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HEATING OF THE AHLFORS–BEURLING OPERATOR,
AND ESTIMATES OF ITS NORM

A. VOLBERG AND F. NAZAROV

Abstract. A new estimate is established for the norm of the Ahlfors–Beurling trans-

form Tϕ(z) := 1
π

∫∫ ϕ(ζ) dA(ζ)
(ζ−z)2 in Lp(dA). Namely, it is proved that ‖T‖Lp→Lp ≤

2(p − 1) for all p ≥ 2. The method of Bellman function is used; however, the exact
Bellman function of the problem has not been found. Instead, a certain approxima-
tion to the Bellman function is employed, which leads to the factor 2 on the right (in
place of the conjectural 1).

§0. Introduction

Notation.

:= means “is equal by definition”;
x := (x1, x2);
D(x,R) is the disk centered at x and of radius R;

k(x, t) := 1
4πte

− ‖x‖
2

4t is the heat kernel on the plane;
D is a collection of dyadic intervals.

Main objects and results. The main object in this paper is the Ahlfors–Beurling
operator given by

Tϕ(z) :=
1
π

∫∫
ϕ(ζ) dA(ζ)

(ζ − z)2
.

Here dA denotes area Lebesgue measure on C. Our goal is to present a new estimate of
the norm of T . This estimate falls short of the proof of the well-known conjecture saying
that

(0.1) ‖T ‖Lp→Lp = p− 1, p ≥ 2.

Here we show that ‖T ‖Lp→Lp ≤ 2(p − 1) for all p ≥ 2, which is two times worse
than (0.1). The estimate ‖T ‖Lp→Lp ≤ 4(p − 1) was established in [3]. After the first
preprint version of the present paper appeared, Rodrigo Bañuelos and Pedro Méndez-
Hernández [9] informed us that they also managed to improve 4 to 2 by modifying the
methods used in [3].

Actually, this problem has a long history, and it has been reappearing in many papers
on the regularity of quasiconformal homeomorphisms and quasiregular maps. Essentially,
the Lp-theory of quasiregular mappings was started with the work of B. Bojarski [5, 6].
Later, this subject came under intensive investigation. In particular, the best integrability
of K-quasiconformal mappings and the problem (dual in a sense; see [28]) on the minimal
regularity of quasiregular mappings were discussed in many papers. Here we mention
[15]–[17], [18, 19], [22]–[24], [27, 28]. The best integrability result was established finally
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564 A. VOLBERG AND F. NAZAROV

in [2]. The best minimal regularity result was obtained recently in [30]. The method of
[30] will be applied in the present paper to establish the inequality

(0.2) ‖T ‖Lp→Lp ≤ 2(p− 1), p ≥ 2.

By the same method, it is possible to prove that

(0.3)
∥∥∥( 2∑

j,k=1

∣∣∣∣ ∂2f

∂xj∂xk

∣∣∣∣2)1/2∥∥∥
p
≤
√

2p‖∆f‖p, f ∈ W p
2 , p ≥ 2,

which is better than in [24].

§1. Consequences of the “(p− 1)-estimate”

Let us formulate analytic and geometric consequences of the elimination of the factor
2 in (0.2). We are dealing with (local) solutions of the Beltrami equation

(1.1) fz̄ − µfz = 0.

We ask two questions.
1) Suppose ‖µ‖∞ = k < 1. If a solution is a priori in W 2

1 locally, what is the ensured
smoothness of this local solution? It is classical that f must belong to W 2+ε(k)

1 locally,
where ε(k) > 0. Finding the best ε(k) was the key point of the problem by F. Gehring
solved by K. Astala [2]. The best ε(k) turned out to be equal to 1−k

k . It is not attainable
in general.

2) Suppose ‖µ‖∞ = k < 1. If a solution is a priori in W q
1 locally (now q < 2),

what is the smallest q that ensures that f ∈ W 2
1 locally (and then, by [2], ensures that

f ∈W 1+1/k−τ
1 for any positive τ)? The smallest q turns out to be 1 + k. It is attainable

(see [30]).
These two questions are intimately related to estimate (0.1). We explain the reason

for that. Consider (1.1) in a neighborhood W of the origin, and put V = 1
2W . Let ϕ

be a C∞-function supported on W and equal to 1 on V . We set g := ϕfz̄ and consider
f − 1

π

∫
C
g(ζ)
z−ζ dA(ζ). Here dA stands for planar Lebesgue measure. Application of the

distributional operator ∂̄ to the latter expression yields zero in V . So, we have a function
h analytic in V and such that f = h+ 1

π

∫
C
g(ζ)
z−ζ dA(ζ). Consequently,

fz = h′ + Tg

in V . If we multiply (1.1) by ϕ and use the notation g := ϕfz̄ and the previous expression
for fz, we get

g − µϕTg = r := µϕh′

in V . On U := 1
2V the function r is bounded, and therefore it belongs to any Lp(U, dA).

Let M denote the operator of multiplication by µϕ in Lp(U, dA), ‖M‖ ≤ k. We denote
t(p) := ‖T ‖Lp(U,dA)→Lp(U,dA) and consider the identity

(I −MT )g = r

to conclude that the inequality

(1.2) kt(p) < 1

implies that g ∈ Lp in U , which is the same as to say that f ∈ W p
1 locally. Now we see

that (0.1) would imply that for every p with p < 1 + 1
k the solution in question of (1.1)

is in W p
1 (dA) locally.

The above considerations yield also a lower estimate for the norm of T on Lp. This
argument is borrowed from [19]. Suppose that t(p) is strictly smaller than p − 1. Us-
ing (1.2) in the same way as above, we see that if ‖µ‖∞ = k < 1, then any solution
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HEATING OF THE AHLFORS–BEURLING OPERATOR 565

of (1.1) that is a priori in W 2
1 locally is in fact in W

1+1/k+ε
1 for some ε > 0. But it

is easy to compute that the function f(z) := z|z|− 2k
1+k satisfies (1.1) with µ(z) = −k zz̄ .

Thus, the L∞-norm of µ is k. However, f is not in W
1+1/k+ε
1 near the origin. It is not

even in W
1+1/k
1 . In fact, it is readily computable that |fz| = C(k)|z|− 2k

1+k , which does
not belong to any Lp(dA) for p ≥ 1 + 1/k. Thus, ‖T ‖p ≥ p− 1.

We think that we have presented enough motivation for our interest in the estimation
of the Lp-norm of such a particular Fourier multiplier as T , and of related multipliers to
be considered here.

§2. Littlewood–Paley identity for heat extensions

For the Ahlfors–Beurling operator T we can write the identity T = R2
1−R2

2 +2iR1R2,
where the Ri are the planar Riesz transforms. We fix, say, R2

1 and two complex-valued
test functions ϕ, ψ ∈ C∞0 . We use heat extensions. For a function f on the plane, its
heat extension is given by the formula

f(y, t) :=
1

4πt

∫∫
R2
f(x) exp

(
−|x− y|

2

4t

)
dx1 dx2, (y, t) ∈ R3

+.

Usually, we employ the same letter to denote a function and its heat extension.

Lemma 2.1. Let ϕ, ψ ∈ C∞0 . Then the integral
∫∫∫

∂ϕ
∂x1
· ∂ψ∂x1

dx1 dx2 dt converges abso-
lutely and

(2.1)
∫∫

R2
1ϕ · ψ dx1 dx2 = −2

∫∫∫
∂ϕ

∂x1
· ∂ψ
∂x1

dx1 dx2 dt.

Proof. Actually, the proof of this lemma is trivial. It is based on the fact that a function
is an integral of its derivative, and also involves Parseval’s formula. Consider complex-
valued functions ϕ, ψ ∈ C∞0 and write∫∫

ψR2
1ϕdx1 dx2 =

∫∫
ξ2
1

ξ2
1 + ξ2

2

ϕ̂(ξ1, ξ2)ψ̂(−ξ1,−ξ2) dξ1 dξ2

= 2
∫∫ ∫ ∞

0

e−2t(ξ2
1+ξ2

2)ξ2
1 ϕ̂(ξ1, ξ2)ψ̂(−ξ1,−ξ2) dt dξ1 dξ2

= −2
∫ ∞

0

∫∫
iξ1ϕ̂(ξ1, ξ2)e−t(ξ

2
1+ξ2

2) · iξ1ψ̂(−ξ1,−ξ2)e−t(ξ
2
1+ξ2

2) dξ1 dξ2 dt

= 2
∫ ∞

0

∫∫
∂ϕ

∂x1
(x1, x2, t)

∂ψ

∂x1
(x1, x2, t) dx1 dx2 dt

= 2
∫∫∫

R3
+

∂ϕ

∂x1
(x1, x2, t)

∂ψ

∂x1
(x1, x2, t) dx1 dx2 dt.

We have used Parseval’s formula twice, and also the absolute convergence of the
integrals ∫∫∫

R3
+

e−2t(ξ2
1+ξ2

2)ξ2
1ϕ̂(ξ1, ξ2)ψ̂(ξ1, ξ2) dξ1 dξ2 dt,∫∫∫

R3
+

∂ϕ

∂x1
(x1, x2, t)

∂ψ

∂x1
(x1, x2, t) dx1 dx2 dt.

This is obvious for the first integral and easy for the second. We leave this as an exercise
for the reader. �
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566 A. VOLBERG AND F. NAZAROV

§3. The Bellman function proof of (0.2)

We warn the reader that sometimes it will be convenient to think that C is R2, and
that the absolute value | · | is the norm ‖ · ‖ of a vector in R2.

Let ϕ, ψ be complex-valued test functions in C∞0 (R2). We denote their heat extensions
to R3

+ by the same letters and use Lemma 2.1. It is easily seen that estimating combina-
tions of 〈R2

iϕ, ψ〉 is reduced to estimating integrals that occur in the next theorem. Notice
also that if Uρ denotes the operator Uρϕ(z) := f(eiρz), then 2R1R2 = U∗π/4(R2

1−R2
2)Uπ/4.

Therefore, the proof of (0.2) follows immediately from Theorem 3.1 and Lemma 2.1.

Theorem 3.1. For any complex-valued ϕ, ψ ∈ C∞0 we have

2
∫∫∫

R3
+

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣ dx1 dx2 dt+ 2
∫∫∫

R3
+

∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣ dx1 dx2 dt ≤ (p− 1)‖ϕ‖p‖ψ‖q.

In particular,

‖R2
1 −R2

2‖p ≤ p− 1, ‖2R1R2‖p ≤ p− 1 for all p, 2 ≤ p <∞.

In the proof of Theorem 3.1 we use the following key result. (In what follows, d2f
denotes the Hessian form that is the second differential form of f .)

Theorem 3.2. For any p ≥ 2 we define the domain Dp := {0 < (X,Y, ξ, η) ⊂ R× R×
R2 × R2 : ‖ξ‖p < X, ‖η‖q < Y }. Let K be any compact subset of Dp, and let ε be an
arbitrary positive number. Then there exists a function B = Bε,p,K(X,Y, x, y) infinitely
differentiable in a small neighborhood of K and such that

1) 0 ≤ B ≤ (1 + ε)(p− 1)X1/pY 1/q,

2) − d2B ≥ 2‖dξ‖‖dη‖.

We prove Theorem 3.2 later. Now we use it to obtain the proof of Theorem 3.1.

Proof. We consider two functions ϕ, ψ ∈ C∞0 and take B = Bε,p,K , where a compact set
K remains to be chosen.

We are interested in

b(x, t) := B(|ϕ|p(x, t), |ψ|q(x, t), ϕ(x, t), ψ(x, t)).

This is a well-defined function, because the Cauchy inequality ensures that the 6-vector

v := (|ϕ|p(x, t), |ψ|q(x, t), ϕ(x, t), ψ(x, t))

lies in Dp for any (x, t) ∈ R3
+. Also we can fix any compact subset M of the open set

R3
+ and guarantee that for (x, t) ∈M , the vector v lies in some compact set K. Indeed,

observe that for compactly supported ϕ, ψ the mapping (x, t) → v(x, t) takes compact
sets in R3

+ to compact sets in Dp. Now we simply take K sufficiently large in accordance
with M ; in our future considerations M will run over larger and larger compact sets in
R3

+.
We want to apply Green’s formula to b(x, t). To do this, we introduce the Green

function G(x, t) as in [13]. Taking a sufficiently large cylinder Ω := Ωl := D(0, l)× (0, l),
we put ∂′Ω = ∂D(0, l)× (0, l) and consider the following Green function:

(
∂

∂t
+ ∆

)
GΩ = −δ0,1 in Ω,

GΩ = 0 on ∂′Ω,
GΩ = 0 if t = l.

Here δ0,1 is the δ-function at the point (0, 1).
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HEATING OF THE AHLFORS–BEURLING OPERATOR 567

Let k(x, t) := 1
4πte

− |x|
2

4t , x := (x1, x2), be the heat kernel in R3
+. The quantity

k(0, t) can be understood as the temperature of the point (0, 0) on the plane at the time
moment t > 0 if initially (at t = 0) the distribution of temperature coincided with the
delta distribution concentrated at (0, 0). It is important to keep in mind that

(3.1) GΩ(0, 0)→ k(0, 1) as l →∞.

Indeed, it suffices to compare the interpretation of k(0, 1) with the fact that GΩ(0, 0)
is the temperature at the moment 1 provided the same initial distribution is given but
the temperature on ∂′Ωl is kept to be 0. However, if l is large, it is clear that these two
quantities are very close.

We also need the Green function in the cylinder Ω(R,R2) = D(0, lR)× (0, lR2):
(
∂

∂t
+ ∆

)
GRΩ = −δ0,R2 in Ω(R,R2) = D(0, lR)× (0, lR2),

GRΩ = 0 on ∂′Ω(R,R2) = ∂D(0, lR)× (0, lR2),

GRΩ = 0 if t = lR2.

The following fact is easy.

Lemma 3.3. GRΩ(x, t) = 1
R2GΩ(x/R, t/R2).

We are ready to apply Green’s formula to b(x, t). First we estimate b(0, R2) =
B(|ϕ|p(0, R2), . . . , ψ(0, R2)). Using property 1) of B (see Theorem 3.2), we get (x =
(x1, x2) as always, and 1/p+ 1/q = 1):

b(0, R2) ≤ (1 + ε)(p− 1)(|ϕ|p(0, R2))1/p(|ψ|q(0, R2))1/q .

Thus,

b(0, R2) ≤ (1 + ε)(p− 1)
(

1
4πR2

∫∫
|ϕ|p(x)e−

|x|2
4R2

)1/p ( 1
4πR2

∫∫
|ψ|q(x)e−

|x|2
4R2

)1/q

.

Now, by Green’s formula in C(R,R2), we have

b(0, R2) = −
∫∫∫

Ω(R,R2)∩{t>δ}
b(x, t)

(
∂

∂t
+ ∆

)
GRΩ(x, t) dx1 dx2 dt

=
∫∫∫

Ω(R,R2)∩{t>δ}
GRΩ(x, t)

(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt

+
∫∫

D(0,R)

b(x, δ)GRΩ(x, δ) dx1 dx2

+
∫∫

∂′Ω(R,R2)∩{t>δ}

(
∂b

∂nouter
GRΩ −

∂GRΩ
∂nouter

b

)
ds dt

=
∫∫∫

Ω(R,R2)∩{t>δ}
GRΩ(x, t)

(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt

+
∫∫

D(0,lR)

b(x, δ)GRΩ(x, δ) dx1 dx2 +
∫∫

∂′Ω(R,R2)∩{t>δ}

∂GRΩ
∂ninner

b ds dt

≥
∫∫∫

Ω(R,R2)∩{t>δ}
GRΩ(x, t)

(
∂

∂t
−∆

)
b(x, t) dx1 dx2 dt.

The last inequality is clear: the double integrals are both nonnegative, because b is
nonnegative and because GRΩ is nonnegative and vanishes on the side boundary. We
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568 A. VOLBERG AND F. NAZAROV

combine the estimates of b(0, R2) into the following (here ΩR,δ := Ω(R,R2) ∩ {t > δ}):

(3.2)

∫∫∫
ΩR,ε

GRΩ(x, t)
(
∂

∂t
−∆

)
b(x, t)

≤ (1 + ε)(p− 1)
4πR2

(∫∫
|ϕ|p(x)e−

|x|2
4R2

)1/p(∫∫
|ψ|q(x)e−

|x|2
4R2

)1/q

.

Fixing R and δ > 0, we take the compact set M = {(x, t) : x ∈ const(D(0, lR)), δ ≤
t ≤ lR2}. The vector-valued function v maps M to a compact subset of the domain Dp.
We denote this compact subset by K and choose B = Bε,p,K as in Theorem 3.2.

The next calculation is simple but it is key to the proof. In it

v = (|ϕ|p(x, t), |ψ|q(x, t), ϕ(x, t), ψ(x, t)).

Lemma 3.4. If (x, t) ∈M , then(
∂

∂t
−∆

)
b(x, t) =

((
−d2B

) ∂v
∂x1

,
∂v

∂x1

)
R6

+
((
−d2B

) ∂v
∂x2

,
∂v

∂x2

)
R6

.

Proof.

∂

∂t
b =

(
∇B, ∂v

∂t

)
R6

,

∆b =
(

(d2B)
∂v

∂x1
,
∂v

∂x1

)
R6

+
(

(d2B)
∂v

∂x2
,
∂v

∂x2

)
R6

+ (∇B,∆v)R6 .

(Merely, we have used the chain rule.) Now,(
∂

∂t
−∆

)
b =

(
∇B, ∂v

∂t
−∆v

)
R6
−
(

(d2B)
∂v

∂x1
,
∂v

∂x1

)
R6

−
(

(d2B)
∂v

∂x2
,
∂v

∂x2

)
R6

.

However, the first term is zero because all entries of the vector v are solutions of the heat
equation. �

By Theorem 3.2, in M we have

(3.3) −d2B(X,Y, ξ, η) ≥ 2‖dξ‖‖dη‖.

For (x, t) ∈M , Lemma 3.4 yields

(3.4)
(
∂

∂t
−∆

)
b(x, t) ≥ 2

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣ .
Combining (3.2) and (3.4), we get

(3.5)

2
∫∫∫

M

GRΩ(x, t)
(∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣)
≤ (1 + ε)(p− 1)

4πR2

(∫∫
|ϕ|p(x)

)1/p(∫∫
|ψ|q(x)

)1/q

.

Now it is time to use Lemma 3.3. So, (3.5) implies the inequality

(3.6)

2
∫∫∫

M

GΩ

(
x

R
,
t

R2

)(∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣)
≤ (1 + ε)(p− 1)

4π

(∫∫
|ϕ|p(x)

)1/p(∫∫
|ψ|q(x)

)1/q

.
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HEATING OF THE AHLFORS–BEURLING OPERATOR 569

But M = {(x, t) : x ∈ const(D(0, R)), δ ≤ t ≤ R2}. We fix any compact M0 in R3
+

and choose R and δ > 0 in such a way that M0 ⊂ M . Next, we restrict the integration
in (3.6) to M0 and let R→∞. Since

GΩ(x/R, t/R2)→ GΩ(0, 0),

we obtain

(3.7)

2GΩl(0, 0)
∫∫∫

M0

(∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣)
≤ (1 + ε)(p− 1)

4π

(∫∫
|ϕ|p(x)

)1/p(∫∫
|ψ|q(x)

)1/q

.

Now it is time to let Ω = Ωl tend to R3
+ by making l go to infinity. By (3.1), we

conclude that GΩl(0, 0)→ 1
4π . Then (3.7) becomes

(3.8)

2
∫∫∫

M0

(∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣)
≤ (1 + ε)(p− 1)

(∫∫
|ϕ|p(x)

)1/p(∫∫
|ψ|q(x)

)1/q

.

But M0 is an arbitrary compact set in the upper half-space, and ε is an arbitrary
positive number. Therefore,

(3.9)

2
∫∫∫

R3
+

(∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ∣∣∣∣ ∂ψ∂x1

∣∣∣∣+
∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ∣∣∣∣ ∂ψ∂x2

∣∣∣∣)

≤ (p− 1)
(∫∫

|ϕ|p(x)
)1/p(∫∫

|ψ|q(x)
)1/q

.

This proves Theorem 3.1. �

§4. The existence of a Bellman function. Proof of Theorem 3.2

We start with a simple “model” operator Tσ. To define it, we let D denote a family of
dyadic intervals on the line. To each I ∈ D we assign its Haar function: hI = 1/

√
|I| on

I+ and hI = −1/
√
|I| on I−, where I+ and I− are the right half and the left half of I,

respectively. Every nice complex-valued function (continuous with compact support on
one of I’s, say on [0, 1]) can be written as its Haar series: f =

∑
I(f, hI)hI . Consider the

operator Tσf =
∑
I σI(f, hI)hI , where σI is an arbitrary sequence of complex numbers

with absolute value 1. Notation: we use 〈f〉I to denote 1
|I|
∫
I f dx.

The logic will be as follows. We want to get a sharp estimate of ‖Tσ‖Lp→Lp in terms
of p. This problem has been solved by Burkholder. In [10] he found that (p ≥ 2)

(4.1) sup
σ
‖Tσ‖p ≤ p− 1.

He proved (4.1) by constructing a certain function of two real variables (actually,
another Bellman function) that has certain convexity and size properties. The reader
is referred to the papers by Burkholder [10, 11], or to the book by D. Stroock [32] for
the description of his approach. In particular, the following is written about (4.1) in [32,
p. 344]: “Quite recently Burkholder has discovered the right argument: ... it is completely
elementary. Unfortunately, it is also completely opaque. Indeed, his new argument is
nothing but an elementary verification that he has got the right answer; it gives no hint
about how he came to that answer”. Further on “for those who want to know the secret
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behind his proof, Burkholder has written an explanation in his article” [10]. Here is
Burkholder’s function (p ≥ 2):

b(x, y) = (|x| − (p− 1)|y|)(|x|+ |y|)p−1.

Actually, a stochastic Bellman PDE readily explains the way to write this function, and
this was done, for example, in [33].

We wish we could use this Bellman function of Burkholder in our problem. But we are
unable to do that. The reason is simple. The variables in Burkholder’s function stand
for certain martingales, which in his case are related to each other: one is subordinate to
the other. In our case we replace this variables not by martingales but by functions: the
first is R2

1ϕ, and the second is ϕ, where ϕ is a test function. There is no subordination
here. The only differential relation between these two functions (actually, between their
heat extensions) is the following:

∂

∂t
R2

1ϕ =
∂2

∂x2
1

ϕ.

This is a second order differential identity and, as such, it is in no relationship with the
subordination property, which interplayed so essentially with a very special convexity
property of the Burkholder function (see [10]). It would have been related to subordina-
tion (and then to convexity), should it be a differential identity of the first order. What
we mean can be illustrated by the following oversimplified example. Obviously, the com-
position of a convex function a with a linear function l is convex, but the composition of
a convex a and a convex l may fail to be convex (a(x) = e−x, l(x) = x2). That is exactly
the obstruction to using Burkholder’s function and composing it with our second order
Riesz transforms.

We do not see the way to win over this difficulty. We prefer another approach, which
follows the approach in [30].

The idea: we formulate Burkholder’s inequality in an equivalent form (simply in its
dual form). The resulting inequality generates another Bellman function. This will be
our B in Theorem 3.2.

As has already been said, we shall use the following lemma due to Burkholder.

Lemma 4.1. Let H be a separable Hilbert space. Suppose (Xn, Fn, P ) and (Yn, Fn, P )
are H-valued martingales. If

‖X0(ω)‖H ≤ ‖Y0(ω)‖H , ‖Xn(ω)−Xn−1(ω)‖H ≤ ‖Yn(ω)− Yn−1(ω)‖H
for almost every ω and all n, then

‖Xn‖Lp(P,H) ≤ max(p− 1, 1/(p− 1))‖Yn‖Lp(P,H)

for each p ∈ (1,∞).

From the lemma we can easily deduce the following theorem.

Theorem 4.2. Suppose J ∈ D, f ∈ Lp(J), and g ∈ Lp′(J). Let p ≥ 2. Then

1
4

1
|J |

∑
I∈D,I⊂J

|〈f〉I+ − 〈f〉I− ||〈g〉I+ − 〈g〉I− ||I| ≤ (p− 1)〈|f |p〉1/pJ 〈|g|p
′
〉1/p

′

J .

Proof. Without loss of generality, let J = [0, 1]. Let Fn be the σ-algebra generated by
all dyadic subintervals in J of length at least 2−n. Consider ω ∈ [0, 1] and put

Yn(ω) :=
∑

I⊂J,|I|≥2−n

(f, hI)hI(ω).
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We fix any sequence of complex numbers σI = eiαI , αI ∈ R, and consider

Xn(ω) :=
∑

I⊂J,|I|≥2−n

σI(f, hI)hI(ω).

Both (Xn, Fn, dx) and (Yn, Fn, dx) are martingales. Clearly,

Yn − Yn−1 =
∑

I⊂J,|I|=2−n

(f, hI)hI ,

and
Xn −Xn−1 :=

∑
I⊂J,|I|=2−n

σI(f, hI)hI .

These martingales satisfy the assumptions of Burkholder’s lemma. The Hilbert space
H = R2 is identified naturally with C. Now ‖f‖Lp = limn→∞ ‖Yn‖Lp(H), ‖Tσf‖Lp =
limn→∞ ‖Xn‖Lp(H); Burkholder’s lemma implies that

(4.2) ‖Tσf‖Lp ≤ (p− 1)‖f‖Lp
for p ≥ 2 and for any sequence σ as above.

We reformulate (4.2) as |(Tσf, g)| ≤ (p − 1)‖f‖Lp‖g‖Lp′ . Now the definition of Tσ
implies

(4.3)
1
|J |

∣∣∣∣∑
I

σI(f, hI)(g, hI)
∣∣∣∣ ≤ (p− 1)〈|f |p〉1/pJ 〈|g|p

′
〉1/p

′

J , σI = eiαI .

Notice that (f, hI) = 1
2

√
|I|(〈f〉I+ − 〈f〉I−). Since we also may vary σI , the theorem

follows. �
Theorem 4.3. In the domain G = {(Φ,Ψ, φ, ψ) ∈ R×R×C×C : |φ|p < Φ, |ψ|p′ < Ψ},
there exists a function B(Φ,Ψ, φ, ψ) such that for any quadruples a = (Φ,Ψ, φ, ψ), a− =
(Φ−,Ψ−, φ−, ψ−), and a+ = (Φ+,Ψ+, φ+, ψ+) with a = a−+a+

2 we have

B(a)− 1
2

(B(a−) +B(a+)) ≥ 1
4
|φ− − φ+||ψ− − ψ+|.

Also,
0 ≤ B(a) ≤ (p− 1)Φ1/pΨ1/p′

everywhere in G.
For every compact subset K in G we can find an infinitely smooth function BK on K

such that the first estimate is fulfilled. Consider φ = ξ1 + iη1, ψ = ξ2 + iη2, where the ξ’s
and η’s are real. If we view BK as a function of 6 real variables, then we can consider
its 6× 6 Jacobi matrix and the corresponding second differential form, i.e., the Hessian.
Then the Hessian of BK must satisfy the following inequality:

−d2BK ≥ 2|dφ||dψ| = 2((dξ1)2 + (dη1)2)1/2((dξ2)2 + (dη2)2)1/2.

At the same time, for any positive ε, BK can be chosen to satisfy

0 ≤ BK(a) ≤ (1 + ε)(p− 1)Φ1/pΨ1/p′ .

Proof. Fix (Φ,Ψ, φ, ψ) ∈ G and consider all complex-valued functions f , g on J such
that Φ = 〈|f |p〉J , Ψ = 〈|g|p′〉J , φ = 〈f〉J , ψ = 〈g〉J . Let

B(Φ,Ψ, φ, ψ) := sup
{1

4
1
|J |

∑
I∈D,I⊂J

|〈f〉I+ − 〈f〉I− ||〈g〉I+ − 〈g〉I− ||I|
}
,

where the supremum is taken over all f and g as above. This supremum does not depend
on the interval J . This observation helps to prove the first inequality B(a)− 1

2 (B(a−) +
B(a+)) ≥ 1

4 |φ−−φ+||ψ−−ψ+| exactly as this is done in any paper on Bellman functions.
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On the other hand, the second inequality 0 ≤ B(a) ≤ (p− 1)Φ1/pΨ1/p′ has already been
proved—this is the claim of Theorem 4.2.

If we fix a compact set K, we can also fix a very small ε (much smaller than the
distance from K to the boundary of G), and we can consider 1

ε6S(aε ), where S is a C∞0 -
function supported on the unit ball of R× R× C× C = R6 centered at zero. It remains
to mollify B by convolving it with 1

ε6S(aε ). The concavity inequality will be satisfied
with no change for the new function. The size inequality can become (1 + CKε) times
worse. �
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Paris VI, 4 Place Jussieu, 75 252 Paris cédex 05, France
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