ON SPACES OF POLYNOMIAL GROWTH
WITH NO CONJUGATE POINTS

N. D. LEBEDEVA

Abstract. The following generalization of the Hopf conjecture is proved: if the fundamental group of an n-dimensional compact polyhedral space M without boundary and with no conjugate points has polynomial growth, then there exists a finite covering of M by a flat torus.

§1. Introduction

By an n-dimensional polyhedral space we mean a metric space M (with an inner metric) covered by n-simplexes; each simplex is endowed with a smooth Riemannian metric, and these metrics coincide on the common (n−1)-faces of the n-simplexes. The precise definition is given at the end of this section. In the definitions below, it is assumed that we deal with a fixed triangulation.

A polyhedral pseudomanifold is an n-dimensional polyhedral space in which the (n−1)-simplexes of the triangulation are adjacent to at most two n-simplexes. The boundary of a polyhedral space is the union of the (n−1)-simplexes of the triangulation that are adjacent to only one n-simplex. We say that M has no conjugate points if any two points in the universal covering space of M are connected by a unique geodesic. All polyhedral spaces considered in this paper are assumed to be connected.

Let M be a compact polyhedral space without boundary and with no conjugate points. It is well known that M is isometric to the quotient space \(\tilde{M}/\Gamma \), where \(\tilde{M} \) is the universal covering space of M, and \(\Gamma \) is a subgroup of the group of isometries of \(\tilde{M} \); recall that \(\Gamma \) is isomorphic to \(\pi_1(M) \).

Our aim in this paper is to prove the following two theorems.

Theorem 1. Let M be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the fundamental group \(\pi_1(M) \) of M is nilpotent, then M is a flat torus.

Theorem 2. Let M be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the fundamental group \(\pi_1(M) \) of M is of polynomial growth, then there exists a finite covering of M by a flat torus.

Theorem 2 can be derived from Theorem 1. Indeed, let M satisfy the assumptions of Theorem 1. Then \(\pi_1(M) \) is of polynomial growth. The well-known result by Gromov (see [G2]) says that \(\pi_1(M) \) is virtually nilpotent, i.e., \(\pi_1(M) \) contains a nilpotent subgroup \(G \) of finite index. Consequently, there exists a finite covering \(\tilde{M} \to M \) such that \(\pi_1(\tilde{M}) = G \).

2000 Mathematics Subject Classification. Primary 57N16.

Key words and phrases. n-dimensional polyhedral space, polyhedral pseudomanifold, fundamental group.

Partially supported by RFBR (grant no. 02-01-00090), by CRDF (grant no. RM1-2381-ST-02), and by SS (grant no. 1914.2003.1).
Since \overline{M} is a compact polyhedral space without boundary and with no conjugate points, \overline{M} is flat by Theorem 1. In the remaining part of the paper we prove Theorem 1. The proof is organized as follows.

In §2 we prove that M^n is a pseudomanifold and that it is homotopy equivalent to an n-dimensional torus.

In §3 we construct a map $f : M \to T^n$, where T^n is a flat torus. We show that f is a local isometry on the complement of the $(n-2)$-skeleton of M. This step of the proof is similar to a version of the proof of the Hopf conjecture (see [1]). For the first time, the Hopf conjecture was proved by D. Burago and S. Ivanov in [BI].

In §4 we prove that the map $f : M \to T^n$ is an isometry. In contrast to the case of Riemannian manifolds considered in [I], this step is not trivial for Riemannian polyhedra.

Now we explain more precisely what we mean by polyhedral spaces.

An n-dimensional Riemanian simplex is an n-simplex in \mathbb{R}^n equipped with a smooth Riemannian metric (as usual, we assume that the metric is defined in a neighborhood of this simplex), as well as any metric space isometric to such a simplex.

An n-dimensional polyhedral space is a connected metric space that can be obtained by gluing together n-dimensional Riemanian simplexes along some isometries between their faces.

§2. Homotopy type of M

In the proof of Theorem 1 we use the following results obtained earlier (see [L1, L2]).

Claim 1 ([L1]). Let M be a compact locally simply connected space without conjugate points. Then every nilpotent subgroup of the fundamental group of M is Abelian and torsion free.

Claim 2 ([L2]). Let M be an n-dimensional compact polyhedral space without boundary and with no conjugate points. If the triangulation of M contains three n-simplexes with a common $(n-1)$-face, then the fundamental group $\pi_1(M)$ is of exponential growth.

Our aim in this section is to prove the following auxiliary statement.

Lemma 1. Let M be as in Theorem 1. Then M is a pseudomanifold that is homotopy equivalent to an n-dimensional torus.

Proof. Since the fundamental group of a compact metric space with intrinsic metric is finitely generated, from Claim 1 it follows that $\pi_1(M) = \mathbb{Z}^m$ for some m. Applying Claim 2, we see that at most two n-simplexes of M may have a common $(n-1)$-face, i.e., M is a pseudomanifold. Since the universal covering space of M is contractible, the fundamental group of M determines the homotopy type of M. Hence, M is homotopy equivalent to an m-torus T^m. It follows that $H_k(M, \cdot) = H_k(T^m, \cdot)$ for every k.

We prove that $m = n$, where n is the dimension of M.

Suppose that $n > m$. Since M is a pseudomanifold, we have $H_n(M, \mathbb{Z}_2) = \mathbb{Z}_2$. This contradicts the relation $H_n(T^m, \mathbb{Z}_2) = 0$.

Suppose $n < m$; then $H_m(M, \mathbb{Z}) = 0$. This contradicts the relation $H_m(T^m, \mathbb{Z}) = \mathbb{Z}$. Thus, $\pi_1(M) = \mathbb{Z}^n$. □

§3. Constructing a local isometry

We denote by M' the complement of the $(n-2)$-skeleton of M; then M' is an open dense subset of M. In this section we shall prove the following statement.

Proposition 1. Under the assumptions of Theorem 1, there exists a map $f : M \to T^n$, where T^n is a flat n-torus, with the following properties:
(1) \(f|_{M'} \) is a local isometry on \(M' \), i.e., \(f|_{M'} \) is an open map preserving distances;
(2) \(f \) is Lipschitz;
(3) \(f \) induces an isomorphism between the corresponding fundamental groups.

We start with several lemmas.

Let \(SM \) denote the space of all unit tangent vectors of \(M \). A canonical measure \(\mu_L \) on the space \(SM \) is defined in a standard way as the product of two measures: the normalized Riemannian volume on \(M \) and the normalized Riemannian volume on the unit \((n-1)\)-sphere. This measure is called the \textit{Liouville measure}.

Since for almost every unit vector \(e \in SM \) there exists a unique generic geodesic \(\gamma \) with \(\gamma'(0) = e \) (see \cite{L1}), the geodesic flow transformation is well defined almost everywhere on \(SM \), and it is known that the Liouville measure is invariant with respect to this transformation (see \cite{L1}).

We recall that \(M \) is isometric to the quotient space \(\tilde{M}/\Gamma \), where \(\tilde{M} \) is the universal covering space of \(M \) and \(\Gamma \) is a deck transformation group isomorphic to \(\pi_1(M) = \mathbb{Z}^n \) and acting by isometries on \(\tilde{M} \).

Consider the vector space \(V = \Gamma \otimes \mathbb{R} \); it is isomorphic to \(\mathbb{R}^n \). There exists a canonical immersion of \(\Gamma = \mathbb{Z}^n \hookrightarrow V \), and its image is an integral lattice in \(V = \mathbb{R}^n \). Below we shall denote elements of \(\Gamma \) and the corresponding points of the lattice by the same symbol. Fix a point \(x_0 \in \tilde{M} \). The orbit of \(\Gamma \) is a lattice in \(\tilde{M} \); there is a one-to-one correspondence between the points of the lattice and the elements of \(\Gamma \). For \(k \in \Gamma \) and \(x \in \tilde{M} \), we denote by \(x + k \) the image of \(x \) under the isometry \(k \). When studying distances between remote points, it is convenient to approximate points of \(\tilde{M} \) by elements of the lattice. We define a map \(\tilde{\kappa} : \tilde{M} \to \Gamma \) commuting with \(\Gamma \). For this, we fix a bounded fundamental domain \(F \) containing the point \(x_0 \). For an arbitrary \(x \in \tilde{M} \), we put \(\tilde{\kappa}(x) = k \), where \(k \) is a unique element of \(\Gamma \) such that \(x \in F + k \).

Consider the function \(\| \cdot \| : \Gamma \to [0, \infty) \) given by the formula
\[
\|k\| = \lim_{n \to \infty} \frac{\tilde{\rho}(x_0, x_0 + nk)}{n},
\]
where \(\tilde{\rho} \) is the lift of the metric \(\rho \). The function \(\| \cdot \| \) is well known to be a norm on \(\Gamma \); therefore, it extends to a norm on \(V \), called the stable norm. For a linear function \(L : V \to \mathbb{R} \) we set \(\|L\| = \max\{L(x)\\|\\|x\\| = 1\} \).

Lemma 2. Let \(L : V \to \mathbb{R} \) be a linear function with \(\|L\| = 1 \). There exists a function \(\tilde{B}_L : \tilde{M} \to \mathbb{R} \) such that
1) \(\tilde{B}_L \) is Lipschitz with Lipschitz constant 1;
2) \(\tilde{B}_L(x + k) = \tilde{B}_L(x) + L(k) \) for every \(x \in \tilde{M} \), \(k \in \Gamma \).

Proof. Indeed, let
\[
\tilde{B}_L(x) = \inf_{k \in \Gamma} (L(k) + \rho(x, x_0 + k)).
\]

We prove that the function \(\tilde{B}_L \) is well defined. Since \(\|L\| = 1 \), from the definition of the stable norm it follows that
\[
-\rho(x_0 + k, x_0) \leq -\|k\| \leq L(k),
\]
whence
\[
L(k) + \rho(x, x_0 + k) \geq -\rho(x_0 + k, x_0) + \rho(x, x_0 + k) \geq -\rho(x, x_0).
\]
The required properties of \(\tilde{B}_L \) immediately follow from the definition. \(\square \)
For a linear function \(L : V \to \mathbb{R} \), let \(\tilde{B}_L \) denote the function constructed in Lemma 2. Since \(\tilde{B}_L \) is Lipschitz, it has a gradient almost everywhere; this gradient will be denoted by \(\tilde{v}_L \).

For \(\tilde{v} \in \tilde{S}M \), let \(\tilde{\gamma} : \mathbb{R} \to \tilde{M} \) be a geodesic with \(\gamma'(0) = \tilde{v} \). We define the direction at infinity \(\tilde{R}(\tilde{v}) = \tilde{R}(\tilde{\gamma}) \) in \(V \) by

\[
\tilde{R}(\tilde{v}) = \lim_{T \to -\infty} \frac{\mathcal{E}(\tilde{\gamma}(T)) - \mathcal{E}(\tilde{\gamma}(0))}{T}.
\]

By definition, for \(v \in SM \) we put \(R(v) = \tilde{R}(\tilde{v}) \), where \(\tilde{v} \) is a lifting of \(v \).

Since \(M \) has no conjugate points, it is clear that \(\| R(v) \| = 1 \).

Lemma 3. The functions \(R \) and \(\tilde{R} \) are defined almost everywhere on \(SM \) and \(\tilde{S}M \), respectively.

Proof. Let \(\phi : M \to V/\Gamma \cong \mathbb{R}^n/\mathbb{Z}^n \) be a homotopy equivalence; we may assume that \(\phi \) is simplicial. Since \(\phi \) induces an isomorphism between fundamental groups, the lifting function \(\tilde{\phi} : \tilde{M} \to V \) commutes with \(\Gamma \).

Since the functions \(\tilde{\phi} \) and \(\mathcal{E} \) commute with \(\Gamma \), we have \(\| \tilde{\phi} - \mathcal{E} \| \leq \text{const} \). Thus, in the definition of \(\tilde{R} \) we can replace \(\mathcal{E} \) by \(\tilde{\phi} \). Since the differential \(d\tilde{\phi} \) is defined almost everywhere on \(T\tilde{M} \) and is \(\Gamma \)-invariant, it is the lift of some measurable function \(\omega : TM \to V \). For a geodesic \(\gamma \) in \(M \) and its lifting \(\tilde{\gamma} \), we have

\[
\tilde{\phi}(\tilde{\gamma}(T)) - \tilde{\phi}(\tilde{\gamma}(0)) = \int_0^T \omega(\gamma') = \int_0^T \omega(\gamma').
\]

Thus, \(R(v) \) is equal to the average of \(\omega \) along \(\gamma \). The Birkhoff ergodic theorem shows that \(R(v) \) is defined for almost all \(v \in SM \). \(\square \)

Lemma 4. Let \(L : V \to R \) be a linear function with \(\| L \| = 1 \). Recall that \(\tilde{v}_L \) denotes the gradient field of \(B_L \). Then

\[
\lim_{T \to -\infty} \frac{1}{T} \int_0^T \langle \gamma', \tilde{v}_L \rangle = L(\gamma(\gamma))
\]

if both sides are well defined.

Proof. Since \(B_L \circ \gamma \) is Lipschitz, the Newton–Leibniz formula yields

\[
\int_0^T \langle \gamma', \tilde{v}_L \rangle = \int_0^T (B_L \circ \gamma)' = B_L(\gamma(T)) - B_L(\gamma(0)).
\]

Since the function \(B_L(x) - L(\mathcal{E}(x)) \) is bounded on the fundamental domain and periodic, it is bounded. This implies that \(B_L(\gamma(T)) - B_L(\gamma(0)) \) differs from \(L(\mathcal{E}(\gamma(T))) - L(\mathcal{E}(\gamma(0))) \) by a constant. So, we have

\[
\lim_{T \to -\infty} \frac{1}{T} \int_0^T \langle \gamma', \tilde{v}_L \rangle = \lim_{T \to -\infty} \frac{1}{T} \int_0^T \left(\frac{\mathcal{E}(\gamma(T)) - \mathcal{E}(\gamma(0))}{T} \right) = L(\gamma(\gamma)). \quad \square
\]

Let \(F \) denote the unit sphere of the norm \(\| \cdot \| \), and let \(m \) be the measure on \(F \) that is the image of \(\mu_L \) under \(R : SM \to F \).

Lemma 5. If \(L : V \to R \) is a linear function with \(\| L \| = 1 \), then

\[
\int_F L^2 dm \leq \frac{1}{n}.
\]

Equality occurs if and only if \(\langle \tilde{v}_L, w \rangle = L(\tilde{R}(w)) \) for almost every \(w \in \tilde{S}M \).
Proof. Consider the average of $\langle v_L, \cdot \rangle$ along geodesics. By Lemma 3, we have
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \langle \gamma', v_L \rangle = L \circ R.$$ By the Schwartz inequality,
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \langle \gamma', v_L \rangle^2 \geq (L \circ R)^2.$$ Since R is constant on every trajectory of the geodesic flow, we have
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \langle v_L, w \rangle^2 = (L \circ R)^2 + \lim_{T \to \infty} \frac{1}{T} \int_0^T \langle v_L, \cdot \rangle - L \circ R\rangle^2.$$ Integrating and using the Birkhoff ergodic theorem, we obtain
$$\int_{SM} \langle v_L, \cdot \rangle^2 d\mu_L = \int_{SM} (L \circ R)^2 d\mu_L + \int_{SM} \langle (v_L, \cdot) - L \circ R\rangle^2 d\mu_L.$$ From the inequality $|v_L| < 1$ it follows that $\int_{SM} \langle v_L, \cdot \rangle^2 d\mu_L \leq 1/n$. Consequently,
$$\int F L^2 dm = \int_{SM} (L \circ R)^2 d\mu_L \leq \frac{1}{n} - \int_{SM} \langle (v_L, \cdot) - L \circ R\rangle^2 d\mu_L.$$ The integral on the right is nonnegative, and it vanishes if and only if $\langle v_L, w \rangle = L(R(w))$ for almost every $w \in SM$. The lemma is proved. \qed

We use the following known result (for its proof, see, e.g., [BG]).

Lemma 6. Let $(V, \| \cdot \|)$ be an n-dimensional Banach space, let F be the unit sphere of the norm $\| \cdot \|$, and let F^* be the set of linear functions L such that $\|L\| = 1$. Then there exists an (“inscribed”) quadratic form $Q : V \to \mathbb{R}$ representable as a finite sum
$$Q = \sum a_i L_i^2, \quad L_i \in F^*, \quad a_i > 0, \quad \sum a_i = n,$$
and such that $Q(x) \geq \|x\|^2$ for every $x \in V$. In particular, Q is positive.

Remark 1. The unit ball of Q is the ellipsoid of maximal volume inscribed in F.

Let $Q = \sum a_i L_i^2$ be the corresponding (inscribed) quadratic form for the stable norm $\| \cdot \|$ associated with \bar{p}. We denote by B_i the functions constructed as in Lemma 2 for the linear functions L_i, and by \tilde{v}_i their gradients.

Lemma 7. For all i, we have
$$\langle \tilde{v}_i, w \rangle = L_i(R(w))$$
for almost every $w \in SM$.

Proof. Applying Lemma 5 to L_i, we obtain
$$\int F Q dm = \sum a_i \int F L_i^2 dm \leq \frac{1}{n} \sum a_i = 1.$$ But $Q|_F \geq 1$ on F. Therefore, $\int F Q dm = 1$, so that $\int F L_i^2 dm = \frac{1}{n}$ for every i. By Lemma 5 it follows that $\langle \tilde{v}_i, w \rangle = L_i(R(w))$ for almost every $w \in SM$. \qed

The lemma just proved implies that (1) is true almost everywhere for almost every trajectory of the geodesic flow; this means that for almost every $w \in SM$, if γ is a geodesic with $\gamma'(0) = w$, then the function $(\tilde{v}_i, \gamma') = (B_i \circ \gamma')$ is defined almost everywhere. Moreover it is equal to the constant $L_i(R(\gamma))$. Since this function is Lipschitz, it is linear. Thus,
$$\langle B_i \circ \gamma', t \rangle \equiv L_i(R(\gamma)), \quad t \in \mathbb{R},$$ (2)
Since $Q|_F \geq 1$, the relation $\int_F Q \, dm = 1$ implies that m-almost everywhere on F we have $Q = 1$. By the definition of m, this means that

$Q(R(w)) = 1$

for almost all $w \in S\tilde{M}$. Since Q is nondegenerate, there is no loss of generality in assuming that L_1, \ldots, L_n are linearly independent.

Consider the map

$\tilde{f} = (\tilde{B}_1, \ldots, \tilde{B}_n) : \tilde{M} \to \mathbb{R}^n$.

We endow \mathbb{R}^n with the Euclidean structure corresponding to the quadratic form Q under the isomorphism

$I = (L_1, \ldots, L_n) : V \to \mathbb{R}^n$.

For almost every geodesic $\gamma : \mathbb{R} \to \tilde{M}$ we obtain

$(\tilde{f} \circ \gamma)'(t) = (L_1(\tilde{R}(\gamma)), \ldots, L_n(\tilde{R}(\gamma))) = I(\tilde{R}(\gamma))$.

Since for almost every geodesic γ the vector $I(\tilde{R}(\gamma))$ is a unit vector with respect to the new Euclidean structure, the image $\tilde{f}(\gamma)$ is a straight line with constant unit velocity.

Now we prove Proposition 1.

Proof. Since \tilde{f} commutes with the group Γ of integral translations on \tilde{M} and \mathbb{R}^n, \tilde{f} induces a map $f : M \to T^n$, where T^n is a flat torus. The homomorphism of fundamental groups induced by f is an isomorphism, which implies statement (3) of Proposition 1.

The map f is Lipschitz because so is \tilde{f}.

Recall that M' denotes the complement of the $(n-2)$-skeleton of M.

We show that $f|_{M'} \to T^n$ is a local isometry. Consider a convex neighborhood $U \in M'$ and fix two points $x, y \in U$. For any neighborhoods $U_x, U_y \subset U$ of x and y, let $V(U_x, U_y)$ be the set of initial velocity vectors of all shortest paths starting in U_x and ending in U_y.

Since for almost every geodesic $\gamma : [a, b] \to M$ the image $f \circ \gamma$ is a straight line with a constant unit speed and $\mu_L V(U_x, U_y) > 0$, there exist two points $x' \in U_x$ and $y' \in U_y$ such that f preserves the distance between them. Since U_x and U_y are arbitrary and f is continuous, f preserves the distance between x and y. Thus, $f|_U$ preserves distances.

Since M' and T^n are n-dimensional manifolds, and $f|_{M'}$ preserves the distances, for any $x \in M'$ the image of some neighborhood of x is a neighborhood of $f(x)$, and we see that f is an open map.

\square

§4. f is an Isometry

The following Lemma 8 is an obvious consequence of Proposition 1.

Lemma 8. $f|_{M'}$ preserves the lengths of curves.

Lemma 9. The map $f|_{M'} : M' \to f(M')$ is bijective, and $f : M \to T^n$ is surjective. As a consequence (because $f|_{M'}$ is a local isometry), the map $(f|_{M'})^{-1}$ is well defined, is continuous, and preserves the lengths of curves.

Proof. Recall that M is homotopy equivalent to an n-dimensional torus. Consequently, the n-homology group of M is isomorphic to \mathbb{Z}. We fix an isomorphism between $H_n(T^n)$ and \mathbb{Z} and choose a generator of $H_n(M)$. The induced homomorphism $f_* : H_n(M) \to H_n(T^n) = \mathbb{Z}$ takes the generator of $H_n(M)$ to some integer; this integer is called the degree of f. We show that the degree of f is ± 1. Since the universal covering space of M is contractible, the induced homomorphism f_* determines the homotopy type of f. Proposition 3 shows that f_* is an isomorphism; then f is a homotopy equivalence. Thus, the degree of f is ± 1.

The choice of generators of the homology group fixes orientations of the manifolds \(M' \subset M \) and \(T^n \). We define the degree of \(f \) at \(x \in M' \) to be equal to 1 if \(d_uf \) preserves the orientations of the tangent spaces at \(x \), and to \(-1 \) if \(d_uf \) reverses the orientations. Suppose \(y \in T^n \) is a regular point, i.e., the preimage \(f^{-1}(y) = x_1, \ldots, x_l \) is contained in \(M' \). As in the case of Riemannian manifolds, it can be proved that the degree of \(f \) is the sum of the degrees of \(f \) at the points \(x_1, \ldots, x_l \). Hence, \(f \) is surjective.

Since \(M \) is a pseudomanifold that is homotopy equivalent to an \(n \)-dimensional torus, the space \(M' \) is connected. Indeed, assume the contrary; then the group \(H_n(M, \mathbb{Z}_2) \) contains two nonzero elements. Since \(f|_{M'} \) is a local isometry, it preserves the orientation of tangent spaces everywhere, or it reverses these orientations. Consequently, the degree of \(f \) is constant at the points \(x_1, \ldots, x_l \). Since the degree of \(f \) is 1, this means that each regular point has a unique preimage. By the definition of a regular point, it follows that all points having two or more preimages are contained in \(f^{-1}(f(M' \setminus M')) \). We put \(J = f^{-1}(f(M \setminus M')) \). Observe that the dimension of \(J \) does not exceed \(n - 2 \).

Suppose that \(f|_{M'} \) is not injective. Let \(y \in f(M') \) be a point with more than one preimage in \(M' \), and let \(x_1, x_2 \) be two such preimages. Let \(D_{r_0}(x_1), D_{r_0}(x_2) \) be balls centered at \(x_1 \) and \(x_2 \) and such that the restriction of \(f \) to these balls is an isometry. Since the dimension of \(J \) is at most \(n - 2 \), there exists a point \(x_3 \in D_{r_0}(x_1) \setminus M' \setminus J \). The image of this point coincides with an image of some point contained in \(D_{r_0}(x_2) \), which contradicts the fact that \(f \) is injective on \(M \setminus J \) \((x_3 \in M \setminus J) \).

We complete the proof of Theorem 1 by the following statement.

Lemma 10. The map \(f : M \to T^n \) is an isometry.

Proof. We show that \(f \) is noncontracting and nonexpanding. Every path in \(M \) can be approximated by a piecewise differentiable path of almost the same length. We can move each of the corresponding pieces to the interior of an appropriate \(n \)-simplex, leaving the endpoints fixed and almost length preserving.

The map \(f \) preserves the lengths of these pieces (see Lemma 8). Therefore, the map is nonexpanding.

Now we show that \(f \) is noncontracting. Let \(x, y \in M \) be arbitrary points. Given \(\varepsilon > 0 \), we let \(x', y' \in M' \) be points such that \(\rho(x, x') < \varepsilon \) and \(\rho(y, y') < \varepsilon \). Since \(f \) is nonexpanding, we have \(|(f(x), f(x'))| < \varepsilon \) and \(|(f(y), f(y'))| < \varepsilon \), where \(|(\cdot, \cdot)|\) denotes the metric on the flat torus.

Since \(f \) is Lipschitz and surjective, the Hausdorff dimension of the set \(T^n \setminus f(M') \) does not exceed \(n - 2 \). Therefore, the shortest path \([f(x'), f(y')]| \in T^n \) can be approximated by a path in \(f(M') \) with almost the same length and the same endpoints. Let \(s : [a, b] \to f(M') \) be a path that joins \(f(x') \) and \(f(y') \) and such that the length of \(s \) differs from \(|f(x'), f(y')|\) by less than \(\varepsilon \). Since \((f|_{M'})^{-1} \) preserves distances, the length of the path \(s \circ (f|_{M'})^{-1} : [a, b] \to M' \), which joins \(x' \) and \(y' \), differs from \(|f(x'), f(y')|\) by less than \(\varepsilon \). Thus,

\[
\rho(x, y) < \rho(x', y') + 2\varepsilon < |f(x'), f(y')| + 3\varepsilon < |f(x), f(y)| + 5\varepsilon.
\]

Therefore, \(f \) is noncontracting.

References

St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191011, Russia

E-mail address: lebed@pdmi.ras.ru

Received 18/FEB/2003

Translated by THE AUTHOR