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TWIST NUMBER OF (CLOSED) BRAIDS

A. V. MALYUTIN

ABSTRACT. A real-valued invariant of (closed) braids, called the twist number, is
introduced and studied. This invariant is effectively computable and has clear geo-
metric sense.

As a functional on the braid group, the twist number is a pseudocharacter (i.e.,
a function that is “almost” a homomorphism). It is closely related to Dehornoy’s
ordering (and to all Thurston-type orderings) on the braid group. In special cases,
the twist number coincides with some characteristics introduced by William Menasco.

In terms of the twist number, restrictions are established on the applicability of the
Markov destabilization and Birman—Menasco moves on closed braids. These restric-
tions were conjectured by Menasco (Kirby’s problem book, 1997). As a consequence,
conditions for primality of the link represented by a braid are obtained.

The results were partially announced in an earlier paper.

INTRODUCTION

In this paper we introduce a new real-valued invariant on the braid group B,. We
call this invariant the twist number and denote it by w:

w: B, —R.

The choice of the term “twist number” is motivated by the fact that, in a sense, the
invariant w characterizes how much a braid is “twisted” or “wound” from its exterior.
For example, the twist number of any split braid is equal to 0. (Indeed, in a sense, it
is natural to regard a split braid as “nontwisted”.) The twist number of the full twist
equals 1 (w(A?) = 1); furthermore, for each 8 € B,, we have w(3A%) = w(B) + 1.

The function w : B,, — R is a pseudocharacter (see the definitions in §6). In particular,
for any (1,82 € B, we have the inequality

lw(B152) —w(B1) —w(B2)] < 1.

The restriction of the twist number to any Abelian subgroup of B, is a homomorphism.
For instance, for any 3 € B,, and any k € Z we have w(3*) = kw(p).

It is well known that there is a one-to-one correspondence between the conjugacy
classes in braid groups and the isotopy classes of closed braids. Like any other pseu-
docharacter, the twist number is a conjugacy invariant. Hence, the twist number of a
closed braid is well defined: w(ﬁ) =w(f).

The twist number is closely related to Thurston-type orderings on the braid group,
including Dehornoy’s vastly known ordering (see the definitions in [5]). In §7, we establish
some relations between the twist number and Dehornoy’s ordering. (The same relations
are valid for the twist number and any other Thurston-type ordering.) In particular,
we deduce a formula expressing the twist number in terms of the ordering (see Theorem
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7.5). We also describe a method of computation of the twist number for a given braid,
which involves algorithms of comparisons of braids in Dehornoy’s ordering.

The twist number is a real-valued invariant. Moreover, we show that it is rational-
valued (Theorem 11.1). The proof of this result (see §11) involves the Nielsen—Thurston
classification of surface automorphisms.

The twist number can be defined in terms of the Nielsen—Thurston theory. Using
this theory, Menasco [10] defined some characteristics for braids of periodic and pseudo-
Anosov types. In terms of those characteristics, Menasco formulated four conjectures
concerning the admissibility of the Markov destabilization, and also of exchange move
and flype (two braid moves introduced by Birman and Menasco) for a closed braid.
It turns out that, for both types of braids (periodic and pseudo-Anosov), Menasco’s
characteristics are equal to the twist number (see the definitions in [I0] and in §11 below).
Theorem 14.2 below confirms all four conjectures, and some of them in a stronger form
(with the exception of the conjecture on periodic braids in the part concerning the flype:
this part was disproved in [I1]).

In a natural way, the notion of the twist number (as well as some other methods and
results of the present paper) can be generalized to the case of the mapping class group
of any surface with nonempty boundary (we recall that the braid group is isomorphic to
the mapping class group of a punctured disk). The case of a punctured disk (i.e., the
“usual” braid group) is of most interest for us because the twist number on the braid
group is applicable in the theory of knots in R3.

By the Alexander theorem, each link type in R? can be represented by a closed braid.
Closed braids representing the same link may have different twist numbers, so that the
twist number is not an invariant of a link. Nevertheless, the twist number of a braid
provides some information on the corresponding link. For example, the link represented
by a closed braid 3 is prime whenever |w(3)| > 1 (Theorem 15.3).

Structure of the paper. §1 contains the definitions of the braid group B,, and of the
mapping class group of a punctured disk.

§2 is devoted to the study of the natural action of the braid group on the real line; we
call this the Nielsen—Thurston action.

In §3, we define the twist number in terms of the Nielsen-Thurston action and the
translation number. It should be noted that the twist number can be defined in several
essentially different ways. The definition in §3 is somewhat bulky, but we use it as a basic
one for the convenience of proofs. The reader can formulate more compact definitions of
the twist number on the basis of Theorem 7.5, or of the uniqueness theorem (Theorem
8.1).

In §4, we deduce auxiliary “formulas” describing the twist number in terms of the
action of the braid group on the free group, which is known as the Artin action.

In §5, we prove the basic properties of the twist number.

In §6, we recall the definition of a pseudocharacter and show that the twist number
on the braid group is a pseudocharacter. We also formulate the corresponding properties
of the twist number and find its defect.

In §7, the definition of Dehornoy’s ordering is presented, and some relations between
this ordering and the twist number are proved. Theorem 7.5 expresses the twist number
in terms of this ordering.

In §8, we prove the uniqueness theorem, which contains a list of properties of the twist
number that determines it uniquely.

In 89, we recall the definition of a closed braid and introduce the notion of the twist
number of a closed braid.
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In §10, we introduce the notion of a satellite braid and show that the twist number of
a braid coincides with that of any of its satellites.

In §11, we use the Nielsen—Thurston classification of the automorphisms of surfaces in
order to prove that the twist number of any braid is a rational number (Theorem 11.1).

In §12, we describe a method for computation of the twist number.

In §13, we estimate the twist number of a braid by the number of occurrences of a
generator in the corresponding braid word. One of these estimates is used in the proof
of Theorem 14.2.

§14 is devoted to transformations of closed braids. Here, we present the definitions of
destabilization, exchange move, and flype. In Theorem 14.2, in terms of the twist number,
we establish restrictions on the possibility of performing the above transformations.

In §15, sufficient conditions of primality of a link represented by a braid are given in
terms of the twist number (Theorem 15.3).

§1. BRAID GROUP
1.1. Braid group. The Artin braid group B,, on n strands is defined by the presentation
Bn = <0’1, ey Opn—1 | O'iO'j = O'jO'i, |’L —j| Z 230'i0'i+10'i = Ui+1UiUi+1>-

The group B; is trivial, while By = Z. The elements of B, are called braids. The

generators crlﬂ7 . crfil are Artin’s generators. Further on, by a braid word we mean a
word in Artin’s generators.

The braid
A= (0109 0p-1)(0102 - Op_2)---(0102)(01) € By,

is called the fundamental braid. The braid A? € B,, generates the center of the group
B,, whenever n > 2. (The center of B, is an infinite cyclic group.)

1.2. The mapping class group of the punctured disk. We denote by D? the closed
unit disk with center 0 in the complex plane C, and we denote by D,, the disk D? from
which n distinct points on the real interval (—1;1) are removed.

The mapping class group of D,, is the group

MCG(D,,) := Homeo (D,,,0D,,)/ Homeoy(D,,, 0D, ),

where Homeo (D,,,dD,,) is the group consisting of all orientation-preserving homeo-
morphisms of D,, that fix dD,, pointwise, and Homeog(D,,, 0D,,) is the normal subgroup
consisting of all homeomorphisms isotopic to the identity rel dD,,.

1.3. Isomorphism B, = MCG(D,). It is well known that B, is isomorphic to
MCG(D,,) (see, e.g., [1]). The canonical isomorphism B, = MCG(D,) can be con-
structed as follows: we enumerate the punctures by 1,...,n from left to right. After
that, the generator o; € B, is associated with the class in MCG(D,,) of the autohomeo-
morphism that exchanges the punctures ¢ and ¢ + 1 by “rotating” them clockwise in the
simplest possible way (this is a Dehn half-twist).

§2. NIELSEN—THURSTON REPRESENTATION

In this section, we describe a natural action of the group B,, 2 MCG(D,,) on the real
line by order-preserving autohomeomorphisms, i.e., a homomorphism

Q: B, 2 MCG(D,,) — Homeo, (R).

We call this homomorphism the Nielsen—Thurston representation or the Nielsen—
Thurston action. We use this action to define the twist number of a braid (see §3).
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The description of the Nielsen—Thurston action in the general case of a mapping class
group of any surface with nonempty boundary can be found in [I4] [7].

2.1. Compactification of the universal covering space and the hyperbolic
structure. To describe the Nielsen—Thurston action, we need the following construction.
Let D,, denote the disk with n punctures, and let U/ be a universal covering space of D,,.
It is well known that D,, can be equipped with a hyperbolic metric (provided n > 2) in
which the circle 0D,, is a geodesic and the punctures are cusps. This metric on D,, lifts to
a hyperbolic metric on U/. Being simply connected, U/ can be isometrically embedded in
the hyperbolic plane H?, and we identify &/ with a subset of H2. The boundary of &/ C H?
(it is the inverse image of &D,,) is a union of disjoint geodesics in H?, and H?\U is a union
of disjoint open half-planes. (In particular, it follows that I/ is a convex subset in H?2.)

We denote by H the standard compactification of the hyperbolic plane, i.e., the closed
disk obtained from H? by adding a circle at infinity (absolute). Let D be the closure of

U in H, i.e., a compactification of the space U. Since U is convex, D is homeomorphic

to a closed disk. Here, we have D NH? = U, and the set K :=D\U =DnN O of the
limit points of U is a Cantor set on the absolute.

2.2. Remark. We observe that the resulting compactification D has the following
property: the boundary dU of the universal covering is dense in dD. It can be proved
that this compactification is “canonical” (in particular, it does not depend on the choice of
a hyperbolic structure) in the following sense. Suppose D’ is a closed disk and f : U/ — D’
is an embedding such that f(int(&)) = int(D’) and the set f(OU) is dense in ID’. Then
f is uniquely extended to a homeomorphism between D and D’. This property implies
that each autohomeomorphism of I/ is uniquely extended to an autohomeomorphism of
the entire disk D. In particular, each lifting of any autohomeomorphism of the punctured
disk D,, is uniquely extended to an autohomeomorphism of D. The latter fact, which
is involved in the construction of the Nielsen—Thurston representation, is proved in a
standard way with the help of the methods of hyperbolic geometry (see, e.g., [3]).

2.3. Notation. Suppose A is a topological space, f : A — A is an autohomeomor-
phism of A, and B C A is a subspace such that f(B) = B. We denote by f|p the
autohomeomorphism of B obtained by restricting f:

fle:B— B, flp(z)= f(z).

2.4. The Nielsen—Thurston action. Now we pass to a description of the Nielsen—
Thurston action.

We let Z C 0U be one of the geodesics in U, i.e., a connected component of the
preimage of the circle dD,,. Any autohomeomorphism ¢ : D,, — D, identical on the
boundary has a unique lifting ¢~ : &/ — U identical on Z, and we obtain a homomorphism

Homeo (D, 0D,,) — Homeo, (U), ¢+ ¢~.

The autohomeomorphism ¢~ is uniquely extended to an autohomeomorphism ¢~ of
the disk D. (The proof is standard; see, e.g., [3].)

Next, we observe that the autohomeomorphism ¢~|gp is completely determined by
the class [¢] € MCG(D,,). Indeed, we easily check that for each autohomeomorphism
v € Homeog (D, 0D,,) the autohomeomorphism 1™ |g;, is an identity, and since the set
OU is dense in 9D, the autohomeomorphism 7~ |sp is also an identity.

Thus, we have defined a homomorphism

Q% : MCG(D,,) — Homeo, (D), [¢] — ¢ |op-
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The geodesic Z is an arc of the circle 9D. We denote by J the set 9D \ Z, which
is homeomorphic to an open interval. Since the action {2 is identical on 7 and on the
closure Z, we arrive at an action of the group MCG(D,,) on J: it is the homomorphism

Q: MCG(D,,) — Homeo(J), [¢]— ¢~|7.

It can be shown that the action obtained is faithful (i.e., 2 is a monomorphism).

2.5. Remark. When considering the action €2, it is convenient to fix a hyperbolic metric
on D, ; however, actually, €2 does not depend on the choice of the metric. Moreover, this
action can be described in nonhyperbolic terms, for example, in terms of ordered sets: we
observe that the subset OU of the circle 9D is cyclically ordered in a natural way, while the
set OU\Z is linearly ordered. It is not hard to prove that these two orders (the cyclic order
on OU and the linear order on 90U \ Z) do not depend on the hyperbolic structure. The
interval [J can be defined as the Dedekind completion of the linearly ordered set OU \ Z.
For each autohomeomorphism ¢ € Homeo (D,,,0D,,), the autohomeomorphism ¢~ s\ 7
(which, obviously, is completely determined by the class [¢] € MCG(D,,)) preserves the
linear order on OU \ Z and, therefore, is uniquely extended to an order automorphism
of the Dedekind completion J. Such extensions to the Dedekind completion yield the
homomorphism © : MCG(D,,) — Homeo (7).

§3. DEFINITION OF THE TWIST NUMBER

The definition of the twist number given below is based upon the notions of the
Nielsen—Thurston action and the translation number. We use the construction and defi-
nitions of the preceding section.

3.1. The basic definition is outlined like this: using the Nielsen—Thurston representation,
we obtain a representation

Q: B, 2 MCG(D,,) — Homeo, (S1),

where Homeo, (S') C Homeo, (R) is the group of all autohomeomorphisms of the real
line that commute with the integral translations (see Subsection 3.2).
Then we define the twist number on the group B,, 2 MCG(D,,) as the composition

w:=T708Q: B, = MCG(D,) — R,

where 7 : Homeo, (S') — R is the translation number (see Subsection 3.5).

The following commutative diagram, where the rows are exact sequences, clarifies our
construction. (The definitions of the objects involved are given in Subsections 3.2 and
3.3.)

B,
|
0 Z MCG(D,) —— B,/{A?) —— 1
| o I
0 Z Homeo, (S') ——— Homeoy (S') —— 1

H X L

0 Z R _— St — 1
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3.2. The group Homeo, (S!). We denote by Homeo, (S!) the group of all autohomeo-
morphisms of the real line that commute with the translation ¢; through 1: a — a + 1,
i.e., g € Homeo, (S!) if and only if g(a + 1) = g(a) + 1 for all a € R.

3.3. Homomorphism 2 : MCG(D,,) — Homeo, (S'). Observe that each homeomor-
phism ¢ : 7 — R of the interval J onto the real line induces an isomorphism

i, : Homeo, (J) — Homeo, (R), trs>iotoi *,

and the corresponding action
Q; =14, 0Q: MCG(D,,) — Homeo (R)

of the group MCG(D,,) on R.

It turns out that for a certain choice of i the image of the homomorphism 2; lies in
the group Homeo, (S?).

Consider the orientation-preserving isometry of H? that shifts Z in the positive direc-
tion (that is, the direction induced by the clockwise direction on dD,,) through a distance
equal to the length of the circle 9D,, (in the fixed hyperbolic metric). We denote by © the

—2
extension of this isometry to H . Clearly, the restriction O]y is a deck transformation.
The homeomorphism © maps U onto U, D onto D, T onto Z, and, hence, J (= 9D\ I)
onto J. This means that the restriction 8|7 : J — J is an autohomeomorphism.

Claim 1. There is a homeomorphism i : J — R such that i.(©]7) = t1.

Proof. Indeed, since Oy is an isometry of hyperbolic type, O]y has exactly two fixed

points in ﬁz, which lie in the set Z N J. It follows that the autohomeomorphism ©| 7
has no fixed points. Consequently, the quotient space J/O|7, which consists of the
orbits of the action of ©|7 on J, is a circle. We regard the interval J as the universal
covering space of the circle, and ©| 7 as a deck transformation. Similarly, the translation
t; through 1 has no fixed points in R, the quotient space R/t; is the unit circle S!
with universal covering space R, and ¢; is a deck transformation. We fix an arbitrary
homeomorphism between the circles J/0|7 and R/#; and lift it to a homeomorphism
i : J — R. Obviously, the map i, takes the autohomeomorphism O]y either to t;
(then i is the required homeomorphism) or to tfl, and then the imposed requirements
are fulfilled, for example, for the homeomorphism s o i, where s is the automorphism
R—R:a+ —a. O

Now, let j : J — R be a homeomorphism such that j.(©|7) = ¢;. Consider the
homeomorphism

N:=Q; =7, 0Q: MCG(D,,) — Homeo, (R).
Claim 2. We have ImQ C Homeo, (S!).

Proof. Obviously, the deck transformation Oy, commutes with the liftings of the auto-
homeomorphisms of D,, identical on Z. Hence, for each ¢ € Homeo, (D,,0D,), the
autohomeomorphism ¢~ commutes with ©|p. Consequently, for each ¢ € MCG(D,,)
the autohomeomorphism €2(g) : J — J commutes with the autohomeomorphism 0|7 :
J — J. In other notation, an element €2(g) commutes with the translation through

1, t; = j,(©|7). This precisely means that the image of the homomorphism € lies in
Homeo (SY). O

Thus, we have constructed a homomorphism

Q : MCG(D,,) — Homeo (S).
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3.4. Remark. The choice of the homeomorphism j : 7 — R in the above construc-
tion allows some flexibility. It can be shown that in the framework of the construc-
tion, the homomorphism €} = Q; is determined up to conjugation by an element in
Homeo, (S!). Namely, if j' : J — R is a homeomorphism such that j2(©|7) = t;, then
j'oj~! € Homeo, (S') and Q;/(g) = h(2(g))h~1, where h = j' o j=1. Conversely, if
h € Homeo, (S!), then the homeomorphism hoj : J — R takes the autohomeomorphism
O] 7 to the translation through 1, whence Im Q,,; C Homeo (S!). Furthermore, for each
g € MCG(D,,) we have Qp0;(g) = h(2;(g))h .

3.5. Poincaré invariants: the translation number. It is well known that for any
f € Homeo, (S!) and a € R there exists a finite limit
Flay-a_ . F@

lim —=.
§—00 S §—00 S

Furthermore, for a given f this limit does not depend on the choice of a (see, e.g., [T]).
The number 7(f) is called the translation number of the autohomeomorphism f.
Usually, the translation number is considered together with the rotation number (the
latter taking values in S' = R/Z). The rotation number of an autohomeomorphism
f € Homeo (S') is defined as p(f) := 7(f) mod Z, where f € Homeo, (S!) is a lifting
of f.
The properties of the Poincaré invariants are well known (see, e.g., [7]).

3.6. Definition. We define the twist number w on the group B, = MCG(D,,) as the
composition
w:=71708Q:B, - R,

where €0 is the homomorphism described above and 7 is the translation number.
Thus, the twist number w(8) of a braid  with the corresponding mapping class
g € MCG(D,,) is defined as follows (here y € R is arbitrary):
5 - (29)°(y
w(B) 1= wlg) = (D)) = lm KW

5—00 S

3.7. The consistency of the definition. The constructions preceding the definition
admit some flexibility in the choice of a hyperbolic metric on D,,, of the arc Z, and
of the homeomorphism transforming ©| 7 into a unit shift. However, the object to be
defined, i.e., the twist number, does not depend on this arbitrariness. This fact can be
proved “directly”, by using the assertions formulated in Remarks 2.2, 2.5, and 3.4, but
we can avoid doing this here because below we show that the above definition implies
some properties of the twist number that determine it uniquely (see Theorem 8.1) and
are formulated in braid group terms. (Thus, these properties are invariant under the
choice of the ingredients mentioned above.)

3.8. Remark. The constructions presented above for the punctured disk can be imple-
mented without essential changes in the case of any surface M with nonempty boundary.
In particular, let MCG(M) be the group of isotopy classes of automorphisms fixing
the boundary pointwise. Acting in a similar way, we can construct a representation
MCG(M) — Homeo, (S') and also define an invariant similar to the twist number.

§4. THE TWIST NUMBER AND THE FUNDAMENTAL GROUP

In this section, we deduce a “formula” expressing the twist number in terms of the
action of the group B, = MCG(D,,) on the fundamental group of the punctured disk
D,, (Proposition 4.3). We use the constructions and notation of §§1 and 2.
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4.1. Action of MCG(D,,) on m1(D,, o). We consider the natural (left) action of the
group MCG(D,,) on the fundamental group (D, xo), where xg € D,,. We denote by
gv the result of the action of a class g € MCG(D,,) on an element v € w1 (D, xo).

Let u be the homotopy class of the loop having endpoints at xg and tracing the circle
0D,, once in the positive direction of the fixed orientation (see Subsection 3.3). In what
follows, w is called the distinguished element.

It is easily seen that the powers of u exhaust all MCG(D,)-invariant elements in
71 (Dp, o). We set

7t =71 (Dp, x0) := 71 (Dn,x0) \ {- .., a1 u® = e, ul,u?, ...}

4.2. The ordering of the fundamental group. Let X denote the inverse image of
the point x( in the universal covering (note that X C 0U). We choose a base point

Zo € X NZ of this preimage (we let &g lie on the arc Z; see the notation in §2).
Let

a: 7 (Dp,x0) — X

be the bijection that takes each element v € m1(D,,zo) to the endpoint of a curve
v :[0,1] — U, where v is a lift of any loop representing v and v(0) = Zo.

Obviously, a takes the powers of the distinguished element to points in Z and takes
the elements in 7 to points in the interval J. Thus, the composition of a and the
homeomorphism j : 7 — R is well defined on the set 7: we put

b:=joa:7m—R.

Under the embedding b, the usual ordering on R induces a linear ordering on 7 (we
denote it by <).

Remark. The following properties are obvious.

1. The ordering < on the set T is canonical: it is completely determined by the choice
of the orientation on 0D,,. (In particular, this ordering does not depend on the choice
of the base point and the hyperbolic structure.)

2. The action of B,, 2 MCG(D,,) on 7 preserves this canonical ordering.

4.3. Proposition. Suppose that 8 € B,,, g € MCG(D,,) is the corresponding mapping
class, and v € 7t is any element. Then

(%) w(f) = lim max{k € Z | ukv < gs(v)}'

5—00 S

Proof. The definitions of the Nielsen—Thurston action and of the injection b imply that
for any v € i and g € MCG(D,,) we have (Q(g))(b(v)) = b(gv). By the definitions of u
and Oly, for each v € 7 we have a(uv) = O(a(v)), i.e., b(uv) = b(v) 4+ 1. It follows that
the inequality u*v < ¢*(v) is equivalent to b(v) 4+ k < (€(g°))(b(v)). Denoting by a the
point b(v) € R, we obtain

max{k € Z | uFv < ¢°(v)}
= max{k € Z | a+k < (Q(8°)(a)} = [(B°))(a) — d],

whence

ky < g8
lim max{k € Z | u"v < g°(v)}

5—00 S

= lim

§—00 S s§—00 S



TWIST NUMBER OF (CLOSED) BRAIDS 799

85. PROPERTIES OF THE TWIST NUMBER
Here we prove some basic properties of the twist number.
5.1. Lemma. We have w(A?) = 1.

Proof. As before, D,, is the punctured disk. Consider an isotopy h; : D, — D,, of D,
(t € [0,1], ho = idp, ) that is identical outside a neighborhood of the boundary 9D,, and
performs a full turn of dD,, in the counterclockwise direction: each point of 9D,, is taken
to itself after passing once along the entire circle dD,,. The class T € MCG(D,,) of the
autohomeomorphism h; € Homeo, (D,,,dD,,) is called the boundary Dehn twist. Tt is
well known that the canonical isomorphism B,, = MCG(D,,) takes the element A% € B,
to T. Thus, by definition, we have w(A?) = w(T).

We let Ay : U — U be the lifting of the isotopy h: (i.e., hg = idy). The isotopy h;’
shifts each point of the axis Z in the negative direction (see Subsection 3.3) through a
distance equal to the length of 0D,,. Consequently, the autohomeomorphism ¢~ := Oh7’
is identical on Z. Since, obviously, ¢~ is a lift of hy € T, it follows (by definition) that
Q(T) = ¢~|7. Now, we observe that the isotopy h;” shifts points through a bounded
hyperbolic distance; hence, the extension of Ay to D is identical at the points of the
Cantor set K: we have hy’|xc = idx. Thus,

Q(T)|;C = @hf‘}g = @|IC
By definition, we have w(T') = lims_, oo w for any y € R. Take y € j(KNJ)
(the set £ N J is K without two limit points of the interval Z). Then
(AT))(v) = (:0)(y) = ta(y) =y + L.

Consequently, since Q(T) € Homeo, (S'), we have (Q(T))(y + z) = y + z + 1 for any
z € Z. It follows that

1. ]

W(A?) = w(T) = Tim L5

5—00 S
5.2. Lemma (Property S). For any 51,02 € B, and any i € {1,...,n— 1}, we have
w(B152) < w(Broif2).

Remark. Confer the “Property S” of Thurston-type orderings on the braid group, as
defined in [5].

Proof. We denote by [a the image of a point a € R under the action of an element ﬁ(ﬁ)
We recall that the autohomeomorphisms in Homeo (S*) preserve the orientation on R;
therefore,

(5.2.1) VB € Bysar,az €R: a; <ay <= fa; < Bas.

It is well known that the braid ¢? in MCG(D,,) corresponds to a Dehn twist along
the corresponding curve. The Nielsen—Thurston action for Dehn twists in the general
case of an oriented surface was considered in [14, Proposition 2.4]; in the case under
consideration this proposition yields the following:

(5.2.2) Vie{l,....n—1},a€R: ocla>a.
From (5.2.1) and (5.2.2) we deduce that

(5.2.3) Vie{l,...,.n—1}a€eR: oa>a,
whence

(5.2.4) BroifBea = Br(0i(f2a)) > f1(B2a) = B1Bza.
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Using induction on s € N and (5.2.1), (5.2.4), we obtain

(Broif2)a > (B152)"a.
Now, the definition of the twist number (see Subsection 3.6) yields

. s s
wlprofe) = i POPC s py BP0 55, 0
5.3. Definition. We say that a braid 8 € B,, is split if for some r € {1,...,n— 1} it is
represented by a word in letters {0, ..., 0= 1\ {oF'}.

5.4. Lemma on split braids. The twist number of any split braid is zero.

Proof. Suppose a braid § € B, is represented by a word in letters {afl, .. .,Jfﬁl} \
{o*'}. We prove that the autohomeomorphism () has a fixed point. We use the
results and notation of §2 and Subsection 1.3. Let ¢ € MCG(D,,) be the mapping class
corresponding to the braid 5. Also, let v € 7 be the homotopy class of the loop with
endpoints at zg € dD,, that intersects the interval (—1,1) C C at precisely two points
such that the first of them lies between the point —1 € C and the first puncture, while
the second lies between the punctures r and r 4+ 1. Obviously, g(v) = v, so that (see the

proof of Proposition 4.3) we have

(©(9))(b(v)) = b(gv) = b(v).

By the definition of the twist number, we obtain

o(8) — tim DOV EO) )

S§— 00 S S§— 00 S

=0. (]

5.5. Corollary. Suppose a braid 0 € B, is represented by a braid word W that does not
contain the letter o; ' for some i € {1,...,n —1}. Then w(3) > 0.

Proof. We denote by V the braid word obtained by deleting all occurrences of the letter
o; from W, and let « € B,, be the braid represented by V. Since V is a word in the

generators {oi!,... o 1\ {6}, we see that the braid a is split, and Lemma 5.4
implies that w(a) = 0. It remains to observe that w(a) < w(f) by Lemma 5.2. O

§6. THE TWIST NUMBER AS A PSEUDOCHARACTER

In this section, we show that the twist number is a pseudocharacter on the braid group,
list the properties of the twist number as a pseudocharacter, and compute its defect.

6.1. Pseudocharacters. A functional ¢ : G — R on a group G is called a pseudochar-
acter (or pseudohomomorphism) if the following conditions are fulfilled:

(1) sup |o(g192) — ¢(g1) — ¢(g92)| = D, < 00;
91,92€G
(2) VeeZ,geG: o(g®) = z0(g)

The number D, is called the defect of .

6.2. Proposition (see, e.g., [0]). A pseudocharacter takes conjugate elements of the
group to the same value. The restriction of a pseudocharacter to any Abelian subgroup
of G is a homomorphism.

6.3. Theorem. The twist number w : B,, — R is a pseudocharacter on the group B,.
If n > 2, then the defect of the pseudocharacter w is equal to 1. The pseudocharacter
w : By — R is the homomorphism of — z/2.
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6.4. The properties of the twist number as a pseudocharacter.
6.4.1. For any 31, P2 € B, we have

lw(B1B2) — w(B1) —w(Be)| < 1.
6.4.2. For any 31,32 € By, such that 3182 = (B231, we have

w(B1B2) = w(B1) + w(Ba).
6.4.2". For any B8 € B, and k,z € Z, we have

w(BEA%) = kw(f) + 2.
6.4.3. The twist number is a conjugacy invariant, i.e., for any o, 8 € B,, we have
wlafa™t) = w(p).

Proof of Theorem 6.3 and of the properties given above. It is well known that the trans-
lation number is a pseudocharacter with defect equal to 1. (See, e.g., [7].) It is easily seen
that the composition of a homomorphism and a pseudocharacter with defect C' is also
a pseudocharacter with a defect at most C'. Thus, by Definition 3.6, the twist number
is a pseudocharacter with defect at most 1, i.e., the first assertion of the theorem and
property 6.4.1 are true.

Proposition 6.2 implies properties 6.4.2 and 6.4.3, while property 6.4.2 and Lemma
5.1 imply property 6.4.2'. The final assertion of the theorem is obvious.

It remains to show that for n > 2 the defect of the pseudocharacter w : B,, — R equals
1. Since we have already seen that the defect is at most 1, it suffices to find two braids

[31,62 € Bn with w(ﬂlﬂg) — W(ﬂl) — w(ﬂg) =1.

By the definition of the fundamental braid, we have A = Vo, _1W, where V and W
are words in the generators o1,...,0,-2. We set p := WV. The braids o,_1, p, and p2
are split, and Lemma 5.4 implies

(o 1) = w(p) = w(p?) = 0.
Since the braid A? commutes with any braid, we have
A2 =Vo, WVon W =WV, \WV0op_1=pOn_1p0n_1.
By Lemma 5.1, w(A?) = 1. Applying property 6.4.2 (A% and o,,_; commute), we obtain
wpon_1p) = w(A?) —w(op_1) =1-0=1.
The braid po,_1p is conjugate to p?c,,_1, whence w(p?c,,_1) = w(po,_1p) = 1. Thus,

w(p?on_1) —w(p?) —w(en_1)=1-0-0=1. O

§7. DEHORNOY’S ORDERING
In this section, we prove some relations between the twist number and Dehornoy’s

ordering.

7.1. Definition. A braid § € B,, is said to be o-positive if for some i € {1,...,n—1} it
is represented by a braid word of the form VU;FIW7 where V and W are words in letters
{le,aill, ...,01}. Suppose 1,8, € B,. We write 3, < [ if the braid Bo0; " is
o-positive. The relation < is a right-invariant linear ordering on the braid group [3], i.e.,

V@1, B2, € By i B < B2 = [ra < faa,

and we call it Dehornoy’s ordering.
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7.2. Lemma. 1) If 8 is a o-positive braid, then w(B) > 0.
2) If two braids B1 and Bs commute, then the following two implications are true:

w(B1) <w(fB2) 7 B1 < B2 Tf w(B1) < w(B2).

3)IfB € B, anda < b€ Z, then
a<w(P)<b = A" <3 <A — a<w(p) <D
Proof. Statement 1) follows from Corollary 5.5.
2b) By the definition of Dehornoy’s ordering, the condition 8; < (2 means that the
braid ﬂgﬂfl is o-positive. In this case, we have w(ﬁgﬁfl) > 0 by assertion 1). Since (34
and (3, commute, Property 6.4.2 yields w(f26; ") = w(B2)—w(B1), whence w(B2) > w(B1).

2&) Suppose 61 74 52. If ﬂl = 62, then w(ﬂl) = w(ﬁg). If ﬂg < 51, then w(ﬂ1) Z w(ﬂg)
by the implication 2b), a contradiction.

3) We have w(A2?) = a and w(A%) = b. Also, observe that the braids A2% and A%
commute with 8. It remains to apply part 2). (I

7.3. Definition. Dehornoy floor. It is well known that for each braid 3 there is an
(obviously, unique) z € Z such that

A2? jﬂ<A2(Z+l)

(see, e.g., [13]). We denote z by [§]p and call it the Dehornoy floor (or the integral part)
of 3.

7.4. Lemma. For each braid 3, we have
[ﬁ]D < W(ﬁ) < [ﬁ}D + 1.

Proof. This immediately follows from assertion 3 of Lemma 7.2 and the definition of the
Dehornoy floor. O

7.5. Theorem. For each braid 3, we have

Proof. Lemma 7.4 implies that
0<w(a)—|a]p <1

for each braid a. Therefore, since the twist number is a pseudocharacter and sw((3) =
w(B%), we have

w(p)

The latter inequality implies the assertion of the theorem. O

<

[Pl @)= e !

7.6. Remark. A functional ¢ : G — R on a group G is called a quasicharacter (or a
quasithomomorphism) with defect C' if the following condition is fulfilled:
sup [¢(g192) — ¥(g1) — ¥(g2)| = C < 0.

91,92€G

It is well known (see, e.g., [6]) that if ¢ : G — R is a quasicharacter, then for each g € G
the sequence {1(g°)/s} has a finite limit, and the functional

p:G—>R, ¢(g):= lim —w(gs)

8§—00 S
is a pseudocharacter.
Thus, the Dehornoy floor is a quasicharacter on the braid group (it can be shown that
its defect is equal to 1), and the twist number is the corresponding pseudocharacter.
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§8. UNIQUENESS THEOREM

8.1. Theorem. There exists a unique pseudocharacter B,, — R that takes a nonnegative
value on each o-positive braid and takes value 1 on the braid A2,

Remark. The above theorem admits numerous reformulations.

For example, the theorem remains valid (and the twist number remains to be a pseu-
docharacter satisfying the assumptions of the theorem) if we replace the o-positivity in
its formulation by the positivity with respect to any other Thurston-type ordering on the
braid group.

With the same result, we can replace the requirement of taking nonnegative values
“on the o-positive braids” by the stronger requirement of taking a nonnegative value “on
each braid represented by a word not containing the generator o 1 in which way we
exclude mentioning the ordering in the formulation.

Furthermore, the twist number is a unique pseudocharacter on the braid group that
possesses the properties mentioned in Lemmas 5.1, 5.2, and 5.4.

Proof. Existence. The twist number satisfies all conditions of the theorem. Indeed, by
Theorem 6.3, the twist number is a pseudocharacter. By part 1 of Lemma 7.2, we have
w(B) > 0 whenever 3 is o-positive. Finally, w(A?) =1 (Lemma 5.1).

Uniqueness. Suppose w’ is a pseudocharacter satisfying the conditions of the theorem.
Recalling §7, we observe that the successive proof of assertions 2 and 3 of Lemma 7.2,
Lemma 7.4, and Theorem 7.5 involves only the following facts:

a) the twist number is a pseudocharacter,

b) w(A?) =1, and

c) the twist number takes nonnegative values on o-positive braids (assertion 1 of
Lemma 7.2).

At the same time, by assumption we have the following;:

a') w' is a pseudocharacter,

b') w'(A?) =1, and

¢’) the pseudocharacter w’ takes nonnegative values on o-positive braids.

Therefore, repeating for w’ the chain of proofs in assertions 2) and 3) of Lemma 7.2,
Lemma 7.4, and Theorem 7.5 “word for word”, we see that for each braid 8 we have the
identity

Applying Theorem 7.5, we obtain w’ = w. (]

§89. TWIST NUMBER OF A CLOSED BRAID

9.1. Closed braids. Suppose L is an oriented link type in the oriented 3-sphere S® (or
in R?* = S\ {oo}). Suppose L € L is a representative of £, and A C S®\ L a curve
unknotted in S3.

The link L is called a closed braid with axis A if there is a fibration H = {Hy;0 €
[0,27]} of the open solid torus S3 \ A into meridional disks Hy such that L intersects
each disk Hy transversally. The number of points of intersection of L and Hy is called
the index of the closed braid L (it does not depend on the choice of 6). We shall use the
term “closed braid” to refer to an isotopy class of closed braids as well.

The standard “closing procedure” (see, e.g., [I]) transforms a braid 8 € B, into a
closed braid B of index n. It is well known that there is a one-to-one correspondence
between the conjugacy classes in the braid groups Bi, B, Bs, ... and the isotopy classes
of closed braids. For this reason, if § is a braid, then we denote by B both the conjugacy
class of 3 and the corresponding closed braid, which we identify with the conjugacy class.
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9.2. Definition. The twist number is a conjugacy invariant (since it is a pseudochar-

-~

acter), and thus the twist number of a closed braid is well defined: we put w(8) := w(f).

§10. SATELLITE BRAIDS

10.1. Definition. A closed braid B is a satellite of a closed braid @ if the index of
the braid @ is greater than 1 and there exist a collection of solid tori 7' C R?, a link
L CintT, and an axis A C R®\ T such that

e [ represents the closed braid B with respect to the axis A;

e the axes of the solid tori in 7' (oriented in accordance with the orientation of L)
represent the closed braid a with respect to the axis A; and

e each component of T' contains at least one component of L.

10.2. Theorem. Suppose a closed braid B is a satellite of a closed braid a. Then
w(f) =w(a).

Proof. Let A, L, and T be as in Definition 10.1. Obviously, we can assume without loss
of generality that L and T lie inside some closed solid torus V' C S®\ A, and that there
is a fibration H = {Hy;0 € [0,27]} of the solid torus V into meridional disks Hy such
that each of them transversally intersects the link L and Ehe collection of tori 9T

We denote by m and n the indices of the braids & and 3, respectively. Then each disk
Hy intersects T along m disks. We denote by D the disk Hy = Ha,, by D,, := D\ L the
disk with n punctures, and by D,, := D\ T the disk with m disks cut off. (Clearly, D,,
is homeomorphic to a disk with m punctures.)

The above description of the triples L C T C V and D,,, C D,, C D shows that there
is an autohomeomorphism ¢ : D — D identical on D and such that the following is
true (for the corresponding orientation of D):

e ¢(D,,) = D,, and the class of the autohomeomorphism ¢|p, corresponds to the
braid B;

e &(Dy,) = Dy, and the class of the autohomeomorphism ¢|p,, corresponds to the
braid a.

Choose a point g € 9D = 9D,, = 9D, and consider the groups 71 (D,,,xo) and
m1(Dp, o). Here, we use the construction and notation of §4.

Since each disk in D NT contains at least one point of D N L (this directly follows
from the definition of a satellite braid), the natural homomorphism

(2 7T1(Dm;330) - 7"'l(l)naCIjO)

is a monomorphism. We denote by ¢ (respectively, ¢2) the automorphism of 71 (D, o)
(respectively, w1 (Dy, o)) induced by the autohomeomorphism ¢|p , (respectively, ¢|p, ).
Furthermore, we obviously have

(10.2.1) ix 0 p1 = yoin.

Letting w1 € 71 (D, x0) and us € m1(Dy,, zp) be the distinguished elements, we denote
by <; and <5 the canonical orderings on 71 (D, zo) and 71 (D, ), respectively. Then,
obviously,

(10.2.2) in(u1) = uz,

and i, takes the ordering <; to <, (see the definition of the canonical ordering in §4),
ie.,

(10.2.3) Vo, w € 71 (D, x0) 1 v < w <= ir(v) <gir(w).
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Let vy € #1(Dpm, o) be any element, and let vy := i, (v1). From (10.2.1)—(10.2.3) it
follows that for any k£ € Z and s € N we have

ufvr <1 @3 (01) <= ix(uivr) <o ix(d7(01)) <= ufva <o P5(va).
Applying the formula of Proposition 4.3, we obtain
max{k €7 | u’fvl <4 (b‘i (’Ul)}

(@ = w(@lp,]) = lim i
=t DR € B s %2 G300} 191, 1) = () 0

10.3. Remark. Since each split braid is a satellite of a trivial braid of index 2, we can
regard Lemma 5.4 as a special case of Theorem 10.2.

§11. RATIONALITY
Our main purpose in this section is the proof of the following result.

11.1. Theorem. The twist number of any braid is rational. Moreover,
w(Byn) = Qpy, where Qp, = {g |peZ,n>qce N}.

The proof involves the Nielsen—Thurston classification of the surface automorphisms.
It reveals the relationship between the twist number and certain elements of the Nielsen—
Thurston theory. By using the constructions presented below, the twist number can
easily be described in the framework of this theory (cf. Menasco’s definitions [10]).

11.2. Nielsen—Thurston classification for braids. We recall the definitions of types
of braids in the Nielsen—Thurston classification.

In addition to the mapping class group MCG(D,,) defined above, we consider the
mapping class group

mcg(D,,) := Homeo (D,,)/ Homeoy(D,,),

where Homeo, (D,,) is the group of all orientation-preserving homeomorphisms of D,,,
while Homeog(D,,) is the normal subgroup consisting of all homeomorphisms isotopic to
the identity (cf. the definition of MCG(D,,)).

Thurston’s classification theorem states that each class h € mcg(D,,) belongs to one
of the following three types.

Periodic: The class h has finite order (i.e., h? = e for some ¢ € N).

Pseudo-Anosov: In this case, for the hyperbolic metric on D,, introduced above (see §2),
there is an autohomeomorphism ¢ € h and a pair of mutually transverse geodesic lam-
inations Ls and L, (stable and unstable) possessing certain properties and such that
Y(Ls) = Ls and ¥(L,,) = Ly, (see [16} [15]).

Reducible: The class h contains an autohomeomorphism preserving some closed one-
dimensional nonempty submanifold C' C D,,, no component of which is contractible to
a point or to 0D, and, furthermore, the components of C' are nonisotopic. In this
case, in each (possibly, disconnected) component of the surface D, \ C the induced
autohomeomorphism belongs either to the periodic, or to the pseudo-Anosov type.

It is well known that the natural embedding

Homeoy (D,,, 0D,,) — Homeo, (D,,)
induces an epimorphism
mc : B, = MCG(D,,) — mcg(Dy,).
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The kernel of mc is the infinite cyclic subgroup generated by the element A? € B,,.
We have the following exact sequence (cf. the first row of the commutative diagram in
Subsection 3.1):

0 —Z — B, — mcg(D,) — 1.

The type of a braid § is defined to be that of the class mc(3) € mcg(D,,).

11.3. Now we can pass to the proof of Theorem 11.1, which consists in verification of
two inclusions:

w(Bn) CQpy and  w(By,) D Qpy.
11.4. Assertion. We have w(B,) C Q.

Proof. Suppose 3 € B, is a braid and ¢ € MCG(D,,) is the corresponding mapping
class. By the Thurston theorem, 3 is of periodic, pseudo-Anosov, or reducible type. We
consider each case separately.

11.4.1. Periodic type. Suppose that § is a braid of periodic type, i.e., the element
me(f) € meg(D,,) is periodic, say, of order ¢ € N, which means that $? € ker mc. Since
ker mc is generated by A2, we have 39 = A% for some p € Z, whence by property 6.4.2’
it follows that w(8) = p/q € Q.

Now we analyze which values ¢ can take. By the Nielsen realization theorem, the class
mc(f) contains a periodic autohomeomorphism ¢ : D,, — D,, (i.e., ¥? = id). We denote
by D,, an n-point compactification of D,,, i.e., D,, is the unit disk D? with n distinguished
points. Then, obviously, ¥ extends to a periodic autohomeomorphism v : D,, — D,, of
order ¢ preserving the set of distinguished points.

By the Kerékjart6 theorem (see [4, @] [2]), each orientation-preserving periodic auto-
homeomorphism of the disk is conjugate to a Euclidean rotation. We do not consider
the “trivial” case where ¢ = 1: then mc(83) is a trivial element, and 1) is an identical
mapping. If ¢ > 2, then v has a fixed point O € D,, the “center of the rotation”.
Obviously, there are two possibilities:

i) none of the distinguished points coincides with O;

ii) O is one of the distinguished points.

The autohomeomorphism 1) acts on the set of distinguished points, splitting it into
orbits. Since 1 is conjugate to a rotation, in case i) each orbit consists of ¢ elements;
hence, ¢ divides n. In case ii), the orbit of O is a singleton, while each of the other orbits,
as before, consists of ¢ elements, so that ¢ divides n — 1. Thus, ¢ divides either n or
n — 1, whence w(f) = p/q € Q).

11.4.2. Pseudo-Anosov type. When considering this case, we use the notions and results
of the theory of geodesic laminations (see [16] [I5]), assuming that D,, is equipped with
a hyperbolic structure (see §2).

So, suppose that the braid g is pseudo-Anosov, i.e., mec(3) is a class of pseudo-Anosov
type. We denote by L one of two invariant laminations for the class mc(3). We recall that
L is a closed subset of D,, and is a union of disjoint simple geodesics. These geodesics
are the leaves of L, and the connected components of the set D,, \ L are the domains of
the lamination L. The leaves adjoining a certain domain are called the boundary leaves
of this domain.

Consider the domain of L containing the circle 9D,,; we denote this domain by U. It
is well known that the interior of U (i.e., the set U\ 0D,,) is isometric to the interior of a
certain crown. (A crown is a complete hyperbolic surface having finite area and geodesic
boundary and homeomorphic to the space (S! x [0,1]) \ V, where V is a finite subset
of the circle S x {1}.) As before, U denotes a universal covering space of D,,. We let
U™ C U be the connected component of the preimage of U in U that contains a geodesic
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T (see the notation in §§2 and 3). The restriction of the covering map U — D,, to U™ is
a universal covering of U, and the deck transformation O]y~ generates a cyclic group of
deck transformations of the latter. Factorizing the space clos(U"™), which is the closure
of U™ in U, by the orbits of the action ©, we obtain a crown with interior isometric to
the interior of U.

Claim. There exists an autohomeomorphism ¢ € g such that ¢(L) = L.
(We recall that g € MCG(D,,) is the mapping class corresponding to the braid f.)

Proof. By the Thurston theorem, the class mc(83) contains autohomeomorphisms pre-
serving L. Let ¢ € mc(g) satisfy ¢(L) = L. We observe that the lamination L does not
intersect some tubular neighborhood A of the boundary 9D, so that L C D, \ A.
Obviously, there is an autohomeomorphism ¢ € g with ¢|p \a = ¥|p,\a, whence

o(L) = (L) = L. 0

In what follows, we fix such an autohomeomorphism ¢.

As in §2, we denote by ¢~ : U — U the lifting of ¢ that is identical on Z, and by ¢~
the extension of ¢~ to D.

‘We observe that ¢ preserves the domain U and cyclically permutes the boundary leaves
of U. (Also, it is easily seen that ¢~ (clos(U™)) = clos(U"™).) We denote by ¢ the number
of the boundary leaves in U. Then the autohomeomorphism ¢? preserves each of these
leaves (and, obviously, preserves their orientations). Let £ C L be a boundary leaf of the
domain U, and let ¢ C clos(U™) be one of the geodesics covering the leaf ¢ and lying
on the boundary of the component U™~. Then the geodesic ¢o := (¢™)9(¢1) C clos(U™)
also covers ¢. Hence, OF({1) = {2 for some p € Z. (Each geodesic in clos(U™) that
covers £ is mapped to ¢ by a certain deck transformation of the covering U~ — U,
while the element O]y~ generates the group of deck transformations of this covering.)
We denote by y € J any of the two limit points of ¢; on the absolute. By construction,
we have (¢~)%y = OPy, i.e., (2B))y = y + p. Since Q(B?) € Homeo, (St), it follows
that (Q(39))(y + z) = y + z + p for each integer z. Recalling the definition of the twist
number, we see that w(39) = p, and we have w() = p/q by property 6.4.2".

We show that the number ¢ of the boundary leaves of U is at most n — 2. It is well
known that the hyperbolic area of a disk with n punctures equals 27(n—1) (we recall that
D,, is equipped with a hyperbolic metric such that the boundary 0D, is geodesic and
the punctures are cusps; see Subsection 2.1). The area of the crown U with ¢ “prongs”
equals g. Each puncture is contained in a certain domain of the lamination L, different
from U (U already contains the boundary, and so cannot contain any punctures), and it
is known that each domain contains at most one puncture. The area of any domain is
at least 7, and the number of punctures is n; thus, the sum of the areas of the domains
containing the punctures is at least nw. Therefore, gr+nm < 2(n—1)7, whence ¢ < n—2.

Thus, in the pseudo-Anosov case we have w(f) = p/q € Q2] C Qpyy-

11.4.3. Reducible type. This case reduces to the two previous ones, because each reducible
braid is a satellite of a certain pseudo-Anosov or periodic braid.

Indeed, suppose that (§ is reducible and C' C D, is a nonempty one-dimensional
submanifold satisfying the requirements of the definition of a reducible class. (See Sub-
section 11.2: none of the components of C' is contractible either to a point or to dD,,; C
is preserved by a certain autohomeomorphism in the class me(3); and on each (possibly,
disconnected) component of the cut surface D,, \ C the induced autohomeomorphism
belongs either to the periodic or to the pseudo-Anosov type.)

We denote by M the component of D,, \ C containing dD,,. The surface M is home-
omorphic to a disk with m punctures, because M is obtained from the punctured disk
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D,, by cutting out several closed disks. Furthermore, we have m < n, because each of
the cut-out disks contains at least two punctures of the disk D,,.

Arguing as in the pseudo-Anosov case, we see that there is an autohomeomorphism
¢ € g such that ¢(C) = C. Since ¢(0D,,) = 0Dy, we have ¢(M) = M, so that the class
[¢|a] € MCG(M) = MCG(D,,,) is well defined.

A similar situation was considered in the proof of Theorem 10.2, where it was shown
that under the given assumptions we have w(3) = w([¢|r]). (The arguments used in that
proof also imply that the braid B is a satellite of the braid a corresponding to the class of
the autohomeomorphism ¢|,s.) Since the autohomeomorphism ¢|,s is of pseudo-Anosov
or periodic type, Subsections 11.4.1 and 11.4.2 imply that w([¢|r]) € Q. Therefore,
w(B) € Q) C Qpuy- O

11.5. Remark. A more careful analysis shows that for a reducible braid 8 € B, (as
well as for a pseudo-Anosov one) we have w() € Qp,—g).
Indeed, in the notation of Subsection 11.4.3 we have the following: if m < n — 2, then

w(B) = w([¢lm]) € Qp) € Qpu—2y;
and if m =n — 1 and [¢|p] is a class of pseudo-Anosov type, then the arguments used
in Subsection 11.4.2 imply that

w(B) = w([Plr]) € Q-2 C Qpn—3)-
It remains to consider the case where m = n — 1 and the class [¢]p] is of periodic type.
In this case, the condition m = n — 1 implies that the ¢-invariant submanifold C' C D,,
consists of one component (the interior of which contains precisely two punctures of D, ).
This means that ¢ preserves the only component of C, i.e., [¢|as] preserves the puncture
of M corresponding to the curve C'. We use the arguments presented in Subsection 11.4.1.
Since the autohomeomorphisms in the class [¢|as] preserve one of the punctures, [¢|a]
falls into case ii). Therefore, the order of the element mc([¢p|p]) € meg(M) = meg(D,y,)
divides m — 1, i.e.,

w(B) = w([Plrr]) € Q1] = Qpn—a-
11.6. Assertion. We have w(B,) D Q-
Proof. We use the following standard designation:

6 :=0109 - 0Opn_1 € By.
As we know, 6" = A2. For m < n, we define
Pn,m ‘= 00p—_1 - “Om410m € By.

(Here, pp,n =96.)
We shall show that for any k € Z and any m € {1,...,n} we have
k
w(pﬁ,m) = E
By property 6.4.2’; for fixed m (and n) it suffices to prove the above relation for some

nonzero value of k. For example, it suffices to prove one of the following two relations:
1
(pnm) = — and w(pl,) = L.
m
In the case where m = n, the relation w(py; ,) = 1 follows from the familiar relation

A% = §"(= ppr ) and Lemma 5.1.
In the case where m = n — 1, the obvious relation 0;0 = do;_1 (for i € {2,...,n—1})
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implies that
pz;},l = ((5(7”,1)"_1 = 57L—10_10_2 I o = A27

whence w(p) 1) = w(A?) = 1.

In the case where m < n — 2, the closed braid p,, ,, is a satellite of the closed braid
Pm+1,m C Bmy1. (This is easy to check if we observe that the class of autohomeomor-
phisms of D,, corresponding to the braid p,, »,, preserves the class of a simple curve without
inflection points and with interior containing the punctures with numbers m 4+ 1,...,n
(see Subsection 1.3): “gluing together” the strands of the closed braid p;, ,, correspond-
ing to these punctures into one strand, we obtain a closed braid pp,+1.m.) By Theorem
10.2 and the case (considered above) where m = n—1 (i.e., n = m+ 1), this implies that
w(pn,m) = w(pmi1,m) = 1/m.

Thus, we have

w(By) D {w(pﬁ’m) |keZ,me{l,...,n}}
= {% |kzeZ,me{1,...,n}}

Theorem 11.1 is proved. O

def

= Q-

§12. COMPUTATION OF THE TWIST NUMBER

In practice, the twist number of a braid can be computed, for example, with the help of
the known algorithms for comparison of braids in Dehornoy’s ordering (see, e.g., [5 [12]).
Indeed, these algorithms allow us to compute the Dehornoy floor in the braid group. The
following proposition shows that this suffices for finding the twist number of any braid.

12.1. Proposition. For each 8 € B, and N > n? —n, we have

[8Y]5 [BY]p +1
N’ N

{w(@)} = N Q-

(Here [-,-] C R is a closed interval of the real line.)

Proof. We define z := [3Y],. By Lemma 7.4, w(3") € [2, 2+ 1]. Since the twist number
is a pseudocharacter, we have w(3) = w(B8")/N. Thus, w(3) € [z/N, (2 +1)/N]. On the
other hand, w(3) € Qp, by Theorem 11.1. However, the interval [z/N, (z 4 1)/N] has
length 1/N < 1/(n® — n), so that it contains at most one number in Qp,j, which means
that this number is w(3). O

§13. ESTIMATES FOR THE TWIST NUMBER

Our aim in this section is the proof of the following assertion.

13.1. Proposition. 1) Suppose a braid 3 € B, is represented by a word W containing
precisely v occurrences of the generator o; and s occurrences of the generator o, Y for
somei€{l,...,n—1}. Then

—s<w(B) <r.

2) Suppose, moreover, that n >4 and i # 1,n — 1. Then

—% <w(B) <

N3
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13.2. Remarks. 1. In the course of the proof of Theorem 6.3, we established (for n > 2)
that w(p?0,_1) = 1, where p? is a braid written in the generators oy,...,0,_2. Thus,
the braid (p?0,,_1)" with twist number r is represented by a word containing precisely r
occurrences of the generator o,_1. This means that for n > 2 the estimate of assertion 1)
of Proposition 13.1 is sharp in the case where i = n — 1, and hence also in the case where
i=1.
2. In the proof of Assertion 11.6, we established that the twist number of the braid
Pn,l = 0102 0p_20,_10p_10p_2" - 0201 € By

is equal to 1. Thus, the braid p;, ; with twist number r is represented by a word containing
precisely 2r occurrences of the generator o; for each i € {1,...,n — 1}. This means that

the estimate of assertion 2) of Proposition 13.1 is sharp.
For the proof of assertion 1) of Proposition 13.1, we need the following result.

13.3. Lemma. For any (1,02 € B, and anyi € {1,...,n— 1}, we have
w(B10if2) < w(B1PB2) + 1.

Proof. This is obvious for n = 2. For n > 2, the braid o; € B,, is split, and by Lemma
5.4 we have w(o;) = 0. Since the twist number is a conjugacy invariant (property 6.4.3),
and since its defect is 1 (property 6.4.1), we obtain

w(Bioif2) = w(B2fr0:) < w(B2f1) +w(oi) +1=w(B1B2) +0+ 1. 0
Proof of assertion 1) of Proposition 13.1. This follows from Corollary 5.5 and Lemma
13.3. ([l

Proof of assertion 2) of Proposition 13.1. We prove the inequality w(3) < r/2. (The
inequality —s/2 < w(/3) is proved in a similar way.)

We need some notation. Let W denote a word representing the given braid 8 and
containing precisely r occurrences of the generator ;. We denote by V' the word in
the generators o1,...,0,_1 that is obtained from W by deleting all occurrences of the
generators o Lo O’;_ll. (Like W, the word V' contains precisely r occurrences of o;.)
Let a € By, be the braid represented by V. Lemma 5.2 implies that w(8) < w(a).

We use induction on the index n of the braid 3. (The base step here is the case where
n=4.)

Suppose n = 4 (in this case, we have ¢ = 2). We denote by U the word obtained
from V by replacing each occurrence of the letter o2 in V' by the word 10903010201
(representing the braid A € By). Let v € By be the braid represented by U. Then
w(a) < w(y) by Lemma 5.2. Since in the group By we have the relations 01A = Aog
and o3A = Aoy, and the generators o7 and o3 commute, it follows that v = A"o{ 0o}
for some z,y € Z. Obviously, the braid A"c{cl € By is a satellite of the braid o] € Ba,
whence w(y) = w(o]) = r/2 by Theorem 10.2. Thus, for n = 4 we have

w(B) < wla) S wly) = wlo}) = 7.

Suppose n > 5. Without loss of generality, we can assume that i < n — 3. (Indeed, in
the case where i = n— 3 we consider the braid AaA™!.) We denote by X the braid word
obtained by substituting the word o, _s0,_10,_10,_2 for each letter o,_1 or o,_5 in
the braid word V. Let oy € B,, be the braid represented by X. Then Lemma 5.2 implies
that w(a) < w(ay). We denote by Y the braid word obtained from X by substituting
the word o,,_o0,_o for each subword o,,_20,_10,-10n—2 in X. Let as € B,,_1 be the
(n — 1)-strand braid represented by Y. We observe that, by construction, Y is a word in
the generators o1,...,0,_2, and it contains exactly r entries of the letter o;. Hence, by
the induction hypothesis, we have w(ag) < r/2. At the same time, it is easily seen that
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the braid o is a satellite of the braid aa. Then, by Theorem 10.2, we have w(ay) = w(az),
so that

w(B) <wl(a) w(ar) =w(az) < O

l\DIﬁ

§14. TRANSFORMATIONS OF CLOSED BRAIDS AND MENASCO’S CONJECTURES

A transformation of a closed braid & is a transition from & to a braid 3 that represents
the same link as &. Important results of the theory of braids and links are related to the
transformations of stabilization and destabilization introduced by Markov, as well as to
“exchange move” and “flype” defined by Birman and Menasco (see the definitions below).
While stabilization can always be performed, the other transformations mentioned above
are not applicable to each braid. No algorithm determining whether or not one of these
transformations is applicable to a given closed braid has been found up to now.

Using the Nielsen—Thurston classification of automorphisms of surfaces, Menasco [10]
defined certain characteristics of periodic and pseudo-Anosov braids, and in terms of these
characteristics he stated four conjectures concerning the applicability of destabilization,
exchange move, and flype to a closed braid. It turns out that for braids of both types
indicated above, Menasco’s characteristics coincide with the twist number of a braid (see
the definitions in [10] and §11 above).

In Theorem 14.2, in terms of the twist number we establish restrictions on the possibil-
ity of applying destabilization, exchange move, and flype to closed braids. Theorem 14.2
implies the validity of all four conjectures, and some of them in a stronger form (with
the exception of the conjecture on periodic braids in the part concerning flype: as shown
n [11]], this part is not true).

14.1. Definitions.

14.1.1. Destabilization We say that a closed braid & C B,,_1 of index n — 1 is obtained
from a closed brald ﬂ C B, of index n by destabilization if there is a braid v € @ such
that vo,_ 1650r70 166

B30t —yeca.

Thus, B admits destabilization if B contains a braid that can be written with only one
(in total) occurrence of the generators o,,_; and o',

14.1.2. Exchange move. Suppose a, B C B, are two closed braids of index n. We say
that a is obtamed from ﬂ by an e:vchange move if there are v1,7, € B,—1 C B, such
that y10,— 1’720'n 1 € ﬁ and 10, - 1720n 1 €a:

33710 1720, 11— 710, 172051 € @.

Thus, a closed braid E admits an exchange move if E contains a braid word of the form

Uon_1Vol,, where U and V are words in the generators alﬂ, . ,afb.

n—1>
14.1.3. Flype. Since the algebraic definition of flype is rather awkward, we define only the
admissibility of this transformation. (See [I3] for the - consistency of this definition. ) We

say that a closed brald ﬁ of index n admits a flype if ﬁ contains a braid word of the form
Uop_1Vor! Wo, |, where U and V are words in the generators o', ... ,021,. The
above definitions and assertion 1) of Proposition 13.1 immediately imply the following

result.
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14.2. Theorem. Suppose 3 € B,,.
1) If |w(B)| > 1, then the closed braid B admits neither destabilization, nor exchange

move.
2) If |w(B)| > 2, then the closed braid B does not admit a flype. O

14.3. Remarks. 1. The restrictions on the admissibility of transformations that are
provided by Theorem 14.2 can be somewhat refined in terms of orderings on the braid
group (see [I3, Theorem 5.1]).

2. In terms of the twist number, we can also obtain restrictions on other transfor-
mations of closed braids. (We do not present these restrictions here; they automatically
follow from the proved properties of the twist number and the results of [13].)

§15. THE TWIST NUMBER AND LINKS

Closed braids representing the same link may have different twist numbers, so that
the twist number is not an invariant of a link. Nevertheless, the twist number of a braid
provides some information on the corresponding link. For example, in Theorem 15.3
below, in terms of the twist number we establish sufficient conditions of primality of the
link represented by a braid.

15.1. We recall some notions of link theory. A link L C S3 is trivial if there is a sphere
S2 C 83 such that L € S2. A link L C S® is split if there is a sphere S% C S3\ L that
does not bound a ball (in S3\ L). A link L C S® is composite if there is a sphere S? C S3
that intersects the link L at two points and splits it into two links (“tangles”) such that
none of them is an unknotted arc. A link is prime if it is not either composite, or split,
or trivial. R

We denote by £() an oriented link represented by a braid §.

15.2. Proposition [13]. Suppose § € B,,, where n > 2, and suppose that the link L()
is not prime. Then the closed braid B admits an exchange move.

Combining this with Theorem 14.2, we obtain the following (the case where n =2 is
trivial).

15.3. Theorem. Suppose 3 € B,,. If |w(B)| > 1, then L(B) is a prime (i.e., noncom-
posite, nonsplit, and nontrivial) link.

15.4. Remark. Sufficient conditions of primality for a link that are given by Theorem
15.3 can be refined somewhat in terms of orderings on the braid group (see [I3, Theorem
6.2]).
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