{ \gamma|(a, t_s(\gamma)) : \gamma \in \tilde{\mathfrak{G}}_{\text{reg}} \}.
\]

Since the initial points of the geodesics in \(\mathcal{A} \) lie in \(\mathfrak{M}_0 \), it follows that the projection \(\pi|_\mathcal{A} : \mathcal{A} \to \mathfrak{G}_{\text{reg}} \) is an injective mapping, whence \(\bar{m}(\pi(\mathcal{A})) = \bar{m}(\mathcal{A}) \). Therefore, by property 3) of the measure \(\bar{m} \), where we put \(\Psi_i := \mathcal{A}_{i,s+1} \) and \(\Psi := \mathcal{A}_{i,s} \), we have

\[
\bar{m}(\mathcal{A}_{i,s+1}) \leq \frac{\bar{m}(\mathcal{A}_{i,s})}{d-1}, \quad s = 1, \ldots, l.
\]

Property 2) of the measure \(\bar{m} \) implies that

\[
\bar{m}(\mathcal{A}_{i,1}) \leq \tilde{\mu}_L(A^i(a)).
\]

Combining the above \(l+1 \) inequalities, we obtain

\[
\bar{m}(\mathcal{A}_{i,l}) \leq \tilde{\mu}_L(A^i(a)).
\]

Since \(\bar{m}(\mathcal{A}_i) \leq \bar{m}(\mathcal{A}_{i,l}) \), we arrive at \((\ast_i)\).

Summing the inequalities \((\ast_i)\), \(i \in \mathbb{N} \), we obtain

\[
\bar{m}(\mathcal{A}) \leq \frac{1}{(d-1)^l} \sum_i \tilde{\mu}_L(A^i(a)).
\]

Since \(\mathcal{A} = \bigcup_i \mathcal{A}_i \), we have

\[
\sum_i 1_{A^i(a)}(e) \leq 1_{A^1(a)}(e), \quad e \in \mathfrak{M}.
\]

Integration over \(\mathfrak{M} \) yields

\[
\sum_i \tilde{\mu}_L(A^i(a)) \leq \tilde{\mu}_L(A^1(a)),
\]

which proves \((\ast)\).
4.4. The set A_ε of often-branching geodesics. The next step of the proof is construction of the set of sufficiently-often-branching geodesics, to which we apply Lemma 2.

We describe an auxiliary subset of G_{reg}. Let $\Theta \subset \Omega$ be the set of all unit tangent vectors at points in Ω that go in the direction of T_1 and are almost orthogonal to X. We assume that the closure of Θ lies strictly inside X.

There exists $\delta_0 > 0$ such that for every $e \in \Theta$ there exists a unique geodesic $\gamma_e : [0, \delta_0] \to \mathfrak{M}$ with $\gamma(0) = e$, i.e., γ_e does not intersect the $(n - 1)$-simplexes on which branching is possible. We define

$$g_0 := \{ -\gamma'_e(t) \mid e \in \Theta, 0 < t < \delta_0 \} \subset \mathfrak{M}$$

and set

$$G_0 := G_{\text{reg}}(g_0).$$

We have $\mu_L(g_0) \neq 0$. Then property 2) of the measure m and Remark 2 imply that $m(G_0) \neq 0$. For $\gamma \in G_{\text{reg}}$ and $k > 0$, we let $N_\gamma(k)$ be the number of connected components of the set $[0, k] \cap (\gamma)^{-1}(g_0)$, i.e., $N_\gamma(k)$ is the number of crossings of γ into G_0 under the action of the geodesic flow transformation within the time k.

The set g_0 is chosen so that the duration of the stay of a geodesic in the set G_0 under the action of the geodesic flow be at least δ_0. Then, by the definition of $N_\gamma(k)$, we have

$$(4.1) \quad N_\gamma(k)\delta_0 \geq \int_0^k 1_{g_0}(\varphi_s \gamma)ds.$$

Lemma 3. For any $\varepsilon > 0$, there is a set $A_\varepsilon \subset G_{\text{reg}}$ and positive numbers N and δ with the following properties:

1) $m(A_\varepsilon) \neq 0$;
2) $\text{diam}(A_\varepsilon(0)) < \varepsilon$. (Here and below, we use the natural notation $A_\varepsilon(0) := \{ \gamma(0) \mid \gamma \in A_\varepsilon \} \subset \mathfrak{M}$, etc.);
3) $N_\gamma(k) > \delta k$ for all $k > N$ and all $\gamma \in A_\varepsilon$.

Proof. We use a general result for measure spaces, the proof of which involves the ergodic theorem. \hfill \Box

Proposition 2. Suppose D is a space with a measure m and $\{T_t\}$ is a one-parametric semigroup of measure-preserving transformations of D, where t takes nonnegative real values and $T_{s+t} = T_s \cdot T_t$. Furthermore, suppose that

$$D \times \mathbb{R}_{\geq 0} \to D, \quad (x, t) \mapsto T_t(x)$$

is a measurable mapping.

Then for every set $\Delta \subset D$ of nonzero finite measure there is a set $D_0 \subset D$ of nonzero measure such that for the points in D_0 the average duration of the stay in Δ under the action of the transformation T_t during the time t is uniformly bounded away from zero as $t \to \infty$. This means that there exist $s_0 > 0$ and $\varepsilon_0 > 0$ such that for any $x \in D_0$ and any $s > s_0$ we have

$$\frac{1}{s} \int_0^s 1_{\Delta}(T_t(x))dt > \varepsilon_0.$$

Proof. Let $\text{Ave}_\Delta(x)$ denote the average value of 1_{Δ} on the trajectory of the geodesic flow with initial value x:

$$\text{Ave}_\Delta(x) := \lim_{t \to \infty} \frac{1}{t} \int_0^t 1_{\Delta}(T_s(x))ds.$$

Applying the ergodic theorem, we obtain

$$\int_D \text{Ave}_\Delta(x)dm(x) = \int_D 1_{\Delta}(x)dm(x) = m(\Delta) > 0.$$
Consequently, there is $\varepsilon_2 > 0$ and a set $D_1 \subset D$ of nonzero measure such that $\text{Ave}_\Delta(x) > \varepsilon_2$ for each $x \in D_1$. Then there exist numbers $s_0 > 0$ and $\varepsilon_0 > 0$ and a set $D_0 \subset D_1$ such that for all $x \in D_0$ and $s > s_0$ we have
\[
\frac{1}{s} \int_0^s 1_{\Delta}(T_ix)dt > \varepsilon_0.
\]

Since the measure m is invariant under the geodesic flow on G_{reg}, and $m(G_0) \neq 0$, we can apply Proposition 2 to the case where

\[(D, m, \Delta, T_t) := (G_{\text{reg}}, m, G_0, \varphi_t).
\]

Thus, there is a set $A_0 \subset G_{\text{reg}}$ of nonzero measure and positive numbers s_0 and ε_0 such that
\[
\frac{1}{T} \int_0^T 1_{\varphi_s\gamma}(\varphi_s\gamma)ds > \varepsilon_0
\]
for any $\gamma \in A_0$ and any $T > s_0$. Applying inequality (4.1) and letting $\delta = \varepsilon_0/\delta_0$ and $N = s_0$, we see that $N_\gamma(k) > \delta k$ for each geodesic $\gamma \in A_0$ and each $k > N$. Moreover, passing if necessary to a subset of A_0 of nonzero measure, we may assume that $\text{diam}(A_0(0)) < \varepsilon$. Lemma 3 is proved.

Proposition 3. If the volume entropy of \overline{M} is zero, then for every $\varepsilon > 0$ there are two complete generic geodesics γ_1 and γ_2 in \overline{M} and a number $t_0 > 1$ with the following properties:

1) $\overline{\rho}(\gamma_1(0), \gamma_2(0)) < \varepsilon$;

2) $\gamma_1(t_0) = \gamma_2(t_0) \in \Omega$;

3) $\gamma_{1+}(t_0) = \gamma_{2+}(t_0)$, and the vector $\gamma_{1+}(t_0)$ is almost orthogonal to \overline{X} and goes in the direction of \overline{T}_j for some $j \in \{1, \ldots, d\}$;

4) at the point t_0, the geodesics γ_1 and γ_2 pass to \overline{T}_j from distinct n-simplexes adjacent to \overline{X}, i.e., $\gamma_{1+}(t_0) \neq \gamma_{2+}(t_0)$.

Proof. Applying Lemma 3, we obtain a set $A_\varepsilon \subset G_{\text{reg}}$ and numbers N and δ.

We fix a fundamental domain $M_0 \subset \overline{M}$ and a point $x_0 \in M_0$. Let $SB_r(x_0)$ denote the set of unit tangent vectors at the points of the ball $B_r(x_0)$, and let A be the set of the geodesics in G_{reg} that are the liftings of the geodesics in A_ε with initial points in M_0.

For $k > N$, we define
\[
A_k := \{\gamma|_{[0, k]} : \gamma \in A\}.
\]
Assertion 3) of Lemma 3 implies that $N_\gamma(k) \geq \delta k$ for $\gamma \in A$. We apply Lemma 2 to the set A_k, letting $l := \lceil \delta k \rceil + 1$. Lemma 3 and the inequality $\overline{m}(A) \leq \overline{m}(A_k)$ show that
\[
(4.2)
\]
We assume that $\text{diam} M_0 < 1$. Then the function $1_{A_k^+(v)}$ vanishes outside $SB_{k+1}(x_0)$, and (4.2) takes the form
\[
\frac{1}{(d-1)^{\delta k}} \int_{SB_{k+1}(x_0)} 1_{A_k^+(v)}d\overline{m} \geq \overline{m}(A).
\]
We define
\[
f(k) := \max\{1_{A_k^+(v)} : v \in SB_{k+1}(x_0)\}.
\]
Since the volume entropy of \(\tilde{\mathfrak{M}} \) is zero, we have \(\tilde{\mu}_L(\mathbb{S}B_{k+1}(x_0)) = o((d - 1)^{\delta k}) \). Then
\[
\frac{o((d - 1)^{\delta k})f(k)}{(d - 1)^{\delta k}} \geq \tilde{\mathfrak{m}}(A) =: c > 0,
\]
whence
\[
f(k) \geq c \frac{(d - 1)^{\delta k}}{o((d - 1)^{\delta k})}.
\]

Estimate (4.3) implies the existence of \(k_1 > N \) such that \(f(k_1) \geq f(N) + 1 \). This means that \(A \) contains \(f(k_1) \) geodesics that are distinct on the interval \((0, k_1)\) and have equal velocity vectors at \(k_1 \). At least two of them are distinct on the interval \((N, k_1)\). (Indeed, otherwise there were \(f(k_1) \) geodesics that are distinct on the interval \((0, N)\) and have equal velocity vectors at \(N \). This would mean that \(f(N) \geq f(k_1) \), which contradicts our choice of \(k_1 \).) Consequently, these geodesics meet at a point \(t_0 \in (N, k_1) \). These two geodesics and the parameter \(t_0 \) satisfy all the requirements of the proposition. \(\square \)

4.5. End of the proof of Theorem 1. Suppose that the volume entropy of the universal cover \(\tilde{\mathfrak{M}} \) is zero. The remaining part of the proof proceeds in \(\tilde{\mathfrak{M}} \). For short, the distance function in \(\tilde{\mathfrak{M}} \) is denoted by \(| \cdot | \). For \(a, b \in \tilde{\mathfrak{M}} \), we denote by \([a, b]\) a unique geodesic segment joining \(a \) and \(b \). Since \(\tilde{\mathfrak{M}} \) contains no conjugate points, the initial velocity vector \(e_{ab} \) of \([a, b]\) depends continuously on \(a \) and \(b \). Furthermore, since \([a, b]\) is a shortest curve, the length of \([a, b]\) is equal to \(|ab|\).

Applying Proposition 3 to a sufficiently small \(\varepsilon \), we obtain geodesics \(\gamma_1 \) and \(\gamma_2 \) and a number \(t_0 \). We define
\[
\begin{align*}
c &:= \gamma_1(t_0) = \gamma_2(t_0), \\
a &:= \gamma_1(0), \quad b := \gamma_2(0), \\
d &:= \gamma_1(t_0 + 1/2) = \gamma_2(t_0 + 1/2).
\end{align*}
\]
In this notation, the geodesic segments \([a, d]\) and \([b, d]\) are the restrictions of the geodesics \(\gamma_1 \) and \(\gamma_2 \) to the interval \([0, t_0 + 1/2]\). We have \(|ab| < \varepsilon\).

Our purpose is to join \(a \) and \(d \) by a polygonal line of length less than \(|ad|\), which is a contradiction. More precisely, we find a point \(f^* \in [a, b] \) such that \(|df^*|\) is less than \(|da|\) by a constant depending only on the geometry of \(\tilde{\mathfrak{M}} \). Now, we can make \(|af^*|\) arbitrarily less than this constant by taking \(\varepsilon \) sufficiently small.

Consider geodesic segments \([c, f]\), where \(f \in [a, b]\). The space \(\mathbb{S}_c \) is the union of \((n - 1)\)-hemispheres glued together along their common \((n - 2)\)-sphere. By assertion 4) of Proposition 3, the vectors \(e_{ca} \) and \(e_{ab} \) lie in distinct \((n - 1)\)-hemispheres. By continuity, there is \(f^* \in [a, b] \) such that \(e_{cf^*} \in T_f\tilde{\Omega}, \) i.e., \(e_{cf^*} \) is tangent to an \((n - 1)\)-simplex. There is \(e \in [c, f^*] \) such that \(|ce| = 1/2\). By compactness, there is a number \(q > 0 \) depending only on \(\tilde{\mathfrak{M}} \) and \(\tilde{\Omega} \) and such that
\[
|dc| + |ce| - |de| > q.
\]
In more detail, we consider the set \(\mathfrak{A} \) of triplets of points \((x, y, z)\) belonging to \(\mathfrak{M}_0 \) and such that the following conditions 1)–3) are fulfilled:
1) \(x \in \tilde{\Omega} \) and \(|xy| = |xz| = 1/2|;
2) \(e_{xy} \) is almost orthogonal to \(\tilde{X} \);
3) \(e_{xz} \) is tangent to \(\tilde{X} \).

The set \(\mathfrak{A} \) is compact. Therefore, the function \(|xy| + |xz| - |yz|\) attains a minimum, which is positive because of the absence of conjugate points (since \(x \notin [yz]\)).
So, in Proposition 3 we put $\varepsilon := q/4$. The inequality $|dc| + |ce| - |de| > q$ and the triangle inequality for $\triangle de f^*$ imply that

$$|df^*| < |dc| + |cf^*| - q.$$

By our choice of ε in Proposition 3, we have $|ab| < q/4$, and $|af^*| < q/4$ because $f^* \in ab$. By the triangle inequality,

$$|cf^*| < |ac| + \frac{q}{4}.$$

Adding the last two inequalities, we obtain

$$|ac| + |dc| > |df^*| + \frac{3}{4}q.$$

Again by the triangle inequality,

$$|df^*| > |ad| - \frac{q}{4}.$$

Adding the two inequalities obtained, we get

$$|ac| + |dc| > |ad| + \frac{q}{2},$$

i.e., a, c, and d do not lie on one shortest curve. Therefore, γ_1 is not a geodesic, a contradiction. Theorem 1 is proved.

§5. Appendix

5.1. Notation. Two tangent vectors at one point are opposite if they make an angle of π.

We set $\mathfrak{M}^{n-1} := \mathfrak{M}^{n-2} \setminus \mathfrak{M}^{n-2}$.

Let $\Lambda(\mathfrak{M}) \subset \mathfrak{M}$ denote the set of all unit vectors tangent to \mathfrak{M} strictly inside the $(n-1)$-faces and transversal to these faces, and let $D \subset \Lambda(\mathfrak{M}) \times \Lambda(\mathfrak{M})$ be the set of all pairs of opposite vectors.

5.2. Definitions. 1) A measurable function

$$p : D \rightarrow [0, 1]$$

is called a transition probability function if it possesses the following property: if $v_1 \in \Lambda$ is a tangent vector at a point of an $(n-1)$-face to which m faces of dimension n are adjacent, and v_2, \ldots, v_m are all the vectors opposite to the vector v_1, then

$$p(v_1, v_2) + \cdots + p(v_1, v_m) = 1 = p(v_2, v_1) + \cdots + p(v_m, v_1).$$

2) We say that p is single-valued on a subset $D_0 \subset D \subset \Lambda \times \Lambda$ if $p(D_0) \subset \{0, 1\}$.

3) We say that a geodesic γ obeys p if for each point $\gamma(c)$ of transversal intersection with an $(n-1)$-face we have $p(\gamma^{-}_c(c), \gamma^{+}_c(c)) = 0$.

Proposition 4. Let $D_0 \subset D$ be the subset consisting of all pairs of vectors such that the angle that they make with the corresponding $(n-1)$-faces is less than some positive constant θ, and of all pairs of tangent vectors at the points lying in the τ-neighborhood of the $(n-2)$-skeleton for some $\tau > 0$.

Suppose that $p : D \rightarrow [0, 1]$ is a transition function single-valued on D_0.

Then the set of unit vectors v for which there exists a nongeneric geodesic with the initial velocity vector v and obeying the transition function p has zero Liouville measure in \mathfrak{M}.
This is similar to the corresponding fact of the theory of billiard dynamical systems, and we do not present a complete proof here. To prove this fact it suffices to estimate the measure of the \(\varepsilon \)-neighborhood of the tangent vectors of \((n - 1)\)-faces starting at the points of \((n - 2)\)-faces (this measure is \(O(\varepsilon^2) \)) and the duration of nongeneric geodesics in this neighborhood (it is at least \(\text{const} \cdot \varepsilon \)).

Theorem 2. Let \(p \) be as in Proposition 4. Then there exists a measure \(m_p \) on \(G \) with the following properties:

1. The measure \(m_p \) is GTF-invariant.
2. If \(V \subset \mathcal{M} \) is a measurable subset, then \(m_p(G(V)) = \mu_L(V) \).
3. Let \(\Psi = \{ \gamma : (-\infty, \infty) \to \mathcal{M} \} \) be a set of one-sided geodesics none of which is a continuation of another geodesic, where \(\gamma(\tau) \in \mathcal{M}^{n-1} \). Suppose that for each vector \(\gamma'_\tau(\tau) \) one opposite vector \(\gamma'_\tau(\tau) \) is chosen. Furthermore, suppose that for all \(\gamma \in \Psi \) we have

\[
p(\gamma'_\tau(\tau), \gamma'_\tau(\tau)) = \text{const} = p' \cdot m_p(\Psi) \cdot m_p(\Psi_+),
\]

where \(\Psi_+ \) is the set of all possible continuations of the geodesics \(\gamma \in \Psi \) to complete generic geodesics that have the chosen velocity vectors \(\gamma'_\tau(\tau) \) at the points \(\tau \), and \(\Psi \) is the set of all possible continuations of the geodesics in \(\Psi \) to complete generic geodesics.

Proof. Suppose that \(A \subset G \) is an open subset. We define

\[
m_p(A) = \int_{\mathcal{M}} h^A(v) d\mu_L(v),
\]

where \(h^A \) is the function with values in \([0, 1]\) and defined \(\mu_L \)-almost everywhere on \(\mathcal{M} \) as follows. Let \(v \in \mathcal{S}(\mathcal{M} \setminus \mathcal{M}^{n-1}) \) be a vector such that every complete geodesic \(\gamma \) in \(\mathcal{M} \) with \(\gamma'(0) = v \) and obeying the transition function \(p \) is generic. (See Proposition 4.) We fix some lifting of \(v \) to \(\widetilde{\mathcal{M}} \), which we also denote by \(v \), and consider the set \(G_v \subset G \) of all generic geodesics with initial velocity vector \(v \). The support (the union of the images of geodesics) \(T_v \) of \(G_v \) is a tree with an oriented distinguished edge \(e_0 \).

The function \(p \) (more precisely, a lifting of \(p \) to \(\widetilde{\mathcal{M}} \)) is defined at the points of intersection of the geodesics in \(G_v \) with \(\mathcal{M}^{n-1} \). Therefore, for all paths in \(T_v \) passing through \(e_0 \) in the given direction there are probabilities \(p(w, w') \) of the passage from an edge \(w \subset T_v \) to the subsequent edge \(w' \). For a path \(W = w_1 \cdots w_k \subset T_v \) containing \(e_0 \), let \(\mathcal{P}_W \subset G_v \) be the set of all paths containing \(W \). We define

\[
m_{p,v}(\mathcal{P}_W) := p(w_1, w_2) \cdots p(w_{k-1}, w_k).
\]

The properties of \(p \) imply that \(m_{p,v} \) is canonically extended to a probability measure on the space \(G_v \) of paths in \(T_v \); this extension is also denoted by \(m_{p,v} \).

Every geodesic \(\gamma \in A \) with \(\gamma'(0) = v \) is lifted to \(T_v \) canonically as one of the paths described above. Let \(A_v \subset G_v \) be the set of such liftings for all corresponding geodesics in \(A \). We set \(h^A(v) = m_{p,v}(A_v) \).

We check the properties of the measure \(m_p \).

1. Let \(t > 0 \), let \(\Delta_1 \) and \(\Delta_2 \) be two neighboring \(n \)-simplices, and let \(A \) be the set of the geodesics \(\gamma \) with \(\gamma(0) \in \Delta_1 \) and \(\gamma(t) \in \Delta_2 \). We assume that the geodesics in \(A \) intersect \(\mathcal{M}^{n-1} \) once. If \(\gamma \in A \) and \(\nu_t := \gamma'(t) \), then \(h^{A}(\nu_0) = h^{\nu_1}(\nu_t) \). Now, since the
Liouville measure is GFT-invariant, we obtain
\[\int_{S\mathbb{R}} h^A(v)d\mu_L(v) = \int_{S\Delta_1} h^A(v)d\mu_L(v) \]
\[= \int_{S\Delta_2} h^{\varphi_1 A}(v)d\mu_L(v) \]
\[= \int_{S\mathbb{R}} h^{\varphi_1 A}(v)d\mu_L(v), \]
whence
\[m_p(A) = m_p(\varphi_1 A). \]

In the general case, we prove the invariance of the measure \(m_p \) by splitting \(A \) and the parameter along the flow.

2. If \(V \subset S\mathbb{R} \), then \(h^{G(V)} \) is the indicator function of \(V \). This implies property 2) of the measure \(m_p \).

3. We may assume that \(x_\gamma > 0 \) for all \(\gamma \in \Psi \). Fixing a vector \(v \in S\mathbb{R} \), we put \(\Psi_v := \{ \Psi \cap G(\{v\}) \} \). The set \(\Psi_v \) splits into a countable number of subsets \(\Psi_v^i \) such that the point \(\gamma(x_\gamma) \) and the vector \(\gamma'_v(x_\gamma) \) are the same for the geodesics \(\gamma \in \Psi_v^i \). For each \(i \), by the definition of the measure \(m_{p,v} \), we have
\[h^i(\Psi_v^i) = p'h^i(\Psi_v^i). \]

Since none of the geodesics in \(\Psi \) is a continuation of another geodesic, it follows that the sets \((\Psi_v^i)' \) are disjoint, whence
\[h^{\Psi^i} = p'h^{\Psi^i}. \]
This implies property 3) of \(m_p \).

In order to apply this theorem in our case (see Subsection 4.2), it suffices to let the function \(p \) be equal to 0, 1, and 1/(d − 1) at the corresponding points.

REFERENCES

ST. PETERSBURG STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS AND MECHANICS, UNIVERSITYTETSKII PR. 28, ST. PETERSBURG 198504, RUSSIA

Received 2/SEP/2002
Translated by N. YU. NETSVETAEV

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use