
Algebra i analiz St. Petersburg Math. J.
Tom. 16 (2004), vyp. 5 Vol. 16 (2005), No. 5, Pages 749–772

S 1061-0022(05)00877-0
Article electronically published on September 21, 2005

DOUBLE SINGULAR INTEGRALS:
INTERPOLATION AND CORRECTION

D. S. ANISIMOV AND S. V. KISLYAKOV

§0. Introduction

0.1. Interpolation. Let (Ω, µ) be a measure space. Consider an operator Q that acts
in all spaces Lp(µ) with 1 < p < ∞ and is a projection in each of these spaces. Put
Xp = {f ∈ Lp(µ) : Qf = f}. If a meaning is lent to the expression Qf also for f ∈ L1(µ)
or f ∈ L∞(µ) (surely, in interesting cases the function Qf may fall out of these “extreme”
spaces — for instance, it may be a distribution), then the definition of Xp makes sense
also for p = 1,∞, and we may ask about the extent to which the scale Xp, including
both endpoints (or only one of them), inherits properties of the scale Lp.

Among other things, we shall be interested in the possibility of interpolating between
spaces Xp in accordance with the formulas inherent for the scale Lp. We deal with the
real interpolation only; moreover, in this context we are interested mostly in the basic
notion of K-closedness. If we manage to verify the relation Xp = (X1 + X∞) ∩ Lp,
1 < p < ∞ (in the specific examples treated below this formula will always be true),
then K-closedness (if it happens to occur) implies that the interpolation formulas of the
real method are inherited indeed by the scale Xp.

Definition. A subcouple (F0, F1) of an interpolation couple (E0, E1) is said to be K-
closed if for every f ∈ F0 + F1 and every decomposition f = e0 + e1 of f with e0 ∈ E0,
e1 ∈ E1 there exists another decomposition f = f0 + f1, where f0 ∈ F0, f1 ∈ F1 and
‖fi‖ ≤ C‖ei‖, i = 0, 1 (the constant C does not depend on the vectors involved).

0.2. Singular integrals. So, we want to provide some conditions that ensure the K-
closedness of the couple (Xp0 , Xp1) in (Lp0 , Lp1) if p0 < p1 and at least one of the
exponents takes the extreme value 1 or ∞. It is fairly well known that this is true indeed
if Q is a Calderón–Zygmund singular integral operator (CZO); see, e.g., the survey paper
[11]. The theory presented in [11] easily extends to spaces of vector-valued functions.
We give a summary of results in the vector setting.

0.2.1. It would be natural to take a so-called “homogeneous metric space” for the role
of the basic measure space (see, e.g., [3]); however, for simplicity we assume that Ω is a
disjoint union of finitely many copies of Rn or of Tn and µ is Lebesgue measure on this
union. For short, the Lp-space of functions with values in a Banach space X is often
denoted simply by Lp(X), without any mention of the set Ω and the measure µ.

0.2.2. Let A and B be Banach spaces (for simplicity we assume them to be reflexive).
An operator T is called a Calderón–Zygmund operator if

(a) T acts from Lp(A) to Lp(B) for some p ∈ (1,∞);
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(b) T has a kernel K(·, ·) with values in the space L(A, B) of bounded linear operators
from A to B; this kernel is related to T by the formula

(Tf)(s) =
∫

Ω

K(s, t)f(t) dµ(t)

valid for a.e. s off the support of f , f ∈ Lp(A);
(c) K possesses some smoothness.
Different and nonequivalent forms of condition (c) can be found in the literature. The

following three versions suffice for our purposes:
(c1) there is a constant C such that for every ball D in Ω we have∫

s/∈5D

‖(K(s, t1) − K(s, t2))a‖ dµ(s) ≤ C‖a‖, t1, t2 ∈ D, a ∈ A

(here 5D is the ball of the same center as D but of radius five times the radius of D);
(c2) the same, but with the inequality∫

s/∈5D

‖K(s, t1) − K(s, t2)‖L(A,B) dµ(s) ≤ C, t1, t2 ∈ D;

(c3) the same, but with the inequality

‖K(s, t1) − K(s, t2)‖L(A,B) ≤
C|t1 − t2|α
|s − t1|n+α

, s /∈ 5D, t1, t2 ∈ D,

for some α > 0 and C > 0 independent of t1, t2, and s (here n is the dimension of the
space Rn or Tn involved in the definition of the basic measure space).

The inequalities in (c1)–(c3) become stronger consecutively. In many cases, the weak-
est of them suffices; however, for weighted estimates (c3) is required. Usually (c1) and
(c2) are called Hörmander conditions.

0.2.3. Suppose A = B and Q is a projection in Lp(A) that is a Calderón–Zygmund
operator. It is well known that, automatically, Q takes Lr(A) into itself boundedly for
1 < r ≤ p, and it maps L1(A) to L1,∞(A), so that the definition

(1) Xr,Q = Xr = {f ∈ Lr(A) : Qf = f}

makes sense for 1 ≤ r ≤ p. If Q∗ is also a Calderón–Zygmund operator (now it is
natural to take p′ in the role of the parameter in condition (a)), then Q acts in Lr(A)
for p ≤ r < ∞, and for these r the space Xr,Q is also defined by (1). In this case it is
natural to put

X∞ = X∞,Q = (X1,I−Q∗)⊥.

If f ∈ L∞(A) ∩ Ls(A) for some s < ∞, then the relation f ∈ X∞,Q is equivalent to the
identity Qf = f (so, the heuristic discussion in Subsection 0.1 is not too deceiving at
this point).

0.2.4. K-closedness theorem. I. If Q is a Calderón–Zygmund operator, then the
couple (Xr1 , Xr2) is K-closed in (Lr1(A), Lr2(A)) for 1 ≤ r1 ≤ r2 ≤ p.

II. If Q∗ is a Calderón–Zygmund operator, then the couple (Xr1 , Xr2) is K-closed in
(Lr1(A), Lr2(A)) for p ≤ r1 ≤ r2 ≤ ∞.

III. If both Q and Q∗ are Calderón–Zygmund operators, then the couple (Xr1 , Xr2) is
K-closed in (Lr1(A), Lr2(A)) for 1 ≤ r1 ≤ r2 ≤ ∞.

We shall outline the proof later (see Subsection 0.7).
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0.3. Correction. Let T be an arbitrary linear operator acting boundedly from Lp(A, µ)
to Lp(B, µ) for 1 < p < ∞ (as before, A and B are reflexive spaces). As in Subsection 0.1,
assume that a meaning can be lent to the symbol Tf also for f in the “extreme” spaces
L1(A, µ) and L∞(A, µ). Put

Xp
def= {f ∈ Lp(A) : Tf ∈ Lp(B)}, 1 ≤ p ≤ ∞.

Clearly, Xp = Lp(A) for 1 < p < ∞. For us, the extreme point p = ∞ will be of much
greater interest than p = 1. Specifically, we want to know whether an arbitrary function
belonging to L∞(A) (or at least to L∞(A)∩L1(A)) can be corrected up to a function in
X∞ by a change on a set of small measure.

If T ∗ is a Calderón–Zygmund operator, the scalar version of the next theorem was
proved in [9]. The vector case does not differ substantially.

Correction Theorem. Suppose T ∗ is a Calderón–Zygmund operator and the norm in
A is strictly convex. Let f ∈ L∞(A)∩L1(A), let ‖f‖∞ ≤ 1, and let 0 < ε < 1. Then there
exists a scalar measurable function ϕ such that 0 ≤ ϕ ≤ 1 a.e., µ{ϕ �= 1} ≤ ε‖f‖L1(A),
and

‖T (ϕf)‖∞ ≤ C
(
1 + log

1
ε

)
,

where C depends only on T .

In other words, the correction is done by multiplication by a function all values of
which lie between 0 and 1 and differ from 1 on a set of small measure. Moreover, the
norm of the corrected function in X∞ jumps only quite moderately, as compared to the
L∞-norm of f (note that a control on ‖Tf‖∞ is in fact equivalent here to a control on
‖f‖X∞).

0.3.1. It should be mentioned that the spaces Xp can be interpreted as spaces Xp

treated in Subsection 0.1 or Subsection 0.2.3. For this, we introduce a projection Q in
Lp(A ⊕ B) = Lp(A) ⊕ Lp(B) by the formula Q(f, g) = (f, Tf). Clearly, the image of Q
identifies with the set of pairs of the form (ϕ, Tϕ) with ϕ ∈ Lp(A).

So, for the spaces Xp, the interpolation problem described in preceding subsections
also makes sense. Below we shall see that this problem is intimately related to the
correction problem.

0.4. Double singular integrals. We do not attempt to give a general definition here;
instead, we discuss a model example. For the two-dimensional torus T2 with Lebesgue
measure, consider the projection Q defined by

Qf =
∑

k,l≥0

f̂(k, l)zk
1zl

2.

This is not a Calderón–Zygmund operator (for example, this follows from the fact that,
as p → ∞, its norm on Lp(T2) grows as p2 rather than as p). However, it is the tensor
product of two Riesz projections acting in different variables: Q = P ⊗ P, where

Pg =
∑
n≥0

ĝ(n)zn

for functions g on the unit circle. Since P is a CZO (we recall that the latter abbreviation
stands for “Calderón–Zygmund operator”), it seems appropriate to call Q a “double
singular integral”.

The spaces Xp generated by Q are none other than the Hardy classes Hp(T2). The
following theorem was proved in [14].



752 D. S. ANISIMOV AND S. V. KISLYAKOV

Theorem on the two-dimensional torus. For arbitrary exponents p1, p2 with 0 <
p1 < p2 ≤ ∞, the couple (Hp1(T2), Hp2(T2)) is K-closed in (Lp1(T2), Lp2(T2)).

Under the restriction p2 < ∞, the theorem had been known prior to [14] and for the
tori of arbitrary dimension; see [19]. It is still unclear whether infinite exponents are
admissible even in dimension 3.

For the two-dimensional torus, the argument in [14] that made it possible to cover the
case of p2 = ∞ involved a fairly specific complex analysis trick. Therefore, that argument
is not quite suitable for generalization. Roughly speaking, it is only hoped that these
techniques may extend to the situations where one of the two CZO’s that generate a
double singular integral is somewhat similar to the Riesz projection.

Our main purpose in this paper is to show that some important operators of the one-
dimensional Fourier analysis (on the line and the circle) can be interpreted as double
singular integrals precisely of this kind. Unlike the torus T2, no separation of variables
occurs here; however, again the Lp-boundedness of the operators in question for p ∈
(1,∞) reduces to the boundedness of the composition of two CZO’s and some simple
transformations. We consider two examples. The first is the Hardy–Littlewood square
function. In the case of the circle (we fix it for definiteness) it is introduced as follows:

σf =
( ∑

k≥0

(∣∣∣ ∑
2k−1≤n<2k+1−1

f̂(n)zn
∣∣∣2 +

∣∣∣ ∑
−2k+1<n≤−2k

f̂(n)zn
∣∣∣2))1/2

.

The second example is the projection Q defined by the formula

(2) Qf =
∑
k≥0

∑
22k−1≤n<22k+1−1

f̂(n)zn.

(The analogs of σ and Q for the line R can easily be written out. The entire material
presented below can be rephrased for the case of the line.)

The similarity between the operators σ, Q, etc. and the double Riesz projection for
the two-dimensional torus was known previously to a certain extent — see [8].

0.5. Statements. In the interpolation theorem for the Hardy–Littlewood square func-
tion we do not resort literally or explicitly to the construction in Subsection 0.3.1. More-
over, we present a stronger result than is suggested by that construction. However, the
material of Subsection 0.3.1 should be kept in mind.

For a function f on the unit circle, we put

Mkf =

{∑
2k−1−1≤n<2k−1 f̂(n)zn, k ≥ 1;∑
2−k≤n<2−k+1 f̂(n)zn, k < 0.

Since σf =
( ∑

k |Mkf |2
)1/2, we can consider the linear mapping f �→ {Mkf}k∈Z instead

of σ. This linear mapping takes f to an l2-valued function. Next, in the space Lp(l2) =
{{fj}j∈Z : (

∑
j |fj |2)1/2 ∈ Lp(T)}, we single out the subspaces Yp = {{fj}j∈Z : Msf0 =

fs for s �= 0} and Yp,A = {{fj}j∈Z ∈ Yp : f0 ∈ Hp}. (Thus, fj = 0 for j < 0 if
{fj} ∈ Yp,A. The spaces Yp,A are suitable for the study of the operator σ on the classes
Hp.)

Theorem 1 (square function, interpolation). For every r1, r2 ∈ [1,∞] the couples
(Yr1 ,Yr2) and (Yr1,A,Yr2,A) are K-closed in (Lr1(l2), Lr2(l2)).

Generically, a precise analog of the statement in Subsection 0.3 should fail for a “double
singular integral”. The first power of the logarithm in the estimate for the corrected
function is no longer expected to suffice (this is related to the fact that the Lp-norm of
the operator in question may grow faster than p as p → ∞). Consequently, a correction
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cannot always be done by multiplication by a function with values between 0 and 1
(otherwise a logarithmic estimate would have been restored by iteration). The authors
were not able to learn whether it is possible to ensure that the L∞-norm of the corrected
function remain bounded as ε → 0 or the corrected function vanish where the original one
does (these features were present in Subsection 0.3). However, the following statement
is true for σ. (Note that, by some peculiar features of σ, there is a related statement
with the first power of the logarithmic factor in place of the second; see the comments
to Theorem 2′ in §1.)

Theorem 2 (square function, correction). Suppose f ∈ L∞(T), ‖f‖∞ ≤ 1, and 0 < ε <
1. Denote by f∗ the Hardy–Littlewood maximal function for f . Then for every positive
α < 1 there is a function g with |g|, σg ≤ Cα(1 + log 1

ε )2(f∗)α and m{f �= g} ≤ ε‖f‖1.

The pointwise control of g in terms of f∗ makes Theorem 2 somewhat similar to the
statement in Subsection 0.3. It should be noted that, moreover, σg in Theorem 2 is also
controlled pointwise in terms of f∗, which is not the case for T (ϕf) in the statement in
Subsection 0.3 (see, however, the remark at the end of §3).

Finally, we put Zp = {f ∈ Lp(T) : f = Qf}, where the projection Q is given by
formula (2) and 1 ≤ p ≤ ∞.

Theorem 3. If 1 ≤ p1 ≤ p2 ≤ ∞, then the couple (Zp1 , Zp2) is K-closed in (Lp1(T),
Lp2(T)).

Theorems 1 and 3 are proved in a similar way, but the latter is slightly harder. In
order to prove Theorem 2, we shall need a weighted analog of a partial case of Theorem
1. Surely, Muckenhoupt Ap-weights will be involved, but the “right” way to incorporate
them is not immediate in the present context. We formulate a statement about weighted
estimates that plays an auxiliary role for us. It seems to be new (and then interesting
by itself), in spite of the fact that the weighted estimates’ territory is explored quite
thoroughly.

Theorem 4. Let a and w be two weights with w ∈ A1 and a ∈ A∞. Suppose that both T
and T ∗ are CZO’s (the smoothness condition for the kernel in the form (c3) is assumed).
Put u = a

w and define an operator R by the formula Rf = u−1T (uf). Then there exists
p0 ∈ (1,∞), p0 = p0(w, a), such that R is bounded on Lt(a) for 1 < t ≤ p0 and is of
weak type (1,1) relative to the weight a:∫

{|Rf |>λ}
a ≤ C

λ

∫
|f |a, λ > 0, C = C(w, a).

Corollary. Under the assumptions of the theorem, we have

‖R‖Lt(a)→Lt(a) = O
( 1

t − 1

)
, t → 1

(the constant in “O” depends only on w and a).

The corollary follows in a standard way by interpolation between continuity in Lp0(a)
and weak type (1, 1) with weight a. Vector-valued singular integrals are admitted in
Theorem 4, though this is not reflected notationally. Probably, it should be mentioned
that if we would have talked about L1-boundedness, we would have dealt with a usual
density change, so that R and T would have been simultaneously bounded or not on
L1(a) and L1(w), respectively. However, in our case T is only of weak type (1, 1) on
L1(w), and this property is unstable under a density change in general. The essence of
Theorem 4 is in the statement that it is stable if a ∈ A∞.
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0.6. Other square functions. For diversity, we leave the circle for a while and pass
to Rn. For a function f on Rn, let f̃ denote its harmonic extension to the upper half-
space Rn+1

+ (i.e., the Poisson integral of f). By “other” square functions we mean the
Littlewood–Paley function g, the area integral S, and the function g∗λ. These three
operators are defined by the formulas

g(f)(x) =
( ∫ ∞

0

|∇f̃(x, y)|2y dy)
)1/2

, x ∈ Rn;

S(f)(x) =
( ∫

Γ(x)

|∇f̃(x, y)|2y1−n dydt)
)1/2

, x ∈ Rn;

g∗λ(f)(x) =
( ∫ ∞

0

∫
t∈Rn

( y

|t| + y

)λn

|∇f̃(x − t, t)
∣∣2y1−n dtdy

)1/2

, x ∈ Rn.

In the second formula, Γ(x) = {(t, y) ∈ Rn+1
+ : |x − t| ≤ y}. The well-known pointwise

inequalities g(f) ≤ Sf ≤ Cλg∗λ(f) (see, e.g., [16, 4]) show the relationship between
interpolation or correction problems associated with these functions.

It is well known that the operators g and S can be interpreted as the results of
pointwise evaluation of the norm for certain Calderón–Zygmund operators from L2(Rn)
into L2(H, Rn) for an appropriate Hilbert space H; see [16, 4]. Consequently, the stuff
presented in Subsections 0.2–0.3 applies to these operators; concretization of the theorems
cited there is left to the reader. It is equally well known that, largely, g∗λ cannot be
interpreted in terms of CZO’s. However, in the recent paper [6] some results related in
part to those treated here were obtained (with the help of the Brownian motion) for the
analog of g∗2 in the case of the disk, i.e., for the operator

(3) G(f)(α) =
(

1
π

∫
D

|∇f̃(z)|2 1 − |z|2
|eiα − z|2 log

1
|z| dA(z)

)1/2

, α ∈ T

(here f̃ stands for the Poisson integral of f in the disk, and A denotes planar Lebesgue
measure).

We wish to explain that, despite all, a singular integral is present in this particular
case, so that the methods outlined in Subsections 0.2–0.3 are also applicable. We show
this by the example of an interpolation theorem; see [6, Theorem 4.5]. After elimination
of the probabilistic part, we obtain the following statement.1

Proposition 1. Suppose 1 < p < ∞, f ∈ Hp(T), and λ > 0. Then there exists a
function g ∈ H∞ such that ‖g‖∞ ≤ λ, ‖G(g)‖∞ ≤ Aλ, and ‖f − g‖1 ≤ Aλ1−p‖f‖p

p.

A momentary reflection shows that the operator involved in this situation is f �→
G(Pf), f ∈ Lp(T), where P is the Riesz projection, Pf =

∑
n≥0 f̂(n)zn. Thus, it

might seem that a double singular integral can appear here (namely, the Riesz projection
followed by a linearization of G). However, in fact we deal with a single CZO. Indeed,
P̃f(z) = 1

π

∫ π

−π
f(eiθ)

1−ze−iθ dθ. Since, practically, the complex variable derivative d
dz [(Pf)(z)]

occurs in the formula for G(Pf), we arrive at the square function (here z = reis)

Gf(α) =
( ∫ 1

0

∫ π

−π

∣∣∣∣ ∫ π

−π

e−iθ

(1 − rei(s−θ))2
f(eiθ) dθ

∣∣∣∣2 (1 − r2)r
|1 − rei(s−α)|2 log

1
r

dsdr

)1/2

1In [6], an explicit Brownian motion formula for g was written out. Here we restrict ourselves to
mere existence.
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or, after the change of variables s − α = t in the integral in s, at the square function

(4) Gf(α) =
( ∫ 1

0

∫ π

−π

∣∣∣∣ ∫ π

−π

e−iθ

(1 − rei(t+α−θ))2
f(eiθ) dθ

∣∣∣∣2 (1 − r2)r
|1 − reit|2 log

1
r

dtdr

)1/2

.

Let H be the Hilbert space of functions on the circle that are square integrable with the
weight given in polar coordinates by

(r, t) �→ r(1 − r2)
|1 − reit| log

1
r
.

Formula (4) is linked to the linear operator T : L2(T) → L2(H, T), the L(C,H)-valued
kernel of which is given by K(α, θ)(r, t) = e−iθ

(1−rei(t+α−θ))2
. The operator T is L2-bounded

indeed; see, e.g., [16, 4].

Lemma. T ∗ is a Calderón–Zygmund operator (the Hörmander condition is fulfilled in
the form (c1)).

If the lemma is proved, Proposition 1 follows easily. Indeed, let Wp be the space of
functions f ∈ Hp(T) satisfying Gf ∈ Lp(T) (with the natural norm). Then, at least for
2 ≤ p < ∞, we have Wp = Hp. Proposition 1 claims that Hp ⊂ (H1, W∞)θ,∞, where
p−1 = (1− θ)1−1 + θ(∞)−1 = 1− θ. Since T ∗ is a CZO, Statement II in Subsection 0.2.4
(in combination with the idea outlined in Subsection 0.3.1) shows that Hr = (H2, W∞)η,r

for 2 < r < ∞, where r−1 = (1 − η)2−1 + η(∞)−1 (interpolation “runs as in the Lp-
scale”). It is well known that real interpolation between H1 and Hs, 1 ≤ s ≤ ∞, also
“runs as in the Lp-scale”. Taking s ∈ (2,∞) (so that the intervals [1, s] and [2,∞)
overlap) and applying Wolff’s theorem [18], we see that the scale consisting of the spaces
Hp for 1 ≤ p < ∞ and W∞ at the point p = ∞ also admits Lp-type interpolation. In
particular, Hp = (H1, W∞)θ,p ⊂ (H1, W∞)θ,∞ for 1 < p < ∞, as required.

Since the Poisson kernel is a difference of two Cauchy kernels, Lemma 2 also implies
a statement in the spirit of Subsection 0.3 about correction up to a function f ∈ L∞(T)
with G(f) (see (3)) uniformly bounded.

Note that the proof of Statement II in Subsection 0.2.4 involves the Hahn–Banach
theorem (via the duality lemma in Subsection 0.7.2 below). So, in the above argument,
the required function g arises eventually by separation of convex sets. We emphasize
that the paper [6] was written in a different methodological context. In distinction to
our approach, the main purposes claimed in [6] were shelving linear duality, giving explicit
formulas (even though in terms of the Brownian motion) for splitting a function into a
“large” and a “small” part, etc.

Proof of the lemma. Let I be an arc of the circle, and let 5I be the arc with the same
center and of length five times that of I. Suppose α1, α2 ∈ I. We must verify the
inequality∫

θ/∈5I

∣∣∣∣ ∫ 1

0

∫ π

−π

(K(α1, θ)(r, t) − K(α2, θ)(r, t))h(r, t)
(1 − r2)r
|1− reit|2 log

1
r

dtdr

∣∣∣∣ dθ

≤ C‖h‖H
for every h ∈ H with a constant C independent of h. Bringing the modulus within the
integral sign, changing the order of integration, and passing to the supremum over h ∈ H
with ‖h‖H ≤ 1, we see that it suffices to verify the inequality( ∫ 1

0

∫ π

−π

( ∫
θ/∈5I

|K(α1, θ)(r, t) − K(α2, θ)(r, t)| dθ

)2 (1 − r2)r
|1 − reit|2 log

1
r

dtdr

)1/2

≤ C.
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It is quite easy to see that the domain |r| ≤ 1/2 gives a bounded contribution to this
integral. Thus, in what follows we restrict ourselves to the domain 1/2 ≤ r ≤ 1. Then
log 1

r � 1 − r, and we must prove that

(5)
∫ 1

1
2

∫ π

−π

( ∫
θ/∈5I

|K(α1, θ)(r, t) − K(α2, θ)(r, t)| dθ

)2 (1 − r)2

|1 − reit|2 dtdr ≤ C2.

Next, in (5) we split the domain of integration over r and t into three parts:

Ω1 = {(r, t) : |t| ≤ |I|},
Ω2 = {(r, t) : |t| > |I|, 1 − r > |I|},
Ω3 = {(r, t) : |t| > |I|, 1 − r ≤ |I|}.

In order to estimate the contribution of Ω3, we extend the integration in θ to the entire
circle (i.e., to the interval (−π, π)), replace the modulus of the difference of the kernels
by the sum of their moduli, and use the equivalence |1−reiξ|2 = (1−r)2+2r(1−cos ξ) �
(1 − r + |ξ|)2 for r ∈ [ 12 , 1], ξ ∈ [−π, π]. It follows that the integral in θ is dominated by

C

∫ π

0

dξ

(1 − r + ξ)2
≤ C ′ 1

1 − r
,

whence the integral over Ω3 is dominated by
∫ 1

1−|I|
∫
|t|≥|I|

dt
t2 dr � const.

When estimating the contributions of the domains Ω1 and Ω2, we write

K(α2, θ)(r, t) − K(α1, θ)(r, t) =
∫ α2

α1

d

dα
K(α, θ)(r, t)dα.

The derivative under the integral sign does not exceed the quantity

(6)
const

|1 − rei(t+α−θ)|3 .

Here α ∈ I. If we are in the domain Ω1, then the argument of the imaginary exponential
in (6) is bounded away from zero by the quantity 3|I|. This leads to the following
majorant for the integral over Ω1:

C

∫ 1

1
2

∫
|t|≤|I|

[
|α1 − α2|

∫
|ξ|≥3|I|

dξ

(1 − r + |ξ|)3

]2 (1 − r)2

(1 − r + |t|)2 dtdr.

We observe that∫
|t|≤|I|

dt

(1 − r + |t|)2 = 2
( 1

1 − r
− 1

1 − r + |I|

)
= 2

|I|
(1 − r)(1 − r + |I|)

and ∫
|ξ|≥|I|

dξ

(1 − r + |ξ|)3 ≤ C
1

(1 − r + |I|)2 .

Since also |α1 − α2| ≤ |I|, after substituting s = 1 − r we are left with estimating the
quantity

|I|3
∫ 1/2

0

s ds

(s + |I|)5
from above. But∫ 1/2

0

s ds

(s + |I|)5 �
∫ 1/2

0

ds2

(s2 + |I|2)5/2
≤ C

1
(σ + |I|2)3/2

∣∣∣∣σ=0

σ=(1/2)2
≤ C

1
|I|3 ,

so that integration over Ω1 also yields a bounded contribution to (5).
It remains to treat the domain Ω2. Nothing definite can be said now about the

argument of the imaginary exponential in (6), so that we again extend integration over
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θ in (5) to the entire circle. Taking (6) into account, we arrive at the following majorant
for the integral over Ω2 (we again substitute s = 1 − r):

C

∫
s>|I|

∫
|t|>|I|

[
|α1 − α2|

∫ π

0

dξ

(s + ξ)3

]2
s2

(s + |t|)2 dtds

≤ C|I|2
∫

s≥|I|

∫
|t|>|I|

dsdt

s2(s + |t|)2 ≤ C ′.

This finishes the proof of inequality (5) and, with it, of the lemma. �

0.7. It is useful to briefly outline the arguments leading to the K-closedness theorem in
Subsection 0.2.4 because many of the details will be needed in the proofs of Theorems 1,
2, and 3.

0.7.1. Statement I in Subsection 0.2.4 is proved first. The argument is due to Bourgain
[1]. Let 1 < r ≤ p. Then Q is bounded on Lr, so that it suffices to prove that the couple
(X1, Xr) is K-closed in (L1, Lr).

Suppose f ∈ X1 + Xr and f = g + h with g ∈ L1, h ∈ Lr. We put a = ‖g‖1,
b = ‖g‖r and apply the Calderón–Zygmund decomposition procedure with parameter λ:
g = g0 + g1, where ‖g0(·)‖A ≤ λ a.e.,

∫
‖g0(·)‖A ≤ Ca, and there exists a set Ω such that

|Ω| ≤ cλ−1a; moreover, for every Calderón–Zygmund operator T we have

(7)
∫

Ωc

‖Tg1(·)‖A ≤ C ′a

(C ′ depends only on T ). See [16] (and also §2 below, where a more involved setting is
treated). The required decomposition is f = Qg1 +Q(g0 +h). The parameter λ is chosen
in such a way that the norm of g0 in Lr is of order b:∫

‖g(·)‖r
A ≤ λr−1

∫
‖g(·)‖A = λr−1a,

so that it suffices to put λ = (bra−1)
1

r−1 . Then ‖Q(g0 + h)‖Lr(A) ≤ cb, and it remains
to show that

∫
‖Qg1(·)‖A ≤ ca. The integral over Ωc is indeed dominated by ca; see (7).

In order to estimate
∫
Ω
‖Qg(·)‖A, we write 0 = (I − Q)g1 + (I − Q)(g0 + h), whence

‖Qg1(·)‖A ≤ ‖g1(·)‖A + ‖(I − Q)(g0 + h)(·)‖A.

It suffices to integrate this inequality over Ω and employ the Hölder inequality to estimate
the second summand: ∫

Ω

· · · ≤ ‖(I − Q)(g0 + h)‖r|Ω|1/r′
.

The remaining calculations are left to the reader. �

0.7.2. Statement II in Subsection 0.2.4 follows from Statement I by duality. Namely, the
following lemma is true.

Duality Lemma. Let (X, Y ) be an interpolation couple, and let X ∩Y be dense both in
X and in Y . A subcouple (E, F ) is K-closed in (X, Y ) if and only if the couple (E⊥, F⊥)
of annihilators is K-closed in (X∗, Y ∗).

See [15] or the survey [11]. We note that the annihilator of Xr,Q is Xr′,I−Q∗ and that
Q∗ and I − Q∗ can be Calderón–Zygmund operators only simultaneously.
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0.7.3. Gluing scales. In Subsection 0.6 we already resorted to Wolff’s theorem on gluing
interpolation scales. A similar statement is true for K-closedness (i.e., not merely for
interpolation formulas). The preservation of K-closedness under gluing scales was first
established in [14, Theorem 2]; see also the survey [11] (and [12, Proposition 5] for a
slight refinement).

Under the conditions of Statement III in Subsection 0.2.4, the K-closedness of the
couple (X1, X∞) turns out to be a formal consequence of the K-closedness of the couples
(X1, Xr) and (Xs, X∞) with s < r (in order that “gluing” be possible, the intervals [1, r)
and (s,∞] must overlap). We do not give a precise statement of the abstract result,
though we shall resort to such gluing in what follows.

0.8. Theorem 1 is proved in §§1 and 3, Theorem 4 in §2, and Theorem 3 in §5. A stronger
version of the correction theorem (i.e., of Theorem 2) is formulated in §1 and proved in
§4. In the appendix at the end of the paper we collect some information about singular
integrals.

§1. Hardy–Littlewood square function: interpolation

1.1. In view of the ideas outlined in Subsection 0.7.3, it suffices to prove Theorem 1 in
two cases: (a) 1 = r1 < r2 < ∞ and (b) 1 < r1 < r2 = ∞. First, we treat the simpler
case (a).

Lemma 1. For 1 < s < ∞ the couples (Y1,Ys) and (Y1,A,Ys,A) are K-closed in (L1(l2),
Ls(l2)).

Proof. The arguments for the scales Ys and Ys,A are quite similar, so we only consider
the second case (also, a formal reduction of the first case to the second is possible). Let
F = {fj}j∈Z ∈ L1(l2) with fj = 0 for j < 0 and f0 ∈ H1, and let Msf0 = fs for s ≥ 1.
Suppose fj = gj + hj , where G = {gj}j∈Z ∈ L1(l2) and H = {hj}j∈Z ∈ Ls(l2). We
denote by a and b the norms of the sequences G and H in their respective spaces.

We observe that it suffices to prove the following: for positive j there exist represen-
tations fj = αj + βj such that the Fourier transforms of αj and βj are supported on the
interval Ij = [2j−1 − 1, 2j−1 − 1) and∥∥∥(∑

j≥1

|αj |2
)1/2∥∥∥

1
≤ Ca,

∥∥∥( ∑
j≥1

|βj |2
)1/2∥∥∥

s
≤ Cb.

Indeed, suppose this is done. Then for j < 0 we simply replace gj and hj by zeros,
and for j = 0 we write f0 = α0 + β0, where α0 =

∑
j≥1 αj and β0 =

∑
j≥1 βj . The

functions α0 and β0 belong, respectively, to H1 and Hs and have norms of order a and
b there — see Appendix, Statements II and III. Clearly, the relations Msα0 = αs and
Msβ0 = βs are fulfilled for s ≥ 1.

The proof of the above claim is not difficult modulo some known facts (similar argu-
ments can be found in [10]). It may be assumed from the outset that the functions gj

and hj have no spectrum to the left of the point 2j−1 − 1. For instance, the latter is
a consequence of the results of [13] concerning interpolation for Hardy spaces of vector-
valued functions (see [11] for simpler proofs). Another way to see this is to apply the
K-closedness theorem in Subsection 0.2.4: take the Riesz projection on Lr(l2) for the
role of Q, passing beforehand to the functions z̄2j−1−1fj .

Consider the functions σn and τn whose Fourier transforms coincide with the restric-
tions to Z of the piecewise-linear functions with the graphs shown in Figure 1.
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Figure 1.

Here the points an and bn split the segment [2n−1 − 1, 2n−1 − 1] into 3 parts of equal
length, and cn is the middle of the segment [2n−2 − 1, 2n−1 − 1]. For j ≥ 1 we have

fj = fj ∗ σj + fj ∗ τj ,

fj ∗ σj = gj ∗ σj + hj ∗ σj ,(8)

fj ∗ τj = gj ∗ τj + hj ∗ τj .(9)

Since the operators x = {xj} �→ {xj ∗ σj} and x �→ {xj ∗ τj} are CZO’s in spaces of
l2-valued functions (see the Appendix), the summands in (8) and (9) are of the right
order (among other things, we use the fact that these operators take boundedly H1(l2)
into itself): ∥∥∥( ∑

|gj ∗ σj |2
)1/2∥∥∥

1
,

∥∥∥( ∑
|gj ∗ τj |

)1/2∥∥∥
1
≤ Ca,∥∥∥( ∑

|hj ∗ σj |2
)1/2∥∥∥

s
,

∥∥∥( ∑
|gj ∗ τj |

)1/2∥∥∥
s
≤ Cb.

In (9), we replace the summands on the right by functions with no spectrum to the right
of 2n − 2 with preservation of estimates (again by K-closedness in the scale Hp(l2)), and
then convolve the resulting decomposition with the function the graph of the Fourier
transform of which is depicted in Figure 2.

Figure 2.
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This yields the identity fj ∗ τj = ϕj +ψj , where (see the Appendix) ‖(
∑

|ϕj |2)1/2‖1 ≤
Ca, ‖(

∑
|ψj |2)1/2‖s ≤ Cb, and, moreover, the functions ϕj and ψj have spectrum only

on the interval [2j−1 − 1, 2j − 2]. Adding this identity to (8), we prove the claim. �

1.2. K-closedness with weight, and a refinement of the correction theorem. In
order to finish the proof of Theorem 1, now we need to verify that the couples (Ys,Y∞)
and (Ys,A,Y∞,A) are K-closed in (Ls(l2), L∞(l2)) for s > 1. Again, we restrict ourselves
to “analytic” spaces Ys,A.

In order to prove the correction theorem, a weighted analog of the K-closedness state-
ment will be needed. Concerning the Muckenhoupt conditions Ap, we refer the reader to
[5, 2]. Often we denote by Ap also the class of all weights satisfying condition Ap. We
remind the reader that A∞ =

⋃
p<∞ Ap and that any A∞-weight a satisfies the reverse

Hölder inequality: there exists q = q(a) > 1 such that (|I|−1
∫

I
aq)1/q ≤ Cq(a)|I|−1

∫
I
a

for any ball I of the basic measure space (for any arc I in the case of the unit cir-
cle). The logarithmic convexity of Lr-norms implies that then we also have |I|−1

∫
I
a ≤

Cα,a(|I|−1
∫

I
aα)1/α for α < 1. We mention the recent paper [17], where various pa-

rameters related to these features were calculated exactly in terms of the A∞ (and Ap)
constants in the one-dimensional situation.

We shall also need the P. Jones factorization theorem: a ∈ Ap if and only if a = a1a
1−p
2

with a1, a2 ∈ A1; see [5].

Lemma 2. Suppose w ∈ A1, a ∈ A∞. There exists a number r = r(w, a)>1 such that
a, aw−s ∈ As for s ≥ r (equivalently, a− 1

s−1 , (aw−s)−
1

s−1 = ws′

as′−1 ∈ As′ for 1 < s′ ≤ r′;
incidentally, the latter inclusion is trivially true also for s′ = 1).

Proof. Since a ∈ A∞, we have a ∈ Ap for some p < ∞, and then a = a1a
1−p
2 with some

a1, a2 ∈ A1. Condition As (to be verified) for the weight aw−s looks like this:

(10)
(

1
|I|

∫
I

a1

ap−1
2

1
ws

)(
1
|I|

∫
I

a
p−1
s−1
2

a
1

s−1
1

w
s

s−1

)s−1

≤ C,

where C does not depend on I. Condition A1 for a1, a2, and w implies

1
aj

≤ c
|I|∫
I
aj

, j = 1, 2;
1
w

≤ c
|I|∫
I
w

on I.

These estimates show that the left-hand side of (10) does not exceed the quantity(
|I|∫
I
a2

)p−1( |I|∫
I
w

)s( 1
|I|

∫
I

a
p−1
s−1
2 w

s
s−1

)s−1

.

To the third factor, we apply the Hölder inequality with the exponents γ = s−1
p−1 (γ > 1

if s > p) and γ′ = s−1
s−p . This shows that it suffices to estimate the expression([

1
|I|

∫
I

w

]−1[ 1
|I|

∫
I

w
s

s−p

] s−p
s

)s

from above by a constant independent of I. But this estimate is none other than the
reverse Hölder inequality for w: it is true if s

s−p ≤ q(w), i.e., s ≥ q(w)′p. Since s > p

under this condition a fortiori, we can take r(w, a) = q(w)′p. �

Now we state a weighted result on K-closedness in a neighborhood of infinity. The
definition of the weighted spaces Ys,A(u) of l2-valued functions is clear without explana-
tions if we know what the (scalar) spaces Lp(u) are. We simply indicate the norms in
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the latter spaces: ‖f‖p,u = (
∫
|f |pu)1/p for p < ∞, but ‖f‖∞,u = ‖fu−1‖∞. (Thus, the

weighted scale has a “discontinuity” at ∞; however, these definitions are convenient.)

Lemma 3. Suppose w and a are two weights on the circle, w ∈ A1, a ∈ A∞. Put vs =
aw−s for s ≥ r(w, a). Then the couple (Ys,A(vs), Y∞,A(w)) is K-closed in (Ls(l2, vs),
L∞(l2, w)) (the corresponding constant depends only on s, the A1-constant for w, the
number p for which a ∈ Ap, and the Ap-constant for a).

If the two weights are identically equal to 1, then the proof of Lemma 3 will work for
s > 1 (consequently, taken together, Lemmas 3 and 1 yield Theorem 1). The proof of
Lemma 3 will be postponed until §3 because Theorem 4 must be verified first (this will
be done in §2). A precise analog of Lemma 3 is valid also for the spaces Ys− = {f ∈ Ys :
(I−P)f = f} (it suffices to consider the transformation f �→ f(z̄)). In §4 we shall deduce
the following refinement of Theorem 2 by using Lemma 3. Put P− = I − P, P+ = P.

Theorem 2′. Suppose a and w are two weights on the unit circle, w ∈ A1, a ∈ A∞, and
s ≥ r(w, a). If f is a measurable function, |f | ≤ w, and 0 < ε < 1, then there exists a
function g with∫

{f 	=g}
a ≤ ε

∫
T

∣∣∣ f

w

∣∣∣sa and |g|, |P±g|, σ(P±g) ≤ C(w, a, s)
(
1 + log

1
ε

)2

w.

Theorem 2′ suggests how the weight vs arose in Lemma 3: ‖f‖s,vs
=

( ∫
| f
w |sa

)1/s. We
can tell immediately that the proof of Theorem 2′ consists in successive “careful splitting”
of the given function in the scale determined by w (i.e., K-closedness is employed instead
of crude truncation; see §4 for the details).

Surely, in applications it is natural to start with f and to choose appropriate w
and a afterwards. For instance, let |f | ≤ 1. Taking w = a ≡ 1, we obtain a version
incomparable with Theorem 2. (Incidentally, in this case, i.e., if the two weights are
identically equal to 1, the factor (1+log 1

ε )2 can be replaced with 1+log 1
ε — see §4 for the

explanation. We push aside the question as to whether this carries over to more general
weights.) Another option is in taking the weight a arbitrarily and putting w = (f∗)γ ,
0 < γ < 1 (we recall that f∗ is the Hardy–Littlewood maximal function). Then w ∈ A1;
see [5]. Next,

∫ ∣∣ f
w

∣∣sa ≤
∫
|f |s(1−γ)a ≤

∫
|f |a if s ≥ (1 − γ)−1. Putting a ≡ 1, we arrive

at Theorem 2. Apparently, the possibility of measuring the set of difference between the
original and corrected functions in terms of an arbitrary A∞-weight may also be of some
use.

Remark. It should be noted that the correction theorem cited in Subsection 0.3 also
admits a weighted version: if w ∈ A1 and a ∈ A∞, then for |f | ≤ w and arbitrary
ε ∈ (0, 1) there exists a function ϕ such that 0 ≤ ϕ ≤ 1,

∫
{ϕ	=1} a ≤ ε

∫
| f
w |a, and

‖T (ϕf)‖∞ ≤ C(T, w, a) (1 + log 1
ε )w. This statement follows from the results of [9] with

the help of Theorem 4.

§2. Calderón–Zygmund decomposition and weak type (1, 1)

In this section we prove Theorem 4. All constructions are applicable to CZO’s on
vector-valued functions, but this will not be reflected notationally (however, the reader
may interpret the modulus sign as the norm calculated pointwise).

The Lt(a)-boundedness of the operator R in Lemma 4 for 1 < t ≤ r(w, a)′ follows
from Lemma 2: ∫

|Rf |ta =
∫

|T (uf)|t wt

at−1
,

and the weight wt

at−1 satisfies At for the t in question.
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To show that R is of weak type (1, 1) on L1(a), we resort to the Calderón–Zygmund
procedure in a somewhat nonstandard form. The same procedure will be used once again
in the proof of Lemma 3. Recall that u = a

w .
Let f ∈ L1(a); then f = Gu−1, where G ∈ L1(w) and ‖G‖1,w = ‖f‖1,a. The weight a

satisfies a doubling condition (as any A∞-weight does), and so the Calderón–Zygmund
construction applies to the function f = Gu−1 with weight a. For every λ > 0 this
construction yields a family A of essentially disjoint cubes I (of arcs in the case of the
circle) such that

(11) λ ≤ 1∫
I
a

∫
I

|Gu−1|a ≤ Cλ, I ∈ A,

and |Gu−1| ≤ λ almost everywhere off
⋃

I∈A I.
We need a lemma, which can also be formulated as follows: w ∈ A1(u).

Lemma 4. For every cube I we have

1∫
I
u

∫
I

uw ≤ Cess infIw,

where C does not depend on I.

Proof. Using the reverse Hölder inequality for a followed by the Cauchy inequality and
condition A1 for w, we see that

1
|I|

∫
I

uw =
1
|I|

∫
I

a ≤ C

(
1
|I|

∫
I

a1/2

)2

≤ C

(
1
|I|

∫
I

a

w

)(
1
|I|

∫
I

w

)
≤ C ′ 1

|I|

∫
I

u · ess infIw. �

Inequality (11) and Lemma 4 imply

(12) Cλ ≥ 1∫
I
a

∫
I

|G|w ≥ c
1∫
I
a

∫
I
uw∫

I
u

∫
I

|G| = c
1∫
I
u

∫
I

|G|, I ∈ A.

Let 5I be the cube with the same center as I but of diameter five times that of I. We
put Ω =

⋃
I∈A 5I and define

(13) G0(t) =

{
G(t) if t /∈

⋃
I∈A I,

u∫
I

u

∫
I
G if t ∈ I ∈ A,

G1 = G − G0. We mention several properties of the objects constructed above.
1◦ |G0| ≤ Cλu (see (12)).
2◦ If I ∈ A, then by Lemma 4 (more precisely, by an inequality in the chain (12)), we

have ∫
I

|G0|w ≤
∫

I
uw∫

I
u

∫
I

|G| ≤ C ′
∫

I

|G|w

(and then also
∫

I
|G1|w ≤ C ′′ ∫

I
|G|w); consequently,

‖G0‖L1(w) ≤ C‖G‖L1(w) = C‖f‖L1(a),

‖G1‖L1(w) ≤ C‖G‖L1(w) = C‖f‖L1(a).

3◦
∫

I
G1 =

∫
I
G −

∫
I

[
u∫
I

u

∫
I
G

]
= 0 for I ∈ A.

4◦
∫

I
a ≤ 1

λ

∫
I
|G|w for I ∈ A (see (11)), whence

∫
Ω

a ≤ C
λ

∫
|G|w by the doubling

condition for a.



DOUBLE SINGULAR INTEGRALS: INTERPOLATION AND CORRECTION 763

After this, the proof of Lemma 4 finishes in a nearly standard way. Indeed,∥∥∥ 1
u

TG0
∥∥∥

Lt(a)
= ‖TG0‖

Lt( wt

at−1 )
≤ C‖G0‖

Lt( wt

at−1 )

= C
∥∥∥ 1

u
G0

∥∥∥
Lt(a)

≤ C ′(λt−1‖f‖L1(a))1/t
(14)

by 1◦ (the constant C ′ depends on t only, but now we fix some particular t ∈ (1, r(w, a)′)).
Therefore,

(15)
∫
{| 1

u TG0|>λ}
a ≤ C ′λ−1

∫
|f |a.

Next, let J =
∫
Ωc | 1uTG1|a. By 3◦, for x ∈ Ωc we have

TG1(x) =
∑
I∈A

∫
I

[K(x, y) − K(x, yI)]G1(y),

where yI is an arbitrary fixed point of I and K is the kernel of T . Condition (c3) on K
implies the following standard estimate (w∗ is the Hardy–Littlewood maximal function
for w):

J ≤ C
∑
I∈A

∫
x/∈5I

(diam I)α

|x − yI |n+α
w(x)dx

∫
I

|G1| ≤ C ′
∑
I∈A

w∗(yI)
∫

I

|G1|

≤ C ′′
∑

I

∫
I

|G1|w ≤ C‖f‖1,a

(16)

(we have used the condition A1 for w and property 2◦). Now, (15), (16), and 4◦ imply
the theorem because {| 1uTG|>2λ}⊂{| 1uTG0|>λ} ∪ Ω ∪ (Ωc ∩ {| 1uTG1| > λ}). �
Corollary. If w ∈ A1, a ∈ A∞, and an operator Γ has the property that both Γ and Γ∗

are CZO’s (the smoothness condition for the kernel is fulfilled in the form (c3)), then

‖Γ‖Ls(aw−s) = O(s)

for large s (the constant in the estimate depends only on a and w; spaces of vector-valued
functions are admissible).

This is a dual form of the corollary to Theorem 4 in Subsection 0.5. �
Remark. If T is a projection, then the Calderón–Zygmund decomposition described above
makes it possible to do the construction of Subsection 0.7.1 for weighted spaces. Some
details will change (see §3 for a similar argument in a more involved case). This leads to
the following statement: the couple (X1,w, Xt,v) is K-closed in (L1(w), Lt(v)) if w ∈ A1,
v = wt

at−1 with a ∈ A∞, and 1 < t ≤ r(w, a)′.

It is not clear whether it is possible to prove weighted K-closedness under the only
assumption w ∈ A1, v ∈ At. In any case, this cannot be done by the method outlined
above. For instance, if w ∈ A1, v ≡ 1, and t = 2, this method would require that
w2 ∈ A∞, which, surely, may fail (the square of an A1-weight may even fail to be locally
integrable).

§3. Proof of Lemma 3

By the duality lemma in Subsection 0.7.2, Lemma 3 reduces to the claim that the
couple of annihilators is K-closed. Always (even if a weight is involved), we introduce
duality with the help of the nonweighted form 〈f, g〉 =

∫
fḡ (the sesquilinear version

is convenient because the operators Mj become “selfadjoint”). We note that, under
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this duality and with our definition of L∞(κ) (see the paragraph before Lemma 3), for
every weight κ we have L1(κ)∗ = L∞(κ). Presently, it is natural to agree that the
symbol Ls(l2, κ) (κ is a weight) stands for the space of one-sided sequences {fj}j≥0,
because if {gj} ∈ Ys,A(κ), then gj = 0 for j < 0. The annihilator of Yp,A(κ) is then
described by the condition Mjf0 = −Mjfj , j ≥ 1 (i.e., fj and f0 must have opposite
Fourier coefficients with indices in [2j−1 − 1, 2j − 1)). Next, L∞(l2, w) = L1(l2, w)∗ and
Ls(l2, vs) = Lt(l2, bt)∗, where t = s′ and bt = wt

at−1 . So, we must prove the following
statement.

Lemma 3 (dualized). Suppose {fj}j≥0 ∈ L1(l2, w) + Lt(l2, bt), and Mjfj = −Mjf0 for
j ≥ 1. Suppose also that fj = gj + hj , where ‖{gj}‖L1(l2,w) ≤ ξ, ‖{hj}‖Lt(l2,a) ≤ η.
Then the functions gj and hj can be modified to satisfy the relations Mjgj = −Mjg0 and
Mjhj = −Mjh0 for j ≥ 1 with preservation of the identity fj = gj + hj and of the above
estimates, up to a multiplicative constant.

Proof. (Compare with the proof of the theorem about the two-dimensional torus in [14].)
As in Theorem 4, we put u = a

w . Denote by G the l2-valued function ζ �→ {gj(ζ)} and
construct a Calderón–Zygmund decomposition for Gu−1 and the weight a as in §2 (the
parameter λ will be chosen shortly). We use the formula G = G0 + G1 (see (12)); now
the summands are l2-valued functions: G0 = {g0

j }j≥0, G1 = {g1
j }j≥0. Thus,

fj = g1
j + (g0

j + hj), j ≥ 0; Mjfj = −Mjf0, j ≥ 1.

Consider again the functions σj and τj , the graphs of the Fourier transforms of which
are depicted in Figure 1. We note that σ̂j + τ̂j = 1 on [2j−1 − 1, 2j − 1]. Clearly, for
j ≥ 1 we have

xj
def= σj ∗ (fj + f0) = σj ∗ (g1

j + g1
0) + σj ∗ (g0

j + g0
0 + hj + h0),

yj
def= τj ∗ (fj + f0) = τj ∗ (g1

j + g1
0) + τj ∗ (g0

j + g0
0 + hj + h0).

Since Mj(fj + f0) = 0, we see that xj has no spectrum (nonstrictly) to the right of 2j−1,
and yj has no spectrum (strictly) to the left of 2j − 1; in particular, Mjxj = Mjyj = 0.

Consider two functions Φ and Ψ, where the former is antianalytic and the latter is
analytic. (We mean that, in fact, Φ and Ψ are defined on the circle, but the former has
no spectrum in N, and the latter has no spectrum in −N.) A specific choice of these
functions will be postponed for a while. We introduce the corrections

ϕj = Φxj − σj ∗ (g0
j + g0

0 + hj + h0),

ψj = Ψyj − τj ∗ (g0
j + g0

0 + hj + h0).

Since Φxj has no spectrum to the left of 2j−1 − 1, for j ≥ 1 we obtain Mjϕj =
−Mj(σj ∗ (g0

j + g0
0 +hj +h0)) = Mj(σj ∗ (g1

j + g1
0)); similarly, Mjψj = Mj(τj ∗ (g2

j + g1
0)).

Therefore, Mj(ϕj +ψj) = Mj(g1
j +g1

0), j ≥ 1. Now we modify the original decomposition
of fj in the following way:

f0 = g1
0 + (g0

0 + h0)

and
fj = (g1

j − ϕj − ψj) + (g0
j + hj + ϕj + ψj)

for j ≥ 1. From the preceding discussion it is clear that the spectral condition Mjg
1
0 =

−Mj(g1
j −ϕj −ψj), j ≥ 1 is fulfilled (and, with it, also a similar condition for the second

summands), so that it remains to ensure the required estimates. For this, in particular,
we must specify the functions Φ and Ψ and the parameter λ. We split the arguments
into several steps.
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In the proof, we shall repeatedly use the operators γ �→ {σj ∗ γ}, {γ} �→ {τj ∗ γ}
and {γj} �→ {σj ∗ γj}, {γj} �→ {τj ∗ γj} (which map scalar functions to vector-valued
or vector-valued functions to vector-valued). These operators and their conjugates are
CZO’s (see the Appendix).

(i) We have ‖(
∑

j≥0 |g1
j |2)1/2‖L1(w) ≤ Cξ by property 2◦ in §2.

(ii) Properties 1◦ and 2◦ in the same section imply∥∥∥∥( ∑
j≥0

|g0
j |2

)1/2∥∥∥∥
Lt(bt)

≤ C

(∫
T

λt−1ut−1

( ∑
j≥0

|g0
j |2

)1/2
wt

at−1

)1/t

= Cλ
t−1

t

( ∫
T

( ∑
j≥0

|g0
j |2

)1/2

w

)1/t

≤ C ′λ
t−1

t ξ1/t.

Therefore, if λ
t−1

t ξ
1
t = η, i.e., λ = ηsξ

1
1−t (s = t′), then the sequence {g0

j }j≥0 has norm
of order η in Lt(bt) (i.e., roughly the same as the sequence {hj}j≥0). Thus, we have fixed
the parameter λ.

(iii) It remains to choose Φ and Ψ in such a way that ‖{ϕj}‖L1(l2,w), ‖{ψj}‖L1(l2,w) ≤
Cξ and, at the same time, ‖{ϕj}‖Lt(l2,bt), ‖{ψj}‖Lt(l2,bt) ≤ Cη. We only show how to
choose Ψ (the choice of Φ is similar). Put

α = max
{

1, u−1ξ
1

t−1 η−s

( ∑
j≥1

|τj ∗ (g1
j + g1

0)|2
)1/2}

,

Ψ = exp(− log α − iH(log α)),

where H stands for the harmonic conjugation operator. We have

(17) ψj = Ψ · (τj ∗ (g1
j + g1

0)) − (1 − Ψ)(τj ∗ (g0
j + g0

0 + hj + h0)).

We begin with estimating the norm ‖{ψj}‖Lt(l2,bt). Since |Ψ| ≤ 1, the Lt(l2, bt)-norm of
the sequence (with index j) of the second summands in (17) is dominated by Cη. By
the definition of Ψ, we have

W
def=

( ∑
j≥1

|Ψ(τj ∗ (g1
j + g1

0)
)
|2

)1/2

≤ min
{

ηsξ
1

1−t u,

( ∑
j≥1

|τj ∗ (g1
j + g1

0)|2
)1/2}

.

We introduce the notation |e|a =
∫

e
a. Since the operators γ �→ {τj ∗ γ} and {γj} �→

{τj ∗ γj} are CZO’s together with their conjugates, Theorem 4 implies

ρ(ω) def=
∣∣∣{ 1

u
W > ω

}∣∣∣
a
≤ cξ

ω

for ω ≤ ηsξ
1

1−t , and otherwise ρ(ω) = 0. Therefore,

‖W‖t
Lt(bt)

=
∥∥∥ 1

u
W

∥∥∥t

Lt(a)
= t

∫ ηsξ1/(1−t)

0

ωt−1ρ(ω) dω ≤ C
t

t − 1
ξ
(
ηsξ

1
1−t

)t−1

≤ C ′ηt,

as required.
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It remains to estimate the norm ‖{ψj}‖L1(l2,w). By (17) (and the definition of the set
Ω in §2), we see that∫ ( ∑

|ψj |2
)1/2

w

≤
∫

T\Ω

( ∑
|τj ∗ (g1

j + g1
0)|2

)1/2

w + ηsξ
1

1−t

∫
Ω

uw

+ ‖1 − Ψ‖Ls(a)

∥∥∥( ∑
|τj ∗ (g0

j + g0
0 + hj + h0)|2

)1/2∥∥∥
Lt(bt)

.

Since uw = a, from (16) and property 4◦ in §2 we deduce that the first two summands on
the right-hand side of this inequality are of order ξ. In the third summand, the second
factor is of order η (because bt ∈ At). Consequently,∫ ( ∑

|ψj |2
)1/2

w ≤ C(ξ + ‖1 − Ψ‖Ls(a)η).

Next, ‖1 − Ψ‖Ls(a) ≤ C(‖ log x‖Ls(a) + ‖H(log α)‖Ls(a)). Since s ≥ r(w, a), we have
a ∈ As (see Lemma 2); therefore ‖1 − Ψ‖Ls(a) ≤ C ′‖ log α‖Ls(a). Putting

E =
{ ∑

j≥1

|τj ∗ (g1
j + g1

0)|2)1/2u−1 ≥ ηsξ
1

1−t

}
,

we observe that log α = 0 on the complement of E. For the distribution function
π(ω)=

∫
{ζ∈E:| log α(ζ)|>ω} a, we have

π(ω) ≤
∣∣∣∣E ∩

{( ∑
j≥1

|τj ∗ (g1
j + g1

0)|2
)1/2

u−1 > ηsξ
1

1−t eω

}∣∣∣∣
a

≤ Cξ(η−sξ
1

t−1 )e−ω = C
( ξ

η

)s

e−ω

(we have used Theorem 4). Now,

‖1 − Ψ‖s
Ls(a) ≤ C

∫
E

(log α)sa ≤ sC

∫ ∞

0

ωs−1π(ω) dω ≤ C ′
( ξ

η

)s
∫ ∞

0

ωs−1e−ω dω,

which implies the required estimate for
∫

(
∑

|ψj |2)1/2w. �

§4. Hardy–Littlewood square function: correction

In a standard way (see, e.g., [7, 9]), Theorem 1 is deduced from a special decomposition
of a function into a big and a small part. We are going to obtain such a decomposition.
Fix s ≥ r(w, a), and let p ∈ [s, +∞). We put vp = aw−p. The corollary at the end of §2
implies the estimates

(18)
( ∫

T

|P±f |vp

)1/p

≤ C(a, w, s) · p ·
( ∫

T

|f |pvp

)1/p

, f ∈ Lp(vp),

and

(19)
(∫

T

|σf |pvp

)1/p

≤ C(a, w, s) · p2 ·
( ∫

T

|f |pvp

)1/p

, f ∈ Lp(vp).

In (19), the factor p2 arises because the proof of the boundedness of σ on Lp(vp) involves
two CZO’s. The first takes scalar functions to l2-valued functions and is of the form
f �→ {f ∗ ϕj} (see the Appendix); here for instance, ϕj = σj + τj (see Figure 1) — we
need the relation ϕ̂j = 1 on [2n−1 − 1, 2n − 1) (also, the functions ϕj must be introduced
for the negative part of the spectrum; surely, this is done in an obvious way). The second
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operator {fj} �→ {gj} is expressed in terms of the Riesz projection on l2-valued functions.
For j ≥ 1, this operator acts like this:

gj = z2j−1−1P+(z̄2j−1−1fj) − z2j−1P+(z̄2j−1fj).

Again, we omit an obvious formula for negative j.2

Thus, suppose f ∈ L∞(w) and ‖f‖∞,w ≤ 1. We observe that σ(P±f) ≤ σf , so that
(18) and (19) imply

‖P±f‖p,vp
, ‖σ(P±f)‖p,vp

≤ Cp2

( ∫ ∣∣∣ f

w

∣∣∣pa)1/p

for p ≥ s.

Thus, the norms of the sequences

F ′ = (. . . , 0, 0, P+f, M1f, M2f, . . . ),

F ′′ = (. . . , M−2f, M−1f, P−f, 0, 0, . . . )

in Lp(l2(Z), vp) do not exceed C = C(w, a, s)p2 for p ≥ s. We “cut” these sequences
(l2-valued functions) at the level λw (λ is a numerical parameter):

F ′ = χ{‖F ′(·)‖l2≤λw(·)}F
′ + G′ = ϕ + ψ

(and similarly for F ′′). Obviously, ‖ϕ‖L∞(l2,w) ≤ λ, and

‖ψ‖Ls(l2,vs) =
( ∫

‖F ′(·)‖l2>λw(·)
‖F ′(·)‖s

l2w
−sa

)1/s

≤ λ− p−s
s ‖F ′‖p/s

Lp(l2,vp) ≤ λ1− p
s (Cp2)p/s

( ∫ ∣∣∣ f

w

∣∣∣pa)1/s

≤ λ1− p
s (Cp2)p/s‖f‖Ls(vs)

(at the last step we have used the estimate |f | ≤ w, whence |f/w|p ≤ |f/w|s).
The same estimates are true for the analogous decomposition of F ′′. Correcting these

decompositions in accordance with Lemma 3 and its analog for the scale Yp,−, we arrive
at the following conclusion: for every λ > 0 and every p > s we can write f = g + h,
where

(20) |g|, |P±g|, σ(g) ≤ Rλw;
∫ ∣∣∣ h

w

∣∣∣sa ≤ λs−p(Rp2)p

∫ ∣∣∣ f

w

∣∣∣sa
with some constant R = R(w, a, s). (In (20), only the terms with index 0 in the modified
sequences ϕ and ψ and in their analogs for F ′′ are taken into account — the other terms
may now be forgotten.)

The coefficient of the integral on the right in (20) attains its minimum at p =
e−1(λ/R)1/2. This value must be greater than or equal to s, which implies the restric-
tion λ ≥ e2Rs2. With this p, the coefficient in question is equal to λs exp[−2e−1

(
λ
R

)1/2].
Replacing R in the exponent by a slightly larger constant, we can change the factor λs

for a constant B = B(w, a, s). Increasing B if necessary, we can drop the restriction
λ ≥ Re2s2: for small λ we shall be able to put simply g = 0, h = f . Finally, a homogene-
ity transformation allows us to consider arbitrary functions f ∈ L∞(w) (and not merely
those satisfying |f | ≤ w). As a result, we obtain the following statement.

2However, if there are no weights, a better estimate is true:
( ∫

T
|σf |p

)1/p ≤ Cp
( ∫

T
|f |p

)1/p
, p ≥ 2.

Indeed, this follows by duality from the fact that the constant in the inequality ‖f‖q ≤ c‖σf‖q does

not grow as q → 1, which can be deduced from Statement III in the Appendix. This leads to 1 + log 1
ε

instead of (1 + log 1
ε
)2 in Theorem 2′ in the case where w = a ≡ 1.
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Lemma 4 (Decomposition Lemma). Let w ∈ A1, a ∈ A∞, and let s ≥ r(w, a). Suppose
f ∈ L∞(w) and |f | ≤ ρw (ρ is a number). Then for every λ > 0 there is a representation
f = g + h with

|g|, |P±g|, σg ≤ Rλw;
∫ ∣∣∣ h

w

∣∣∣sa ≤ Ω
(λ

ρ

) ∫ ∣∣∣ f

w

∣∣∣sa.

Here Ω(t) = B exp[−( t
D )1/2], t > 0, and the constants R, B, and D depend on w, a, and

s only. �

Now we prove Theorem 2′. Fix η ≥ 1. Suppose f ∈ L∞(w), ‖f‖∞,w ≤ 1. We put
f0 = f . Recall the notation |e|a =

∫
e
a. We construct functions fj , gj , and ϕj (j ≥ 1) in

such a way that the following relations are fulfilled for j ≥ 0:

fj = gj+1 + fj+1 + ϕj ;(21)

|gj+1|, |P±gj+1|, σgj+1 ≤ Rη2−jw;(22)

|fj | ≤ 4−jw, | supp ϕj+1|a ≤ 4s(j+1)Ω(η2j)
∫ ∣∣∣fj

w

∣∣∣sa;(23) ∫ ∣∣∣fj+1

w

∣∣∣sa ≤ Ω(η2j)
∫ ∣∣∣fj

w

∣∣∣sa.(24)

Indeed, suppose fj is constructed (note that f0 is with us from the outset). We apply
Lemma 4 to fj with ρ = 4−j (see the first inequality in (23)) and λ = η2−j . The result
is fj = gj+1 + h, where gj+1 satisfies (22) and h satisfies the inequality

(25)
∫ ∣∣∣ h

w

∣∣∣sa ≤ Ω(η2j)
∫ ∣∣∣fj

w

∣∣∣sa.

Next, we put fj+1 = hχ{|h|≤4−j−1w}, ϕj+1 = h−fj+1. Then (23) and (24) are immediate
consequences of (25) and these definitions, and the induction is complete.

From (24) it easily follows that
∫
|fj |sw−sa ≤ C

∫
|f |sw−sa, where C does not depend

on j and η; hence, the second inequality in (23) yields the following estimate for the
measure of the set E =

⋃
j≥0 supp ϕj+1:

|E|a ≤
( ∑

j≥0

4s(j+1)Ω(η2j)
)∫ ∣∣∣ f

w

∣∣∣sa.

It is easily seen that the coefficient of the integral on the right is dominated by d1e
−( η

d2
)1/2

,
where the constants d1 and d2 depend only on w, a, and s. On the other hand, putting
g =

∑
j≥0 gj+1, we readily deduce that {f �= g} ⊂ E (see (21)) and that |g|, |P±g|,

σg ≤ Rηw (see (22)). This proves Theorem 2′. �

§5. Proof of Theorem 3

As in the proof of Theorem 1, in Theorem 3 it suffices to consider the cases of p1 = 1,
p2 < ∞ and p1 > 1, p2 = ∞ separately (see Subsection 0.7.3). The first case is simple.
Indeed, we must modify in a proper way the decomposition f = g + h, where f has
spectrum only on the union of the intervals Ik = [22k − 1, 22k+1 − 1), k ≥ 0, and
g and h are arbitrary measurable functions with g ∈ L1, h ∈ Lp2 . K-closedness in
the Hp-scale allows us to assume from the outset that g ∈ H1, h ∈ Hp2 . Next, let
ϕk = σ2k+1 + τ2k+1 (see Figure 1; ϕ̂ is identically equal to 1 on Ik and to 0 on Ij for
j �= k). Since the operator x �→ {x ∗ ϕk} is a CZO (see the Appendix), which maps,
in particular, H1 to H1(l2), we arrive at the identities f ∗ ϕk = g ∗ ϕk + h ∗ ϕk. By
Lemma 1, they can be converted to f ∗ ϕk = gk + hk, where supp ĝk, supp ĥk ⊂ Ik and
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‖(
∑

|gk|2)1/2‖1 ≤ C‖g‖1, ‖(
∑

|hk|2)1/2‖p2 ≤ C‖h‖p2 . It remains to refer to the fact that
the operator {yk} �→

∑
k yk ∗ ϕk maps boundedly H1(l2) to H1 and Hp2(l2) to Hp2 .

Now, we verify that the couple (Zp, Z∞) is K-closed in (Lp(T), L∞(T)) for 1 < p < ∞.
Applying the duality lemma (Subsection 0.7.2), we reduce the matter to the annihilators,
which consist of the functions with spectrum only in Z \

⋃∞
k=0 Ik = Λ. So, let f be a

function with spectrum in Λ and represented as f = g + h with g ∈ L1(T), h ∈ Lt(T)
(t = p′). We must modify this decomposition so that the Fourier transforms of the
summands become supported on Λ and the norms grow unessentially. Let ‖g‖1 = ξ,
‖h‖t = η.

The main calculations will be done with square functions in a manner similar to that
in §3 — but now without weights. Consider the functions σ2k and τ2k (see Figure 1;
the sum of their Fourier transforms is equal to 1 on the interval Ik where f has no
spectrum). We apply the Calderón–Zygmund procedure to g (this time without weights)
with parameter λ = ηt′ξ

1
1−t (the same value was fixed in §3): g = g0 + g1, |g0| ≤ Cλ,

and so on. Recalling the notation Mk introduced in Subsection 0.5, we write down the
following identities for the parts of g1 and g0 + h “to be suppressed”:

(26) M2kg1 = M2k(σ2k∗g1+τ2k∗g1); M2k(g0+h) = M2k(σ2k∗(g0+h)+τ2k∗(g0+h)).

Next,

σ2k ∗ f = σ2k ∗ g1 + σ2k ∗ (g0 + h),(27)

τ2k ∗ f = τ2k ∗ g1 + τ2k ∗ (g0 + h).(28)

Clearly, the function on the right in (27) has no spectrum to the right of 22k−1 − 1, and
the function on the right in (28) has no spectrum to the left of 22k − 1.

The new decomposition of f we look for will be of the form f = [g1 −γ]+ [g0 +h+γ],
where the correction term γ is to be chosen. This will be done in two steps. First, we
choose an antianalytic function Φ and an analytic function Ψ in a special way, and put

ϕk = Φ · (σ2k ∗ f) − σ2k ∗ (g0 + h),

ψk = Ψ · (τ2k ∗ f) − τ2k ∗ (g0 + h).

We observe that, on Ik, the Fourier transforms of ϕk and ψk coincide with those of σ2k∗g1

and τ2k ∗ g1, respectively. Indeed, since Φ is antianalytic and σ2k ∗ f has no spectrum
to the right of Ik, neither has Φ · (σ2k ∗ f), and so on. The functions Φ and Ψ will be
chosen in such a way that

(29)

∥∥∥( ∑
|ϕk|2

)1/2∥∥∥
1
,

∥∥∥( ∑
|ψk|

)1/2∥∥∥
1
≤ Cξ;∥∥∥( ∑

|ϕk|2
)1/2∥∥∥

t
,

∥∥∥( ∑
|ψk|2

)1/2∥∥∥
t
≤ Cη.

We postpone the choice of Φ and Ψ and the proof of (29) for a while to describe
the next step of the construction. Consider the convolutions ϕ̃k = ϕk ∗ (σ2k + τ2k)
and ψ̃k = ψk ∗ (σ2k + τ2k) and observe that among the intervals Ij there is only one on
which their Fourier transforms can differ from 0, namely, Ik. Next,

M2kϕ̃k = M2kϕk = M2k(σ2k ∗ g1) and M2kψ̃k = M2kψk = M2k(τ2k ∗ g1).

If the functions ϕ =
∑

k≥0 ϕ̃k and ψ =
∑

k≥0 ψ̃k make sense, these identities and (26)
show that g1 − (ϕ + ψ) and g0 + h + ϕ + ψ have no spectrum on the intervals Ij , that is,
ϕ + ψ can be tested for the role of γ.

The functions ϕ and ψ are well defined indeed and satisfy the inequalities ‖ϕ‖1,
‖ψ‖1 ≤ C ′ξ, ‖ϕ‖t, ‖ψ‖t ≤ C ′η (so that the summands g1 − γ and g0 + h + γ satisfy
not only the spectral condition but also the metric condition: we remind the reader that
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‖g1‖1 ∼ ξ, ‖g0‖t ∼ η, see §3). This is a consequence of (29) and the facts presented in
the Appendix. To obtain L1-estimates, we need the information pertaining to H1. We
leave the easy details to the reader.

It remains to choose Φ and Ψ and to prove estimates (29). We shall be busy with Ψ
and the inequalities involving ψk (the choice of Φ is similar). By analogy with §3, we put

α = max
{
1, ξ

1
t−1 η−t′

( ∑
j≥1

|τ2k ∗ g1|2
)1/2}

,

Ψ = exp(− log α − iH(log α)),

where H is the harmonic conjugation operator. The analog of (17) looks like this:

ψk = Ψ · (τ2k ∗ g1) − (1 − Ψ)(τ2k ∗ (g0 + h)).

The further calculations copy those in §3 after formula (17) with some simplifications
(now the weights are identically equal to 1). For instance, in order to estimate the
distribution function ρ, now we use the weak type (1, 1) inequality for the CZO x �→
{x ∗ τ2j}, which takes scalar functions to l2-valued, etc. The reader will easily trace the
details himself.

Appendix

The information presented in this Appendix is well known; however (as usually hap-
pens), it is difficult to find it in the literature precisely in this form. We collect it only
for references.

Let {ϕn} be a sequence of trigonometric polynomials with the following properties:
(i) |ϕ̂n| ≤ C for all n; (ii) the function ϕ̂n vanishes off the interval [−C2n, C2n]; (iii)
ϕ̂n = Fn|Z, where Fn is a piecewise linear function with at most C intervals of linearity
and satisfying the inequality |F ′

n| ≤ C2−n.
I. Let T1 : L2(l2) → L2(l2) be the operator given by the formula T1{xn} = {ϕn ∗ xn}.

Then T is a Calderón–Zygmund operator.
II. Suppose that the ϕn satisfy the following additional condition: (iv) card{n :

ϕ̂n(k) �= 0} ≤ C for all k. Then the operators T2 : L2 → L2(l2) and T3 : L2(l2) → L2

given by the formulas T2x = {x ∗ ϕn} and T3{xn} =
∑

xn ∗ ϕn are Calderón–Zygmund
operators.

III. In particular, T1, T2, and T3 map, respectively, H1(l2) to H1(l2), H1 to H1(l2),
and H1(l2) to H1.

IV. The smoothness condition for the kernel is fulfilled in all cases in the form (c3) (see
Subsection 0.2.2); therefore, standard weighted estimates (for Muckenhoupt weights) are
true for T1, T2, and T3.

We say some words about the proof. The L2-estimates are clear for the three operators,
so it suffices to check (c3). The assumption that the functions ϕ̂n are piecewise-linear
allows us to do this in a particularly simple way. (As a matter of fact, we have chosen
the above version precisely for this reason, though, in principle, the conditions on the
ϕ̂n can be relaxed considerably.) Indeed, the second difference ϕ̂n(k + 2) − 2ϕ̂(k + 1) +
ϕ̂(k) may happen to be nonzero at C values of k at the greatest, it does not exceed
C ′2−n at these k’s, and all of them lie on the interval [−C ′′2n, C ′′2n] . Consequently,
‖(z−1)2ϕn(z)‖∞ ≤ C2−n (we have dominated the L∞-norm by the sum of the moduli of
the Fourier coefficients). The same estimate via Fourier coefficients yields ‖ϕn‖∞ ≤ C2n.

Let I be an arc centered at 1 on the circle, and let 5I be the arc with the same
center but 5 times as long. Suppose ζ ∈ I, η /∈ 5I. We have |ϕn(ηζ̄) − ϕn(η)| ≤
C|ζ−1|2n‖ϕn‖∞ ≤ C|ζ−1|22n by the Bernstein inequality. Employing also the estimate
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|ϕn(z)| ≤ C2−n

|z−1|2 , we arrive at

(30) |ϕn(ηζ̄) − ϕn(η)| ≤
{

C|ζ − 1|22n,
C2−n

|η−ζ|2 .

In order to verify condition (c3) for T2 and T3, we must estimate the quantity A(η, ζ) =
(
∑

n |ϕn(ηζ̄)−ϕn(η)|2)1/2 for η and ζ as indicated (for T1 the situation is even easier: it
suffices to estimate the upper bound in place of the quadratic sum). Splitting the sum
into two parts and using the upper (respectively, the lower) line in (30) to estimate the
first (the second) sum, we obtain

A(η, ζ) =
( ∑

n:2n<|ζ−1|−1/3|η−ζ|−2/3

|ϕn(ηζ̄)−ϕn(η)|2

+
∑

n:2n≥|ζ−1|−1/3|η−ζ|−2/3

|ϕn(ηζ̄) − ϕn(η)|2
)1/2

≤ (|ζ−1|−4/3|η−ζ|−8/3|ζ−1|2 + |ζ−1|+2/3|η−ζ|+4/3|η−ζ|−4)1/2

≤ C
|ζ − 1|1/3

|η − ζ|1+1/3
.

Since the kernel is translation invariant, this means that (c3) is fulfilled with α = 1/3. �

References

[1] J. Bourgain, Some consequences of Pisier’s approach to interpolation, Israel J. Math. 77 (1992),
165–185. MR1194791 (94a:46106)

[2] R. R. Coifman and Ch. Fefferman, Weighted norm inequalities for maximal functions and singular
integrals, Studia Math. 51 (1974), no. 3, 241–250. MR0358205 (50:10670)

[3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer.
Math. Soc. 83 (1977), no. 4, 569–645. MR0447954 (56:6264)

[4] E. M. Dyn′kin, Methods of the theory of singular integrals. II. The Littlewood–Paley theory and its
applications, Itogi Nauki i Tekhniki Sovrem. Probl. Mat. Fund. Naprav., vol. 42, VINITI, Moscow,
1989, pp. 105–198; English transl., Encyclopaedia Math. Sci., vol. 42, Springer-Verlag, Berlin, 1992,
pp. 97–194. MR1027848 (91j:42015); MR1299536

[5] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-
Holland Math. Stud., vol. 116. Notas Mat., vol. 104, North-Holland, Amsterdam, 1985. MR0807149

(87d:42023)
[6] P. W. Jones and P. F. X. Müller, Conditioned Brownian motion and multipliers into SL∞, Preprint,

2003.
[7] S. V. Kislyakov, Quantitative aspect of correction theorems, Zap. Nauchn. Sem. Leningrad. Otdel.

Mat. Inst. Steklov. (LOMI) 92 (1979), 182–191. (Russian) MR0566748 (82c:28012)
[8] , Fourier coefficients of continuous functions and a class of multipliers, Ann. Inst. Fourier

(Grenoble) 38 (1988), no. 2, 147–183. MR0949014 (89j:42004)
[9] , A sharp correction theorem, Studia Math. 113 (1995), 177–196. MR1318423 (96j:42005)

[10] , Some more spaces satisfying Grothendieck’s theorem, Algebra i Analiz 7 (1995), no. 1,
62–91; English transl., St. Petersburg Math. J. 7 (1996), no. 1, 53–76. MR1334153 (96g:46010)

[11] , Interpolation of Hp-spaces: some recent developments, Function Spaces, Interpolation
Spaces, and Related Topics (Haifa, 1995), Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat
Gan, 1999, pp. 102–140. MR1707360 (2000f:46028)

[12] , On BMO-regular couples of lattices of measurable functions, Studia Math. 159 (2003),
277–290. MR2052223 (2005f:46060)

[13] S. V. Kislyakov and Quan Hua Xu, Interpolation of weighted and vector-valued Hardy spaces, Trans.
Amer. Math. Soc. 343 (1994), no. 1, 1–34. MR1236225 (95b:46038)

[14] , Real interpolation and singular integrals, Algebra i Analiz 8 (1996), no. 4, 75–109; English
transl., St. Petersburg Math. J. 8 (1997), no. 4, 593–615. MR1418256 (98c:46161)

[15] G. Pisier, Interpolation between Hp-spaces and noncommutative generalizations. I, Pacific J. Math.
155 (1992), 341–368. MR1178030 (93f:46111)

http://www.ams.org/mathscinet-getitem?mr=1194791
http://www.ams.org/mathscinet-getitem?mr=1194791
http://www.ams.org/mathscinet-getitem?mr=0358205
http://www.ams.org/mathscinet-getitem?mr=0358205
http://www.ams.org/mathscinet-getitem?mr=0447954
http://www.ams.org/mathscinet-getitem?mr=0447954
http://www.ams.org/mathscinet-getitem?mr=1027848
http://www.ams.org/mathscinet-getitem?mr=1027848
http://www.ams.org/mathscinet-getitem?mr=1299536
http://www.ams.org/mathscinet-getitem?mr=0807149
http://www.ams.org/mathscinet-getitem?mr=0807149
http://www.ams.org/mathscinet-getitem?mr=0566748
http://www.ams.org/mathscinet-getitem?mr=0566748
http://www.ams.org/mathscinet-getitem?mr=0949014
http://www.ams.org/mathscinet-getitem?mr=0949014
http://www.ams.org/mathscinet-getitem?mr=1318423
http://www.ams.org/mathscinet-getitem?mr=1318423
http://www.ams.org/mathscinet-getitem?mr=1334153
http://www.ams.org/mathscinet-getitem?mr=1334153
http://www.ams.org/mathscinet-getitem?mr=1707360
http://www.ams.org/mathscinet-getitem?mr=1707360
http://www.ams.org/mathscinet-getitem?mr=2052223
http://www.ams.org/mathscinet-getitem?mr=2052223
http://www.ams.org/mathscinet-getitem?mr=1236225
http://www.ams.org/mathscinet-getitem?mr=1236225
http://www.ams.org/mathscinet-getitem?mr=1418256
http://www.ams.org/mathscinet-getitem?mr=1418256
http://www.ams.org/mathscinet-getitem?mr=1178030
http://www.ams.org/mathscinet-getitem?mr=1178030


772 D. S. ANISIMOV AND S. V. KISLYAKOV

[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser.,
No. 30, Princeton Univ. Press, Princeton, NJ, 1970. MR0290095 (44:7280)

[17] V. I. Vasyunin, The sharp constant in the reverse Hölder inequality for Muckenhoupt weights,
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