Irreducible representations of quantum solvable algebras at roots of 1
Author:
A. N. Panov
Translated by:
the author
Original publication:
Algebra i Analiz, tom 15 (2003), nomer 4.
Journal:
St. Petersburg Math. J. 15 (2004), 603-623
MSC (2000):
Primary 81R50
DOI:
https://doi.org/10.1090/S1061-0022-04-00825-8
Published electronically:
July 7, 2004
MathSciNet review:
2068985
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The relationship between the irreducible representations of quantum solvable algebras at roots of 1 and the points of the variety of the center is studied. The quiver of the fiber algebra is characterized, and formulas for the dimension and for the number of the irreducible representations that lie over a point of the center variety are presented.
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- K. A. Brown and I. Gordon, Poisson orders, symplection reflection algebras and representation theory, archived as math.RT/0201042.
- ---, The ramification of the centres: quantized function algebras at roots of unity, archived as math.RT/9912042.
- G. Cauchon, Effacement des dérivations et quotients premiers de $U_q^w(g)$, J. Algebra (to appear).
- ---, Spectre premier de $O_q(M_n(k))$: Image canonique et separation normale, Preprint.
- Corrado De Concini and Victor G. Kac, Representations of quantum groups at roots of $1$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, BirkhĂ€user Boston, Boston, MA, 1990, pp. 471â506. MR 1103601
- C. De Concini, V. G. Kac, and C. Procesi, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 41â65. MR 1351503
- C. De Concini, V. G. Kac, and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), no. 1, 151â189. MR 1124981, DOI https://doi.org/10.1090/S0894-0347-1992-1124981-X
- Corrado De Concini and Volodimir Lyubashenko, Quantum function algebra at roots of $1$, Adv. Math. 108 (1994), no. 2, 205â262. MR 1296515, DOI https://doi.org/10.1006/aima.1994.1071
- C. De Concini and C. Procesi, Quantum groups, $D$-modules, representation theory, and quantum groups (Venice, 1992) Lecture Notes in Math., vol. 1565, Springer, Berlin, 1993, pp. 31â140. MR 1288995, DOI https://doi.org/10.1007/BFb0073466
- C. De Concini and C. Procesi, Quantum Schubert cells and representations at roots of $1$, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 127â160. MR 1635678
- Jacques Dixmier, Enveloping algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Mathematical Library, Vol. 14; Translated from the French. MR 0498740
- K. R. Goodearl, Prime spectra of quantized coordinate rings, Interactions between ring theory and representations of algebras (Murcia), Lecture Notes in Pure and Appl. Math., vol. 210, Dekker, New York, 2000, pp. 205â237. MR 1759846
- K. R. Goodearl and E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521, vi+106. MR 1197519, DOI https://doi.org/10.1090/memo/0521
- K. R. Goodearl and E. S. Letzter, Prime factor algebras of the coordinate ring of quantum matrices, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1017â1025. MR 1211579, DOI https://doi.org/10.1090/S0002-9939-1994-1211579-1
- K. R. Goodearl and T. H. Lenagan, Prime ideals invariant under winding automorphisms in quantum matrices, Internat. J. Math. 13 (2002), no. 5, 497â532. MR 1914562, DOI https://doi.org/10.1142/S0129167X02001393
- K. R. Goodearl and T. H. Lenagan, Winding-invariant prime ideals in quantum $3\times 3$ matrices, J. Algebra 260 (2003), no. 2, 657â687. MR 1967316, DOI https://doi.org/10.1016/S0021-8693%2802%2900566-5
- N. Z. Iorgov and A. U. Klimyk, Representations of the nonstandard (twisted) deformation $Uâ_q({\rm so}_n)$ for $q$ a root of unity, Czechoslovak J. Phys. 50 (2000), no. 11, 1257â1263. Quantum groups and integrable systems (Prague, 2000). MR 1806271, DOI https://doi.org/10.1023/A%3A1022813108279
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966
- M. V. KarasĂ«v and V. P. Maslov, Nonlinear Poisson brackets, Translations of Mathematical Monographs, vol. 119, American Mathematical Society, Providence, RI, 1993. Geometry and quantization; Translated from the Russian by A. Sossinsky [A. B. SosinskiÄ] and M. Shishkova. MR 1214142
- StĂ©phane Launois, Les idĂ©aux premiers invariants de $O_q({\scr M}_{m,p}({\Bbb C}))$, J. Algebra 272 (2004), no. 1, 191â246 (French, with English summary). MR 2029032, DOI https://doi.org/10.1016/j.jalgebra.2003.05.005
- S. Z. LevendorskiÄ and Ya. S. SoÄbelâČman, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241â254. MR 1120927, DOI https://doi.org/10.1016/0393-0440%2890%2990013-S
- George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89â113. MR 1066560, DOI https://doi.org/10.1007/BF00147341
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- A. V. OdesskiÄ and B. L. FeÄgin, Sklyaninâs elliptic algebras, Funktsional. Anal. i Prilozhen. 23 (1989), no. 3, 45â54, 96 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 3, 207â214 (1990). MR 1026987, DOI https://doi.org/10.1007/BF01079526
- A. Panov, Fields of fractions of quantum solvable algebras, J. Algebra 236 (2001), no. 1, 110â121. MR 1808348, DOI https://doi.org/10.1006/jabr.2000.8463
- A. N. Panov, Stratification of prime spectrum of quantum solvable algebras, Comm. Algebra 29 (2001), no. 9, 3801â3827. Special issue dedicated to Alexei Ivanovich Kostrikin. MR 1857015, DOI https://doi.org/10.1081/AGB-100105976
- A. N. Panov, Quantum solvable algebras. Ideals and representations at roots of 1, Transform. Groups 7 (2002), no. 4, 379â402. MR 1941242, DOI https://doi.org/10.1007/s00031-002-0018-x
- Richard S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York-Berlin, 1982. Studies in the History of Modern Science, 9. MR 674652
- M. A. Semenov-Tyan-ShanskiÄ, Poisson-Lie groups. The quantum duality principle and the twisted quantum double, Teoret. Mat. Fiz. 93 (1992), no. 2, 302â329 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 93 (1992), no. 2, 1292â1307 (1993). MR 1233548, DOI https://doi.org/10.1007/BF01083527
Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 81R50
Retrieve articles in all journals with MSC (2000): 81R50
Additional Information
A. N. Panov
Affiliation:
Mathematical Department, Samara State University, Ul. Akad. Pavlova 1, Samara 443011, Russia
Email:
panov@ssu.samara.ru
Received by editor(s):
February 10, 2003
Published electronically:
July 7, 2004
Additional Notes:
Supported by RFBR (grant no. 02-01-00017).
Article copyright:
© Copyright 2004
American Mathematical Society