Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Overgroups of elementary symplectic groups
HTML articles powered by AMS MathViewer

by N. A. Vavilov and V. A. Petrov
Translated by: the authors
St. Petersburg Math. J. 15 (2004), 515-543
DOI: https://doi.org/10.1090/S1061-0022-04-00820-9
Published electronically: July 6, 2004

Abstract:

Let $R$ be a commutative ring, and let $l\ge 2$; for $l=2$ it is assumed additionally that $R$ has no residue fields of two elements. The subgroups of the general linear group $\operatorname {GL}(n,R)$ that contain the elementary symplectic group $\operatorname {Ep}(2l,R)$ are described. In the case where $R=K$ is a field, similar results were obtained earlier by Dye, King, and Shang Zhi Li.
References
  • Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
  • H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
  • E. L. Bashkirov, Linear groups containing the special unitary group of non-zero index, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1986, no. 5, 120–121 (complete text of manuscript sits at VINITI 7.08.1985, no. 5897–85 Dep.). (Russian)
  • —, Linear groups containing the symplectic group, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1987, no. 3, 116–117 (complete text of manuscript sits at VINITI 11.04.1986, no. 2616–B86 Dep.). (Russian)
  • E. L. Bashkirov, Linear groups that contain the group $\textrm {Sp}_n(k)$ over a field of characteristic $2$, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 4 (1991), 21–26, 123 (Russian, with English summary). MR 1141150
  • E. L. Bashkirov, Linear groups that contain the commutant of an orthogonal group of index greater than $1$, Sibirsk. Mat. Zh. 33 (1992), no. 5, 15–21, 221 (Russian, with Russian summary); English transl., Siberian Math. J. 33 (1992), no. 5, 754–759 (1993). MR 1197069, DOI 10.1007/BF00970984
  • E. L. Bashkirov, On subgroups of the general linear group over the skew field of quaternions containing the special unitary group, Sibirsk. Mat. Zh. 39 (1998), no. 6, 1251–1266, i (Russian, with Russian summary); English transl., Siberian Math. J. 39 (1998), no. 6, 1080–1092. MR 1672621, DOI 10.1007/BF02674119
  • Z. I. Borevich and N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Trudy Mat. Inst. Steklov. 165 (1984), 24–42 (Russian). Algebraic geometry and its applications. MR 752930
  • N. A. Vavilov, Subgroups of split orthogonal groups, Sibirsk. Mat. Zh. 29 (1988), no. 3, 12–15, 219 (Russian); English transl., Siberian Math. J. 29 (1988), no. 3, 341–352 (1989). MR 953017, DOI 10.1007/BF00969641
  • N. A. Vavilov, The structure of split classical groups over a commutative ring, Dokl. Akad. Nauk SSSR 299 (1988), no. 6, 1300–1303 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 2, 550–553. MR 947412
  • N. A. Vavilov, Subgroups of split orthogonal groups over a ring, Sibirsk. Mat. Zh. 29 (1988), no. 4, 31–43, 222 (Russian); English transl., Siberian Math. J. 29 (1988), no. 4, 537–547 (1989). MR 969101, DOI 10.1007/BF00969861
  • N. A. Vavilov, Subgroups of splittable classical groups, Trudy Mat. Inst. Steklov. 183 (1990), 29–42, 223 (Russian). Translated in Proc. Steklov Inst. Math. 1991, no. 4, 27–41; Galois theory, rings, algebraic groups and their applications (Russian). MR 1092012
  • N. A. Vavilov, On subgroups of the general symplectic group over a commutative ring, Rings and modules. Limit theorems of probability theory, No. 3 (Russian), Izd. St.-Peterbg. Univ., St. Petersburg, 1993, pp. 16–38, 256 (Russian, with Russian summary). MR 1351048
  • N. A. Vavilov, Subgroups of split orthogonal groups over a commutative ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 281 (2001), no. Vopr. Teor. Predst. Algebr. i Grupp. 8, 35–59, 280 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 120 (2004), no. 4, 1501–1512. MR 1875717, DOI 10.1023/B:JOTH.0000017881.22871.49
  • N. A. Vavilov and E. V. Dybkova, Subgroups of the general symplectic group containing the group of diagonal matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 31–47, 155–156 (Russian). Modules and linear groups. MR 618492
  • N. A. Vavilov and V. A. Petrov, On supergroups of $\textrm {EO}(2l,R)$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 272 (2000), no. Vopr. Teor. Predst. Algebr i Grupp. 7, 68–85, 345–346 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 116 (2003), no. 1, 2917–2925. MR 1811793, DOI 10.1023/A:1023442407926
  • L. N. Vaseršteĭn, On the stabilization of the general linear group over a ring, Math. USSR-Sb. 8 (1969), 383–400. MR 0267009
  • L. N. Vaseršteĭn, Stabilization of unitary and orthogonal groups over a ring with involution, Mat. Sb. (N.S.) 81 (123) (1970), 328–351 (Russian). MR 0269722
  • L. N. Vaseršteĭn and A. A. Suslin, Serre’s problem on projective modules over polynomial rings, and algebraic $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 5, 993–1054, 1199 (Russian). MR 0447245
  • I. Z. Golubchik, Normal subgroups of the orthogonal group over the associative ring with involution, Uspekhi Mat. Nauk 30 (1975), no. 6, 165. (Russian)
  • I. Z. Golubchik, Subgroups of the general linear group $\textrm {GL}_{n}(R)$ over an associative ring $R$, Uspekhi Mat. Nauk 39 (1984), no. 1(235), 125–126 (Russian). MR 733962
  • I. Z. Golubchik, Normal subgroups of the linear and unitary groups over associative rings, Spaces over algebras, and some problems in the theory of nets (Russian), Bashkir. Gos. Ped. Inst., Ufa, 1985, pp. 122–142 (Russian). MR 975035
  • V. I. Kopeĭko, Stabilization of symplectic groups over a ring of polynomials, Mat. Sb. (N.S.) 106(148) (1978), no. 1, 94–107, 144 (Russian). MR 497932
  • O. T. O’Meara, Lectures on symplectic groups, Univ. Notre Dame, 1976.
  • Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
  • A. V. Stepanov, Stability conditions in the theory of linear groups over rings, Ph.D. Thesis, Leningrad. Gos. Univ., Leningrad, 1987. (Russian)
  • A. V. Stepanov, On the arrangement of subgroups normalized by a fixed subgroup, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 198 (1991), no. Voprosy Teor. Predstav. Algebr Grupp. 2, 92–102, 113 (Russian); English transl., J. Soviet Math. 64 (1993), no. 1, 769–776. MR 1164862, DOI 10.1007/BF02988482
  • A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477 (Russian). MR 0472792
  • Eiichi Abe, Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra 11 (1983), no. 12, 1271–1307. MR 697617, DOI 10.1080/00927878308822906
  • Eiichi Abe, Chevalley groups over commutative rings, Radical theory (Sendai, 1988) Uchida Rokakuho, Tokyo, 1989, pp. 1–23. MR 999577
  • Eiichi Abe, Normal subgroups of Chevalley groups over commutative rings, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 1–17. MR 991973, DOI 10.1090/conm/083/991973
  • Eiichi Abe and Kazuo Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 28 (1976), no. 2, 185–198. MR 439947, DOI 10.2748/tmj/1178240833
  • M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, DOI 10.1007/BF01388470
  • A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969.
  • Anthony Bak, $K$-theory of forms, Annals of Mathematics Studies, No. 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 632404
  • Anthony Bak, Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability, $K$-Theory 4 (1991), no. 4, 363–397. MR 1115826, DOI 10.1007/BF00533991
  • Anthony Bak and Alexei Stepanov, Dimension theory and nonstable $K$-theory for net groups, Rend. Sem. Mat. Univ. Padova 106 (2001), 207–253. MR 1876221
  • Anthony Bak and Nikolai Vavilov, Normality for elementary subgroup functors, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 35–47. MR 1329456, DOI 10.1017/S0305004100073436
  • Anthony Bak and Nikolai Vavilov, Structure of hyperbolic unitary groups. I. Elementary subgroups, Algebra Colloq. 7 (2000), no. 2, 159–196. MR 1810843, DOI 10.1007/s100110050017
  • —, Structure of hyperbolic unitary groups. \rom{II}. Normal subgroups (to appear).
  • Hyman Bass, Unitary algebraic $K$-theory, Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 343, Springer, Berlin, 1973, pp. 57–265. MR 0371994
  • Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
  • Douglas L. Costa and Gordon E. Keller, The $E(2,A)$ sections of $\textrm {SL}(2,A)$, Ann. of Math. (2) 134 (1991), no. 1, 159–188. MR 1114610, DOI 10.2307/2944335
  • Douglas L. Costa and Gordon E. Keller, Radix redux: normal subgroups of symplectic groups, J. Reine Angew. Math. 427 (1992), 51–105. MR 1162432
  • Lino Di Martino and Nikolai Vavilov, $(2,3)$-generation of $\textrm {SL}(n,q)$. I. Cases $n=5,6,7$, Comm. Algebra 22 (1994), no. 4, 1321–1347. MR 1261262, DOI 10.1080/00927879408824908
  • R. H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra 59 (1979), no. 1, 202–221. MR 541675, DOI 10.1016/0021-8693(79)90157-1
  • Roger H. Dye, On the maximality of the orthogonal groups in the symplectic groups in characteristic two, Math. Z. 172 (1980), no. 3, 203–212. MR 581439, DOI 10.1007/BF01215085
  • R. H. Dye, Maximal subgroups of $\textrm {GL}_{2n}(K)$, $\textrm {SL}_{2n}(K)$, $\textrm {PGL}_{2n}(K)$ and $\textrm {PSL}_{2n}(K)$ associated with symplectic polarities, J. Algebra 66 (1980), no. 1, 1–11. MR 591244, DOI 10.1016/0021-8693(80)90110-6
  • Fritz Grunewald, Jens Mennicke, and Leonid Vaserstein, On symplectic groups over polynomial rings, Math. Z. 206 (1991), no. 1, 35–56. MR 1086811, DOI 10.1007/BF02571323
  • Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
  • Roozbeh Hazrat, Dimension theory and nonstable $K_1$ of quadratic modules, $K$-Theory 27 (2002), no. 4, 293–328. MR 1962906, DOI 10.1023/A:1022623004336
  • Roozbeh Hazrat and Nikolai Vavilov, $K_1$ of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179 (2003), no. 1-2, 99–116. MR 1958377, DOI 10.1016/S0022-4049(02)00292-X
  • Wolfram Jehne, Die Struktur der symplektischen Gruppe über lokalen und dedekindschen Ringen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1962/64 (1962/1964), 187–235 (German). MR 0175999
  • Oliver King, On subgroups of the special linear group containing the special orthogonal group, J. Algebra 96 (1985), no. 1, 178–193. MR 808847, DOI 10.1016/0021-8693(85)90045-6
  • Oliver King, On subgroups of the special linear group containing the special unitary group, Geom. Dedicata 19 (1985), no. 3, 297–310. MR 815209, DOI 10.1007/BF00149370
  • Oliver King, Subgroups of the special linear group containing the diagonal subgroup, J. Algebra 132 (1990), no. 1, 198–204. MR 1060843, DOI 10.1016/0021-8693(90)90263-N
  • Franz Kirchheimer, Die Normalteiler der symplektischen Gruppen über beliebigen lokalen Ringen, J. Algebra 50 (1978), no. 1, 228–241 (German). MR 578492, DOI 10.1016/0021-8693(78)90184-9
  • Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
  • Wilhelm Klingenberg, Symplectic groups over local rings, Amer. J. Math. 85 (1963), 232–240. MR 153749, DOI 10.2307/2373212
  • Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
  • Fu An Li, The structure of symplectic groups over arbitrary commutative rings, Acta Math. Sinica (N.S.) 3 (1987), no. 3, 247–255. MR 916269, DOI 10.1007/BF02560038
  • Fu An Li, The structure of orthogonal groups over arbitrary commutative rings, Chinese Ann. Math. Ser. B 10 (1989), no. 3, 341–350. A Chinese summary appears in Chinese Ann. Math. Ser. A 10 (1989), no. 4, 520. MR 1027673
  • Shang Zhi Li, Overgroups of $\textrm {SU}(n,K,f)$ or $\Omega (n,K,Q)$ in $\textrm {GL}(n,K)$, Geom. Dedicata 33 (1990), no. 3, 241–250. MR 1050412, DOI 10.1007/BF00181331
  • Shang Zhi Li, Overgroups of a unitary group in $\textrm {GL}(2,K)$, J. Algebra 149 (1992), no. 2, 275–286. MR 1172429, DOI 10.1016/0021-8693(92)90016-F
  • Shang Zhi Li, Overgroups in $\textrm {GL}(n,F)$ of a classical group over a subfield of $F$, Algebra Colloq. 1 (1994), no. 4, 335–346. MR 1301157
  • Shang Zhi Li and Zong Li Wei, Overgroups of a symplectic group in a linear group over a Euclidean ring, J. Univ. Sci. Technol. China 32 (2002), no. 2, 127–134 (Chinese, with English and Chinese summaries). MR 1911131
  • Morris Newman, Matrix completion theorems, Proc. Amer. Math. Soc. 94 (1985), no. 1, 39–45. MR 781052, DOI 10.1090/S0002-9939-1985-0781052-8
  • V. A. Petrov, On the first cohomology of unitary Steinberg groups (to appear). (English)
  • Viktor Petrov, Overgroups of unitary groups, $K$-Theory 29 (2003), no. 3, 147–174. MR 2028500, DOI 10.1023/B:KTHE.0000006934.95243.91
  • Michael R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965–1004. MR 322073, DOI 10.2307/2373742
  • Michael R. Stein, Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups, Japan. J. Math. (N.S.) 4 (1978), no. 1, 77–108. MR 528869, DOI 10.4099/math1924.4.77
  • A. Stepanov, Non-standard subgroups between $E(n,R)$ and $\GL (n,A)$, Algebra Colloq. (to appear).
  • Alexei Stepanov and Nikolai Vavilov, Decomposition of transvections: a theme with variations, $K$-Theory 19 (2000), no. 2, 109–153. MR 1740757, DOI 10.1023/A:1007853629389
  • Giovanni Taddei, Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 47–50 (French, with English summary). MR 676359
  • Giovanni Taddei, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 693–710 (French). MR 862660, DOI 10.1090/conm/055.2/1862660
  • F. G. Timmesfeld, Abstract root subgroups and quadratic action, Adv. Math. 142 (1999), no. 1, 1–150. With an appendix by A. E. Zalesskii. MR 1671440, DOI 10.1006/aima.1998.1779
  • Jacques Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 9, Ai, A693–A695 (French, with English summary). MR 424966
  • L. N. Vaserstein, On the normal subgroups of $\textrm {GL}_{n}$ over a ring, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 456–465. MR 618316, DOI 10.1007/BFb0089533
  • L. N. Vaserstein, An answer to a question of M. Newman on matrix completion, Proc. Amer. Math. Soc. 97 (1986), no. 2, 189–196. MR 835863, DOI 10.1090/S0002-9939-1986-0835863-1
  • Leonid N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), no. 2, 219–230. MR 843808, DOI 10.2748/tmj/1178228489
  • L. N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J. Math. 110 (1988), no. 5, 955–973. MR 961501, DOI 10.2307/2374699
  • L. N. Vaserstein, Normal subgroups of symplectic groups over rings, Proceedings of Research Symposium on $K$-Theory and its Applications (Ibadan, 1987), 1989, pp. 647–673. MR 999398, DOI 10.1007/BF00535050
  • Leonid N. Vaserstein and Hong You, Normal subgroups of classical groups over rings, J. Pure Appl. Algebra 105 (1995), no. 1, 93–105. MR 1364152, DOI 10.1016/0022-4049(94)00144-8
  • Nikolai A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative algebras and related topics (Hiroshima, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 219–335. MR 1150262
  • Nikolai Vavilov, Intermediate subgroups in Chevalley groups, Groups of Lie type and their geometries (Como, 1993) London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. MR 1320525, DOI 10.1017/CBO9780511565823.018
  • —, The work of Borevich on linear groups, and beyond, Proc. Internat. Algebra Conf. (St. Petersburg, 2002), Marcel Dekker, 2003 (to appear).
  • J. S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc. 71 (1972), 163–177. MR 291304, DOI 10.1017/s0305004100050416
  • Hong You and Baodong Zheng, Overgroups of symplectic group in linear group over local rings, Comm. Algebra 29 (2001), no. 6, 2313–2318. MR 1845112, DOI 10.1081/AGB-100002390
  • E. V. Dybkova, Overdiagonal subgroups of the hyperbolic unitary group for a good form ring over a field, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 236 (1997), no. Vopr. Teor. Predst. Algebr i Grupp. 5, 87–96, 216–217 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 95 (1999), no. 2, 2096–2101. MR 1754447, DOI 10.1007/BF02169965
  • E. V. Dybkova, On overdiagonal subgroups of the hyperbolic unitary group over a noncommutative skew field, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 289 (2002), no. Vopr. Teor. Predst. Algebr. i Grupp. 9, 154–206, 302 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 124 (2004), no. 1, 4766–4791. MR 1949740, DOI 10.1023/B:JOTH.0000042313.09130.b6
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 20G35
  • Retrieve articles in all journals with MSC (2000): 20G35
Bibliographic Information
  • N. A. Vavilov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, St. Petersburg, 198504, Russia
  • V. A. Petrov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, St. Petersburg 198504, Russia
  • Received by editor(s): February 18, 2003
  • Published electronically: July 6, 2004
  • Additional Notes: The present paper has been written in the framework of the RFBR projects nos. 01-01-00924 and 00-01-00441, and INTAS 00-566. The theorem on decomposition of unipotents mentioned in §13 is a part of first author’s joint work with A. Bak and was carried out at the University of Bielefeld with the support of AvH-Stiftung, SFB-343, and INTAS 93-436. At the final stage, the work of the authors was supported by express grants of the Russian Ministry of Higher Education ‘Geometry of root subgroups’ PD02-1.1-371 and ‘Overgroups of semisimple groups’ E02-1.0-61.
  • © Copyright 2004 American Mathematical Society
  • Journal: St. Petersburg Math. J. 15 (2004), 515-543
  • MSC (2000): Primary 20G35
  • DOI: https://doi.org/10.1090/S1061-0022-04-00820-9
  • MathSciNet review: 2068980