
Algebra i analiz St. Petersburg Math. J.
Tom. 16 (2004), vyp. 5 Vol. 16 (2005), No. 5, Pages 791–813

S 1061-0022(05)00879-4
Article electronically published on September 21, 2005

TWIST NUMBER OF (CLOSED) BRAIDS

A. V. MALYUTIN

Abstract. A real-valued invariant of (closed) braids, called the twist number, is
introduced and studied. This invariant is effectively computable and has clear geo-
metric sense.

As a functional on the braid group, the twist number is a pseudocharacter (i.e.,
a function that is “almost” a homomorphism). It is closely related to Dehornoy’s
ordering (and to all Thurston-type orderings) on the braid group. In special cases,
the twist number coincides with some characteristics introduced by William Menasco.

In terms of the twist number, restrictions are established on the applicability of the
Markov destabilization and Birman–Menasco moves on closed braids. These restric-
tions were conjectured by Menasco (Kirby’s problem book, 1997). As a consequence,
conditions for primality of the link represented by a braid are obtained.

The results were partially announced in an earlier paper.

Introduction

In this paper we introduce a new real-valued invariant on the braid group Bn. We
call this invariant the twist number and denote it by ω:

ω : Bn → R.

The choice of the term “twist number” is motivated by the fact that, in a sense, the
invariant ω characterizes how much a braid is “twisted” or “wound” from its exterior.
For example, the twist number of any split braid is equal to 0. (Indeed, in a sense, it
is natural to regard a split braid as “nontwisted”.) The twist number of the full twist
equals 1 (ω(∆2) = 1); furthermore, for each β ∈ Bn we have ω(β∆2) = ω(β) + 1.

The function ω : Bn → R is a pseudocharacter (see the definitions in §6). In particular,
for any β1, β2 ∈ Bn we have the inequality

|ω(β1β2) − ω(β1) − ω(β2)| ≤ 1.

The restriction of the twist number to any Abelian subgroup of Bn is a homomorphism.
For instance, for any β ∈ Bn and any k ∈ Z we have ω(βk) = kω(β).

It is well known that there is a one-to-one correspondence between the conjugacy
classes in braid groups and the isotopy classes of closed braids. Like any other pseu-
docharacter, the twist number is a conjugacy invariant. Hence, the twist number of a
closed braid is well defined: ω(β̂) := ω(β).

The twist number is closely related to Thurston-type orderings on the braid group,
including Dehornoy’s vastly known ordering (see the definitions in [5]). In §7, we establish
some relations between the twist number and Dehornoy’s ordering. (The same relations
are valid for the twist number and any other Thurston-type ordering.) In particular,
we deduce a formula expressing the twist number in terms of the ordering (see Theorem
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7.5). We also describe a method of computation of the twist number for a given braid,
which involves algorithms of comparisons of braids in Dehornoy’s ordering.

The twist number is a real-valued invariant. Moreover, we show that it is rational-
valued (Theorem 11.1). The proof of this result (see §11) involves the Nielsen–Thurston
classification of surface automorphisms.

The twist number can be defined in terms of the Nielsen–Thurston theory. Using
this theory, Menasco [10] defined some characteristics for braids of periodic and pseudo-
Anosov types. In terms of those characteristics, Menasco formulated four conjectures
concerning the admissibility of the Markov destabilization, and also of exchange move
and flype (two braid moves introduced by Birman and Menasco) for a closed braid.
It turns out that, for both types of braids (periodic and pseudo-Anosov), Menasco’s
characteristics are equal to the twist number (see the definitions in [10] and in §11 below).
Theorem 14.2 below confirms all four conjectures, and some of them in a stronger form
(with the exception of the conjecture on periodic braids in the part concerning the flype:
this part was disproved in [11]).

In a natural way, the notion of the twist number (as well as some other methods and
results of the present paper) can be generalized to the case of the mapping class group
of any surface with nonempty boundary (we recall that the braid group is isomorphic to
the mapping class group of a punctured disk). The case of a punctured disk (i.e., the
“usual” braid group) is of most interest for us because the twist number on the braid
group is applicable in the theory of knots in R3.

By the Alexander theorem, each link type in R3 can be represented by a closed braid.
Closed braids representing the same link may have different twist numbers, so that the
twist number is not an invariant of a link. Nevertheless, the twist number of a braid
provides some information on the corresponding link. For example, the link represented
by a closed braid β̂ is prime whenever |ω(β̂)| > 1 (Theorem 15.3).

Structure of the paper. §1 contains the definitions of the braid group Bn and of the
mapping class group of a punctured disk.

§2 is devoted to the study of the natural action of the braid group on the real line; we
call this the Nielsen–Thurston action.

In §3, we define the twist number in terms of the Nielsen–Thurston action and the
translation number. It should be noted that the twist number can be defined in several
essentially different ways. The definition in §3 is somewhat bulky, but we use it as a basic
one for the convenience of proofs. The reader can formulate more compact definitions of
the twist number on the basis of Theorem 7.5, or of the uniqueness theorem (Theorem
8.1).

In §4, we deduce auxiliary “formulas” describing the twist number in terms of the
action of the braid group on the free group, which is known as the Artin action.

In §5, we prove the basic properties of the twist number.
In §6, we recall the definition of a pseudocharacter and show that the twist number

on the braid group is a pseudocharacter. We also formulate the corresponding properties
of the twist number and find its defect.

In §7, the definition of Dehornoy’s ordering is presented, and some relations between
this ordering and the twist number are proved. Theorem 7.5 expresses the twist number
in terms of this ordering.

In §8, we prove the uniqueness theorem, which contains a list of properties of the twist
number that determines it uniquely.

In §9, we recall the definition of a closed braid and introduce the notion of the twist
number of a closed braid.
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In §10, we introduce the notion of a satellite braid and show that the twist number of
a braid coincides with that of any of its satellites.

In §11, we use the Nielsen–Thurston classification of the automorphisms of surfaces in
order to prove that the twist number of any braid is a rational number (Theorem 11.1).

In §12, we describe a method for computation of the twist number.
In §13, we estimate the twist number of a braid by the number of occurrences of a

generator in the corresponding braid word. One of these estimates is used in the proof
of Theorem 14.2.

§14 is devoted to transformations of closed braids. Here, we present the definitions of
destabilization, exchange move, and flype. In Theorem 14.2, in terms of the twist number,
we establish restrictions on the possibility of performing the above transformations.

In §15, sufficient conditions of primality of a link represented by a braid are given in
terms of the twist number (Theorem 15.3).

§1. Braid group

1.1. Braid group. The Artin braid group Bn on n strands is defined by the presentation

Bn := 〈σ1, . . . , σn−1 | σiσj = σjσi, |i − j| ≥ 2; σiσi+1σi = σi+1σiσi+1〉.
The group B1 is trivial, while B2

∼= Z. The elements of Bn are called braids. The
generators σ±1

1 , . . . , σ±1
n−1 are Artin’s generators. Further on, by a braid word we mean a

word in Artin’s generators.
The braid

∆ := (σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)(σ1) ∈ Bn

is called the fundamental braid. The braid ∆2 ∈ Bn generates the center of the group
Bn whenever n > 2. (The center of Bn is an infinite cyclic group.)

1.2. The mapping class group of the punctured disk. We denote by D2 the closed
unit disk with center 0 in the complex plane C, and we denote by Dn the disk D2 from
which n distinct points on the real interval (−1; 1) are removed.

The mapping class group of Dn is the group

MCG(Dn) := Homeo+(Dn, ∂Dn)/ Homeo0(Dn, ∂Dn),

where Homeo+(Dn, ∂Dn) is the group consisting of all orientation-preserving homeo-
morphisms of Dn that fix ∂Dn pointwise, and Homeo0(Dn, ∂Dn) is the normal subgroup
consisting of all homeomorphisms isotopic to the identity rel ∂Dn.

1.3. Isomorphism Bn
∼= MCG(Dn). It is well known that Bn is isomorphic to

MCG(Dn) (see, e.g., [1]). The canonical isomorphism Bn
∼= MCG(Dn) can be con-

structed as follows: we enumerate the punctures by 1, . . . , n from left to right. After
that, the generator σi ∈ Bn is associated with the class in MCG(Dn) of the autohomeo-
morphism that exchanges the punctures i and i + 1 by “rotating” them clockwise in the
simplest possible way (this is a Dehn half-twist).

§2. Nielsen–Thurston representation

In this section, we describe a natural action of the group Bn
∼= MCG(Dn) on the real

line by order-preserving autohomeomorphisms, i.e., a homomorphism

Ω : Bn
∼= MCG(Dn) → Homeo+(R) .

We call this homomorphism the Nielsen–Thurston representation or the Nielsen–
Thurston action. We use this action to define the twist number of a braid (see §3).
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The description of the Nielsen–Thurston action in the general case of a mapping class
group of any surface with nonempty boundary can be found in [14, 7].

2.1. Compactification of the universal covering space and the hyperbolic
structure. To describe the Nielsen–Thurston action, we need the following construction.
Let Dn denote the disk with n punctures, and let U be a universal covering space of Dn.
It is well known that Dn can be equipped with a hyperbolic metric (provided n ≥ 2) in
which the circle ∂Dn is a geodesic and the punctures are cusps. This metric on Dn lifts to
a hyperbolic metric on U . Being simply connected, U can be isometrically embedded in
the hyperbolic plane H2, and we identify U with a subset of H2. The boundary of U ⊂ H2

(it is the inverse image of ∂Dn) is a union of disjoint geodesics in H2, and H2\U is a union
of disjoint open half-planes. (In particular, it follows that U is a convex subset in H2.)
We denote by H

2
the standard compactification of the hyperbolic plane, i.e., the closed

disk obtained from H2 by adding a circle at infinity (absolute). Let D be the closure of
U in H

2
, i.e., a compactification of the space U . Since U is convex, D is homeomorphic

to a closed disk. Here, we have D ∩ H2 = U , and the set K := D \ U = D ∩ ∂H
2

of the
limit points of U is a Cantor set on the absolute.

2.2. Remark. We observe that the resulting compactification D has the following
property: the boundary ∂U of the universal covering is dense in ∂D. It can be proved
that this compactification is “canonical” (in particular, it does not depend on the choice of
a hyperbolic structure) in the following sense. Suppose D′ is a closed disk and f : U → D′

is an embedding such that f(int(U)) = int(D′) and the set f(∂U) is dense in ∂D′. Then
f is uniquely extended to a homeomorphism between D and D′. This property implies
that each autohomeomorphism of U is uniquely extended to an autohomeomorphism of
the entire disk D. In particular, each lifting of any autohomeomorphism of the punctured
disk Dn is uniquely extended to an autohomeomorphism of D. The latter fact, which
is involved in the construction of the Nielsen–Thurston representation, is proved in a
standard way with the help of the methods of hyperbolic geometry (see, e.g., [3]).

2.3. Notation. Suppose A is a topological space, f : A → A is an autohomeomor-
phism of A, and B ⊂ A is a subspace such that f(B) = B. We denote by f |B the
autohomeomorphism of B obtained by restricting f :

f |B : B → B, f |B(x) = f(x).

2.4. The Nielsen–Thurston action. Now we pass to a description of the Nielsen–
Thurston action.

We let I ⊂ ∂U be one of the geodesics in ∂U , i.e., a connected component of the
preimage of the circle ∂Dn. Any autohomeomorphism φ : Dn → Dn identical on the
boundary has a unique lifting φ∼ : U → U identical on I, and we obtain a homomorphism

Homeo+(Dn, ∂Dn) → Homeo+(U), φ 
→ φ∼.

The autohomeomorphism φ∼ is uniquely extended to an autohomeomorphism φ� of
the disk D. (The proof is standard; see, e.g., [3].)

Next, we observe that the autohomeomorphism φ�|∂D is completely determined by
the class [φ] ∈ MCG(Dn). Indeed, we easily check that for each autohomeomorphism
ψ ∈ Homeo0(Dn, ∂Dn) the autohomeomorphism ψ∼|∂U is an identity, and since the set
∂U is dense in ∂D, the autohomeomorphism ψ�|∂D is also an identity.

Thus, we have defined a homomorphism

Ω◦ : MCG(Dn) → Homeo+(∂D), [φ] 
→ φ�|∂D.
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The geodesic I is an arc of the circle ∂D. We denote by J the set ∂D \ I, which
is homeomorphic to an open interval. Since the action Ω◦ is identical on I and on the
closure I, we arrive at an action of the group MCG(Dn) on J : it is the homomorphism

Ω : MCG(Dn) → Homeo+(J ), [φ] 
→ φ�|J .

It can be shown that the action obtained is faithful (i.e., Ω is a monomorphism).

2.5. Remark. When considering the action Ω, it is convenient to fix a hyperbolic metric
on Dn; however, actually, Ω does not depend on the choice of the metric. Moreover, this
action can be described in nonhyperbolic terms, for example, in terms of ordered sets: we
observe that the subset ∂U of the circle ∂D is cyclically ordered in a natural way, while the
set ∂U\I is linearly ordered. It is not hard to prove that these two orders (the cyclic order
on ∂U and the linear order on ∂U \ I) do not depend on the hyperbolic structure. The
interval J can be defined as the Dedekind completion of the linearly ordered set ∂U \ I.
For each autohomeomorphism φ ∈ Homeo+(Dn, ∂Dn), the autohomeomorphism φ∼|∂U\I
(which, obviously, is completely determined by the class [φ] ∈ MCG(Dn)) preserves the
linear order on ∂U \ I and, therefore, is uniquely extended to an order automorphism
of the Dedekind completion J . Such extensions to the Dedekind completion yield the
homomorphism Ω : MCG(Dn) → Homeo+(J ).

§3. Definition of the twist number

The definition of the twist number given below is based upon the notions of the
Nielsen–Thurston action and the translation number. We use the construction and defi-
nitions of the preceding section.

3.1. The basic definition is outlined like this: using the Nielsen–Thurston representation,
we obtain a representation

Ω̃ : Bn
∼= MCG(Dn) → Hõmeo+(S1),

where Hõmeo+(S1) ⊂ Homeo+(R) is the group of all autohomeomorphisms of the real
line that commute with the integral translations (see Subsection 3.2).

Then we define the twist number on the group Bn
∼= MCG(Dn) as the composition

ω := τ ◦ Ω̃ : Bn
∼= MCG(Dn) → R,

where τ : Hõmeo+(S1) → R is the translation number (see Subsection 3.5).
The following commutative diagram, where the rows are exact sequences, clarifies our

construction. (The definitions of the objects involved are given in Subsections 3.2 and
3.3.)

Bn∥∥∥
0 −−−−→ Z −−−−→ MCG(Dn) −−−−→ Bn/〈∆2〉 −−−−→ 1∥∥∥ ⏐⏐�Ω̃

⏐⏐�
0 −−−−→ Z −−−−→ Hõmeo+(S1) −−−−→ Homeo+(S1) −−−−→ 1∥∥∥ ⏐⏐�τ

⏐⏐�ρ

0 −−−−→ Z −−−−→ R −−−−→ S1 −−−−→ 1
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3.2. The group Hõmeo+(S1). We denote by Hõmeo+(S1) the group of all autohomeo-
morphisms of the real line that commute with the translation t1 through 1: a 
→ a + 1,
i.e., g ∈ Hõmeo+(S1) if and only if g(a + 1) = g(a) + 1 for all a ∈ R.

3.3. Homomorphism Ω̃ : MCG(Dn) → Hõmeo+(S1). Observe that each homeomor-
phism i : J → R of the interval J onto the real line induces an isomorphism

i∗ : Homeo+(J ) → Homeo+(R), t 
→ i ◦ t ◦ i−1,

and the corresponding action

Ωi := i∗ ◦ Ω : MCG(Dn) → Homeo+(R)

of the group MCG(Dn) on R.
It turns out that for a certain choice of i the image of the homomorphism Ωi lies in

the group Hõmeo+(S1).
Consider the orientation-preserving isometry of H2 that shifts I in the positive direc-

tion (that is, the direction induced by the clockwise direction on ∂Dn) through a distance
equal to the length of the circle ∂Dn (in the fixed hyperbolic metric). We denote by Θ the
extension of this isometry to H

2
. Clearly, the restriction Θ|U is a deck transformation.

The homeomorphism Θ maps U onto U , D onto D, I onto I, and, hence, J (= ∂D \ I)
onto J . This means that the restriction Θ|J : J → J is an autohomeomorphism.

Claim 1. There is a homeomorphism i : J → R such that i∗(Θ|J ) = t1.

Proof. Indeed, since Θ|U is an isometry of hyperbolic type, Θ|U has exactly two fixed
points in H

2
, which lie in the set I ∩ J . It follows that the autohomeomorphism Θ|J

has no fixed points. Consequently, the quotient space J /Θ|J , which consists of the
orbits of the action of Θ|J on J , is a circle. We regard the interval J as the universal
covering space of the circle, and Θ|J as a deck transformation. Similarly, the translation
t1 through 1 has no fixed points in R, the quotient space R/t1 is the unit circle S1

with universal covering space R, and t1 is a deck transformation. We fix an arbitrary
homeomorphism between the circles J /Θ|J and R/t1 and lift it to a homeomorphism
i : J → R. Obviously, the map i∗ takes the autohomeomorphism Θ|J either to t1
(then i is the required homeomorphism) or to t−1

1 , and then the imposed requirements
are fulfilled, for example, for the homeomorphism s ◦ i, where s is the automorphism
R → R : a 
→ −a. �

Now, let j : J → R be a homeomorphism such that j∗(Θ|J ) = t1. Consider the
homeomorphism

Ω̃ := Ωj = j∗ ◦ Ω : MCG(Dn) → Homeo+(R) .

Claim 2. We have Im Ω̃ ⊂ Hõmeo+(S1).

Proof. Obviously, the deck transformation Θ|U commutes with the liftings of the auto-
homeomorphisms of Dn identical on I. Hence, for each φ ∈ Homeo+(Dn, ∂Dn), the
autohomeomorphism φ� commutes with Θ|D. Consequently, for each g ∈ MCG(Dn)
the autohomeomorphism Ω(g) : J → J commutes with the autohomeomorphism Θ|J :
J → J . In other notation, an element Ω̃(g) commutes with the translation through
1, t1 = j∗(Θ|J ). This precisely means that the image of the homomorphism Ω̃ lies in
Hõmeo+(S1). �

Thus, we have constructed a homomorphism

Ω̃ : MCG(Dn) → Hõmeo+(S1) .
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3.4. Remark. The choice of the homeomorphism j : J → R in the above construc-
tion allows some flexibility. It can be shown that in the framework of the construc-
tion, the homomorphism Ω̃ = Ωj is determined up to conjugation by an element in
Hõmeo+(S1). Namely, if j′ : J → R is a homeomorphism such that j′∗(Θ|J ) = t1, then
j′ ◦ j−1 ∈ Hõmeo+(S1) and Ωj′(g) = h(Ωj(g))h−1, where h = j′ ◦ j−1. Conversely, if
h ∈ Hõmeo+(S1), then the homeomorphism h◦j : J → R takes the autohomeomorphism
Θ|J to the translation through 1, whence Im Ωh◦j ⊂ Hõmeo+(S1). Furthermore, for each
g ∈ MCG(Dn) we have Ωh◦j(g) = h(Ωj(g))h−1.

3.5. Poincaré invariants: the translation number. It is well known that for any
f̃ ∈ Hõmeo+(S1) and a ∈ R there exists a finite limit

τ (f̃) := lim
s→∞

f̃s(a) − a

s
= lim

s→∞

f̃s(a)
s

.

Furthermore, for a given f̃ this limit does not depend on the choice of a (see, e.g., [7]).
The number τ (f̃) is called the translation number of the autohomeomorphism f̃ .

Usually, the translation number is considered together with the rotation number (the
latter taking values in S1 = R/Z). The rotation number of an autohomeomorphism
f ∈ Homeo+(S1) is defined as ρ(f) := τ (f̃) mod Z, where f̃ ∈ Hõmeo+(S1) is a lifting
of f .

The properties of the Poincaré invariants are well known (see, e.g., [7]).

3.6. Definition. We define the twist number ω on the group Bn
∼= MCG(Dn) as the

composition
ω := τ ◦ Ω̃ : Bn → R,

where Ω̃ is the homomorphism described above and τ is the translation number.
Thus, the twist number ω(β) of a braid β with the corresponding mapping class

g ∈ MCG(Dn) is defined as follows (here y ∈ R is arbitrary):

ω(β) := ω(g) := τ (Ω̃(g)) = lim
s→∞

(Ω̃(g))s(y)
s

.

3.7. The consistency of the definition. The constructions preceding the definition
admit some flexibility in the choice of a hyperbolic metric on Dn, of the arc I, and
of the homeomorphism transforming Θ|J into a unit shift. However, the object to be
defined, i.e., the twist number, does not depend on this arbitrariness. This fact can be
proved “directly”, by using the assertions formulated in Remarks 2.2, 2.5, and 3.4, but
we can avoid doing this here because below we show that the above definition implies
some properties of the twist number that determine it uniquely (see Theorem 8.1) and
are formulated in braid group terms. (Thus, these properties are invariant under the
choice of the ingredients mentioned above.)

3.8. Remark. The constructions presented above for the punctured disk can be imple-
mented without essential changes in the case of any surface M with nonempty boundary.
In particular, let MCG(M) be the group of isotopy classes of automorphisms fixing
the boundary pointwise. Acting in a similar way, we can construct a representation
MCG(M) → Hõmeo+(S1) and also define an invariant similar to the twist number.

§4. The twist number and the fundamental group

In this section, we deduce a “formula” expressing the twist number in terms of the
action of the group Bn

∼= MCG(Dn) on the fundamental group of the punctured disk
Dn (Proposition 4.3). We use the constructions and notation of §§1 and 2.
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4.1. Action of MCG(Dn) on π1(Dn, x0). We consider the natural (left) action of the
group MCG(Dn) on the fundamental group π1(Dn, x0), where x0 ∈ ∂Dn. We denote by
gv the result of the action of a class g ∈ MCG(Dn) on an element v ∈ π1(Dn, x0).

Let u be the homotopy class of the loop having endpoints at x0 and tracing the circle
∂Dn once in the positive direction of the fixed orientation (see Subsection 3.3). In what
follows, u is called the distinguished element.

It is easily seen that the powers of u exhaust all MCG(Dn)-invariant elements in
π1(Dn, x0). We set

π̌ := π̌1(Dn, x0) := π1(Dn, x0) \ {. . . , u−1, u0 = e, u1, u2, . . .}.

4.2. The ordering of the fundamental group. Let X̃ denote the inverse image of
the point x0 in the universal covering (note that X̃ ⊂ ∂U). We choose a base point
x̃0 ∈ X̃ ∩ I of this preimage (we let x̃0 lie on the arc I; see the notation in §2).

Let
a : π1(Dn, x0) → X̃

be the bijection that takes each element v ∈ π1(Dn, x0) to the endpoint of a curve
γ : [0, 1] → U , where γ is a lift of any loop representing v and γ(0) = x̃0.

Obviously, a takes the powers of the distinguished element to points in I and takes
the elements in π̌ to points in the interval J . Thus, the composition of a and the
homeomorphism j : J → R is well defined on the set π̌: we put

b := j ◦ a : π̌ → R.

Under the embedding b, the usual ordering on R induces a linear ordering on π̌ (we
denote it by ≤).

Remark. The following properties are obvious.
1. The ordering ≤ on the set π̌ is canonical : it is completely determined by the choice

of the orientation on ∂Dn. (In particular, this ordering does not depend on the choice
of the base point and the hyperbolic structure.)

2. The action of Bn
∼= MCG(Dn) on π̌ preserves this canonical ordering.

4.3. Proposition. Suppose that β ∈ Bn, g ∈ MCG(Dn) is the corresponding mapping
class, and v ∈ π̌ is any element. Then

(∗) ω(β) = lim
s→∞

max{k ∈ Z | ukv ≤ gs(v)}
s

.

Proof. The definitions of the Nielsen–Thurston action and of the injection b imply that
for any v ∈ π̌ and g ∈ MCG(Dn) we have (Ω̃(g))(b(v)) = b(gv). By the definitions of u
and Θ|U , for each v ∈ π̌ we have a(uv) = Θ(a(v)), i.e., b(uv) = b(v) + 1. It follows that
the inequality ukv ≤ gs(v) is equivalent to b(v) + k ≤ (Ω̃(gs))(b(v)). Denoting by a the
point b(v) ∈ R, we obtain

max{k ∈ Z | ukv ≤ gs(v)}
= max{k ∈ Z | a + k ≤ (Ω̃(βs))(a)} = [(Ω̃(βs))(a) − a],

whence

lim
s→∞

max{k ∈ Z | ukv ≤ gs(v)}
s

= lim
s→∞

[(Ω̃(gs))(a) − a]
s

= lim
s→∞

(Ω̃(gs))(a)
s

= ω(g). �
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§5. Properties of the twist number

Here we prove some basic properties of the twist number.

5.1. Lemma. We have ω(∆2) = 1.

Proof. As before, Dn is the punctured disk. Consider an isotopy ht : Dn → Dn of Dn

(t ∈ [0, 1], h0 = idDn
) that is identical outside a neighborhood of the boundary ∂Dn and

performs a full turn of ∂Dn in the counterclockwise direction: each point of ∂Dn is taken
to itself after passing once along the entire circle ∂Dn. The class T ∈ MCG(Dn) of the
autohomeomorphism h1 ∈ Homeo+(Dn, ∂Dn) is called the boundary Dehn twist. It is
well known that the canonical isomorphism Bn

∼= MCG(Dn) takes the element ∆2 ∈ Bn

to T . Thus, by definition, we have ω(∆2) = ω(T ).
We let h∼

t : U → U be the lifting of the isotopy ht (i.e., h∼
0 = idU ). The isotopy h∼

t

shifts each point of the axis I in the negative direction (see Subsection 3.3) through a
distance equal to the length of ∂Dn. Consequently, the autohomeomorphism φ∼ := Θh∼

1

is identical on I. Since, obviously, φ∼ is a lift of h1 ∈ T , it follows (by definition) that
Ω(T ) = φ�|J . Now, we observe that the isotopy h∼

t shifts points through a bounded
hyperbolic distance; hence, the extension of h∼

t to D is identical at the points of the
Cantor set K: we have h�

1 |K ≡ idK. Thus,

Ω(T )|K ≡ Θh�

1 |K ≡ Θ|K.

By definition, we have ω(T ) = lims→∞
(Ω̃(T ))s(y)

s for any y ∈ R. Take y ∈ j(K ∩ J )
(the set K ∩ J is K without two limit points of the interval I). Then

(Ω̃(T ))(y) = (j∗Θ)(y) = t1(y) = y + 1.

Consequently, since Ω̃(T ) ∈ Hõmeo+(S1), we have (Ω̃(T ))(y + z) = y + z + 1 for any
z ∈ Z. It follows that

ω(∆2) = ω(T ) = lim
s→∞

y + s

s
= 1. �

5.2. Lemma (Property S). For any β1, β2 ∈ Bn and any i ∈ {1, . . . , n − 1}, we have

ω(β1β2) ≤ ω(β1σiβ2).

Remark. Confer the “Property S” of Thurston-type orderings on the braid group, as
defined in [5].

Proof. We denote by βa the image of a point a ∈ R under the action of an element Ω̃(β).
We recall that the autohomeomorphisms in Hõmeo+(S1) preserve the orientation on R;
therefore,

(5.2.1) ∀β ∈ Bn; a1, a2 ∈ R : a1 ≤ a2 ⇐⇒ βa1 ≤ βa2.

It is well known that the braid σ2
i in MCG(Dn) corresponds to a Dehn twist along

the corresponding curve. The Nielsen–Thurston action for Dehn twists in the general
case of an oriented surface was considered in [14, Proposition 2.4]; in the case under
consideration this proposition yields the following:

(5.2.2) ∀ i ∈ {1, . . . , n − 1}, a ∈ R : σ2
i a ≥ a.

From (5.2.1) and (5.2.2) we deduce that

(5.2.3) ∀ i ∈ {1, . . . , n − 1}, a ∈ R : σia ≥ a,

whence

(5.2.4) β1σiβ2a = β1(σi(β2a)) ≥ β1(β2a) = β1β2a.
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Using induction on s ∈ N and (5.2.1), (5.2.4), we obtain

(β1σiβ2)sa ≥ (β1β2)sa.

Now, the definition of the twist number (see Subsection 3.6) yields

ω(β1σiβ2) = lim
s→∞

(β1σiβ2)sa

s
≥ lim

s→∞

(β1β2)sa

s
= ω(β1β2). �

5.3. Definition. We say that a braid β ∈ Bn is split if for some r ∈ {1, . . . , n− 1} it is
represented by a word in letters {σ±1

1 , . . . , σ±1
n−1} \ {σ±1

r }.

5.4. Lemma on split braids. The twist number of any split braid is zero.

Proof. Suppose a braid β ∈ Bn is represented by a word in letters {σ±1
1 , . . . , σ±1

n−1} \
{σ±1

r }. We prove that the autohomeomorphism Ω̃(β) has a fixed point. We use the
results and notation of §2 and Subsection 1.3. Let g ∈ MCG(Dn) be the mapping class
corresponding to the braid β. Also, let v ∈ π̌ be the homotopy class of the loop with
endpoints at x0 ∈ ∂Dn that intersects the interval (−1, 1) ⊂ C at precisely two points
such that the first of them lies between the point −1 ∈ C and the first puncture, while
the second lies between the punctures r and r + 1. Obviously, g(v) = v, so that (see the
proof of Proposition 4.3) we have

(Ω̃(g))(b(v)) = b(gv) = b(v).

By the definition of the twist number, we obtain

ω(β) = lim
s→∞

(Ω̃(g))s(b(v))
s

= lim
s→∞

b(v)
s

= 0. �

5.5. Corollary. Suppose a braid β ∈ Bn is represented by a braid word W that does not
contain the letter σ−1

i for some i ∈ {1, . . . , n − 1}. Then ω(β) ≥ 0.

Proof. We denote by V the braid word obtained by deleting all occurrences of the letter
σi from W , and let α ∈ Bn be the braid represented by V . Since V is a word in the
generators {σ±1

1 , . . . , σ±1
n−1} \ {σ±1

i }, we see that the braid α is split, and Lemma 5.4
implies that ω(α) = 0. It remains to observe that ω(α) ≤ ω(β) by Lemma 5.2. �

§6. The twist number as a pseudocharacter

In this section, we show that the twist number is a pseudocharacter on the braid group,
list the properties of the twist number as a pseudocharacter, and compute its defect.

6.1. Pseudocharacters. A functional ϕ : G → R on a group G is called a pseudochar-
acter (or pseudohomomorphism) if the following conditions are fulfilled:

sup
g1,g2∈G

|ϕ(g1g2) − ϕ(g1) − ϕ(g2)| = Dϕ < ∞;(1)

∀z ∈ Z, g ∈ G : ϕ(gz) = zϕ(g).(2)

The number Dϕ is called the defect of ϕ.

6.2. Proposition (see, e.g., [6]). A pseudocharacter takes conjugate elements of the
group to the same value. The restriction of a pseudocharacter to any Abelian subgroup
of G is a homomorphism.

6.3. Theorem. The twist number ω : Bn → R is a pseudocharacter on the group Bn.
If n > 2, then the defect of the pseudocharacter ω is equal to 1. The pseudocharacter
ω : B2 → R is the homomorphism σz

1 
→ z/2.
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6.4. The properties of the twist number as a pseudocharacter.
6.4.1. For any β1, β2 ∈ Bn, we have

|ω(β1β2) − ω(β1) − ω(β2)| ≤ 1.

6.4.2. For any β1, β2 ∈ Bn such that β1β2 = β2β1, we have

ω(β1β2) = ω(β1) + ω(β2).

6.4.2′. For any β ∈ Bn and k, z ∈ Z, we have

ω(βk∆2z) = kω(β) + z.

6.4.3. The twist number is a conjugacy invariant, i.e., for any α, β ∈ Bn we have

ω(αβα−1) = ω(β).

Proof of Theorem 6.3 and of the properties given above. It is well known that the trans-
lation number is a pseudocharacter with defect equal to 1. (See, e.g., [7].) It is easily seen
that the composition of a homomorphism and a pseudocharacter with defect C is also
a pseudocharacter with a defect at most C. Thus, by Definition 3.6, the twist number
is a pseudocharacter with defect at most 1, i.e., the first assertion of the theorem and
property 6.4.1 are true.

Proposition 6.2 implies properties 6.4.2 and 6.4.3, while property 6.4.2 and Lemma
5.1 imply property 6.4.2′. The final assertion of the theorem is obvious.

It remains to show that for n > 2 the defect of the pseudocharacter ω : Bn → R equals
1. Since we have already seen that the defect is at most 1, it suffices to find two braids
β1, β2 ∈ Bn with ω(β1β2) − ω(β1) − ω(β2) = 1.

By the definition of the fundamental braid, we have ∆ = V σn−1W , where V and W
are words in the generators σ1, . . . , σn−2. We set ρ := WV . The braids σn−1, ρ, and ρ2

are split, and Lemma 5.4 implies

ω(σn−1) = ω(ρ) = ω(ρ2) = 0.

Since the braid ∆2 commutes with any braid, we have

∆2 = V σn−1WV σn−1W = WV σn−1WV σn−1 = ρσn−1ρσn−1.

By Lemma 5.1, ω(∆2) = 1. Applying property 6.4.2 (∆2 and σn−1 commute), we obtain

ω(ρσn−1ρ) = ω(∆2) − ω(σn−1) = 1 − 0 = 1.

The braid ρσn−1ρ is conjugate to ρ2σn−1, whence ω(ρ2σn−1) = ω(ρσn−1ρ) = 1. Thus,

ω(ρ2σn−1) − ω(ρ2) − ω(σn−1) = 1 − 0 − 0 = 1. �

§7. Dehornoy’s ordering

In this section, we prove some relations between the twist number and Dehornoy’s
ordering.

7.1. Definition. A braid β ∈ Bn is said to be σ-positive if for some i ∈ {1, . . . , n−1} it
is represented by a braid word of the form V σ+1

i W , where V and W are words in letters
{σ+1

i , σ±1
i+1, . . . , σ

±1
n−1}. Suppose β1, β2 ∈ Bn. We write β1 ≺ β2 if the braid β2β

−1
1 is

σ-positive. The relation ≺ is a right-invariant linear ordering on the braid group [5], i.e.,

∀β1, β2, α ∈ Bn : β1 ≺ β2 ⇐⇒ β1α ≺ β2α,

and we call it Dehornoy’s ordering.
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7.2. Lemma. 1) If β is a σ-positive braid, then ω(β) ≥ 0.
2) If two braids β1 and β2 commute, then the following two implications are true:

ω(β1) < ω(β2) =⇒
a)

β1 ≺ β2 =⇒
b)

ω(β1) ≤ ω(β2).

3) If β ∈ Bn and a < b ∈ Z, then

a < ω(β) < b =⇒ ∆2a ≺ β ≺ ∆2b =⇒ a ≤ ω(β) ≤ b.

Proof. Statement 1) follows from Corollary 5.5.
2b) By the definition of Dehornoy’s ordering, the condition β1 ≺ β2 means that the

braid β2β
−1
1 is σ-positive. In this case, we have ω(β2β

−1
1 ) ≥ 0 by assertion 1). Since β1

and β2 commute, Property 6.4.2 yields ω(β2β
−1
1 ) = ω(β2)−ω(β1), whence ω(β2) ≥ ω(β1).

2a) Suppose β1 �≺ β2. If β1 = β2, then ω(β1) = ω(β2). If β2 ≺ β1, then ω(β1) ≥ ω(β2)
by the implication 2b), a contradiction.

3) We have ω(∆2a) = a and ω(∆2b) = b. Also, observe that the braids ∆2a and ∆2b

commute with β. It remains to apply part 2). �
7.3. Definition. Dehornoy floor. It is well known that for each braid β there is an
(obviously, unique) z ∈ Z such that

∆2z � β ≺ ∆2(z+1)

(see, e.g., [13]). We denote z by [β]D and call it the Dehornoy floor (or the integral part)
of β.

7.4. Lemma. For each braid β, we have

[β]D ≤ ω(β) ≤ [β]D + 1.

Proof. This immediately follows from assertion 3 of Lemma 7.2 and the definition of the
Dehornoy floor. �
7.5. Theorem. For each braid β, we have

ω(β) = lim
s→∞

[βs]D
s

.

Proof. Lemma 7.4 implies that

0 ≤ ω(α) − [α]D ≤ 1

for each braid α. Therefore, since the twist number is a pseudocharacter and sω(β) =
ω(βs), we have ∣∣∣ω(β) − [βs]D

s

∣∣∣ =
∣∣∣ω(βs) − [βs]D

s

∣∣∣ ≤ 1
s
.

The latter inequality implies the assertion of the theorem. �
7.6. Remark. A functional ψ : G → R on a group G is called a quasicharacter (or a
quasihomomorphism) with defect C if the following condition is fulfilled:

sup
g1,g2∈G

|ψ(g1g2) − ψ(g1) − ψ(g2)| = C < ∞.

It is well known (see, e.g., [6]) that if ψ : G → R is a quasicharacter, then for each g ∈ G
the sequence {ψ(gs)/s} has a finite limit, and the functional

ϕ : G → R, ϕ(g) := lim
s→∞

ψ(gs)
s

is a pseudocharacter.
Thus, the Dehornoy floor is a quasicharacter on the braid group (it can be shown that

its defect is equal to 1), and the twist number is the corresponding pseudocharacter.
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§8. Uniqueness theorem

8.1. Theorem. There exists a unique pseudocharacter Bn → R that takes a nonnegative
value on each σ-positive braid and takes value 1 on the braid ∆2.

Remark. The above theorem admits numerous reformulations.
For example, the theorem remains valid (and the twist number remains to be a pseu-

docharacter satisfying the assumptions of the theorem) if we replace the σ-positivity in
its formulation by the positivity with respect to any other Thurston-type ordering on the
braid group.

With the same result, we can replace the requirement of taking nonnegative values
“on the σ-positive braids” by the stronger requirement of taking a nonnegative value “on
each braid represented by a word not containing the generator σ−1

1 ”, in which way we
exclude mentioning the ordering in the formulation.

Furthermore, the twist number is a unique pseudocharacter on the braid group that
possesses the properties mentioned in Lemmas 5.1, 5.2, and 5.4.

Proof. Existence. The twist number satisfies all conditions of the theorem. Indeed, by
Theorem 6.3, the twist number is a pseudocharacter. By part 1 of Lemma 7.2, we have
ω(β) ≥ 0 whenever β is σ-positive. Finally, ω(∆2) = 1 (Lemma 5.1).

Uniqueness. Suppose ω′ is a pseudocharacter satisfying the conditions of the theorem.
Recalling §7, we observe that the successive proof of assertions 2 and 3 of Lemma 7.2,
Lemma 7.4, and Theorem 7.5 involves only the following facts:

a) the twist number is a pseudocharacter,
b) ω(∆2) = 1, and
c) the twist number takes nonnegative values on σ-positive braids (assertion 1 of

Lemma 7.2).
At the same time, by assumption we have the following:
a′) ω′ is a pseudocharacter,
b′) ω′(∆2) = 1, and
c′) the pseudocharacter ω′ takes nonnegative values on σ-positive braids.
Therefore, repeating for ω′ the chain of proofs in assertions 2) and 3) of Lemma 7.2,

Lemma 7.4, and Theorem 7.5 “word for word”, we see that for each braid β we have the
identity

ω′(β) = lim
s→∞

[βs]D
s

.

Applying Theorem 7.5, we obtain ω′ ≡ ω. �

§9. Twist number of a closed braid

9.1. Closed braids. Suppose L is an oriented link type in the oriented 3-sphere S3 (or
in R3 = S3 \ {∞}). Suppose L ∈ L is a representative of L, and A ⊂ S3 \ L a curve
unknotted in S3.

The link L is called a closed braid with axis A if there is a fibration H = {Hθ; θ ∈
[0, 2π]} of the open solid torus S3 \ A into meridional disks Hθ such that L intersects
each disk Hθ transversally. The number of points of intersection of L and Hθ is called
the index of the closed braid L (it does not depend on the choice of θ). We shall use the
term “closed braid” to refer to an isotopy class of closed braids as well.

The standard “closing procedure” (see, e.g., [1]) transforms a braid β ∈ Bn into a
closed braid β̂ of index n. It is well known that there is a one-to-one correspondence
between the conjugacy classes in the braid groups B1, B2, B3, . . . and the isotopy classes
of closed braids. For this reason, if β is a braid, then we denote by β̂ both the conjugacy
class of β and the corresponding closed braid, which we identify with the conjugacy class.
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9.2. Definition. The twist number is a conjugacy invariant (since it is a pseudochar-
acter), and thus the twist number of a closed braid is well defined: we put ω(β̂) := ω(β).

§10. Satellite braids

10.1. Definition. A closed braid β̂ is a satellite of a closed braid α̂ if the index of
the braid α̂ is greater than 1 and there exist a collection of solid tori T ⊂ R3, a link
L ⊂ int T , and an axis A ⊂ R3 \ T such that

• L represents the closed braid β̂ with respect to the axis A;
• the axes of the solid tori in T (oriented in accordance with the orientation of L)

represent the closed braid α̂ with respect to the axis A; and
• each component of T contains at least one component of L.

10.2. Theorem. Suppose a closed braid β̂ is a satellite of a closed braid α̂. Then
ω(β̂) = ω(α̂).

Proof. Let A, L, and T be as in Definition 10.1. Obviously, we can assume without loss
of generality that L and T lie inside some closed solid torus V ⊂ S3 \ A, and that there
is a fibration H = {Hθ; θ ∈ [0, 2π]} of the solid torus V into meridional disks Hθ such
that each of them transversally intersects the link L and the collection of tori ∂T .

We denote by m and n the indices of the braids α̂ and β̂, respectively. Then each disk
Hθ intersects T along m disks. We denote by D the disk H0 = H2π, by Dn := D \L the
disk with n punctures, and by Dm := D \ T the disk with m disks cut off. (Clearly, Dm

is homeomorphic to a disk with m punctures.)
The above description of the triples L ⊂ T ⊂ V and Dm ⊂ Dn ⊂ D shows that there

is an autohomeomorphism φ : D → D identical on ∂D and such that the following is
true (for the corresponding orientation of D):

• φ(Dn) = Dn, and the class of the autohomeomorphism φ|Dn
corresponds to the

braid β̂;
• φ(Dm) = Dm, and the class of the autohomeomorphism φ|Dm

corresponds to the
braid α̂.

Choose a point x0 ∈ ∂D = ∂Dn = ∂Dm and consider the groups π1(Dm, x0) and
π1(Dn, x0). Here, we use the construction and notation of §4.

Since each disk in D ∩ T contains at least one point of D ∩ L (this directly follows
from the definition of a satellite braid), the natural homomorphism

iπ : π1(Dm, x0) → π1(Dn, x0)

is a monomorphism. We denote by φ1 (respectively, φ2) the automorphism of π1(Dm, x0)
(respectively, π1(Dn, x0)) induced by the autohomeomorphism φ|Dm

(respectively, φ|Dn
).

Furthermore, we obviously have

(10.2.1) iπ ◦ φ1 ≡ φ2 ◦ iπ.

Letting u1 ∈ π1(Dm, x0) and u2 ∈ π1(Dn, x0) be the distinguished elements, we denote
by ≤1 and ≤2 the canonical orderings on π̌1(Dm, x0) and π̌1(Dn, x0), respectively. Then,
obviously,

(10.2.2) iπ(u1) = u2,

and iπ takes the ordering ≤1 to ≤2 (see the definition of the canonical ordering in §4),
i.e.,

(10.2.3) ∀v, w ∈ π̌1(Dm, x0) : v ≤1 w ⇐⇒ iπ(v) ≤2 iπ(w).
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Let v1 ∈ π̌1(Dm, x0) be any element, and let v2 := iπ(v1). From (10.2.1)–(10.2.3) it
follows that for any k ∈ Z and s ∈ N we have

uk
1v1 ≤1 φs

1(v1) ⇐⇒ iπ(uk
1v1) ≤2 iπ(φs

1(v1)) ⇐⇒ uk
2v2 ≤2 φs

2(v2).

Applying the formula of Proposition 4.3, we obtain

ω(α̂) = ω([φ|Dm
]) = lim

s→∞

max{k ∈ Z | uk
1v1 ≤1 φs

1(v1)}
s

= lim
s→∞

max{k ∈ Z | uk
2v2 ≤2 φs

2(v2)}
s

= ω([φ|Dn
]) = ω(β̂). �

10.3. Remark. Since each split braid is a satellite of a trivial braid of index 2, we can
regard Lemma 5.4 as a special case of Theorem 10.2.

§11. Rationality

Our main purpose in this section is the proof of the following result.

11.1. Theorem. The twist number of any braid is rational. Moreover,

ω(Bn) = Q[n], where Q[n] :=
{p

q
| p ∈ Z, n ≥ q ∈ N

}
.

The proof involves the Nielsen–Thurston classification of the surface automorphisms.
It reveals the relationship between the twist number and certain elements of the Nielsen–
Thurston theory. By using the constructions presented below, the twist number can
easily be described in the framework of this theory (cf. Menasco’s definitions [10]).

11.2. Nielsen–Thurston classification for braids. We recall the definitions of types
of braids in the Nielsen–Thurston classification.

In addition to the mapping class group MCG(Dn) defined above, we consider the
mapping class group

mcg(Dn) := Homeo+(Dn)/ Homeo0(Dn),

where Homeo+(Dn) is the group of all orientation-preserving homeomorphisms of Dn,
while Homeo0(Dn) is the normal subgroup consisting of all homeomorphisms isotopic to
the identity (cf. the definition of MCG(Dn)).

Thurston’s classification theorem states that each class h ∈ mcg(Dn) belongs to one
of the following three types.

Periodic: The class h has finite order (i.e., hq = e for some q ∈ N).

Pseudo-Anosov: In this case, for the hyperbolic metric on Dn introduced above (see §2),
there is an autohomeomorphism ψ ∈ h and a pair of mutually transverse geodesic lam-
inations Ls and Lu (stable and unstable) possessing certain properties and such that
ψ(Ls) = Ls and ψ(Lu) = Lu (see [16, 15]).

Reducible: The class h contains an autohomeomorphism preserving some closed one-
dimensional nonempty submanifold C ⊂ Dn, no component of which is contractible to
a point or to ∂Dn, and, furthermore, the components of C are nonisotopic. In this
case, in each (possibly, disconnected) component of the surface Dn \ C the induced
autohomeomorphism belongs either to the periodic, or to the pseudo-Anosov type.

It is well known that the natural embedding

Homeo+(Dn, ∂Dn) → Homeo+(Dn)

induces an epimorphism

mc : Bn
∼= MCG(Dn) → mcg(Dn).
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The kernel of mc is the infinite cyclic subgroup generated by the element ∆2 ∈ Bn.
We have the following exact sequence (cf. the first row of the commutative diagram in
Subsection 3.1):

0 → Z → Bn → mcg(Dn) → 1.

The type of a braid β is defined to be that of the class mc(β) ∈ mcg(Dn).

11.3. Now we can pass to the proof of Theorem 11.1, which consists in verification of
two inclusions:

ω(Bn) ⊂ Q[n] and ω(Bn) ⊃ Q[n].

11.4. Assertion. We have ω(Bn) ⊂ Q[n].

Proof. Suppose β ∈ Bn is a braid and g ∈ MCG(Dn) is the corresponding mapping
class. By the Thurston theorem, β is of periodic, pseudo-Anosov, or reducible type. We
consider each case separately.

11.4.1. Periodic type. Suppose that β is a braid of periodic type, i.e., the element
mc(β) ∈ mcg(Dn) is periodic, say, of order q ∈ N, which means that βq ∈ ker mc. Since
kermc is generated by ∆2, we have βq = ∆2p for some p ∈ Z, whence by property 6.4.2′

it follows that ω(β) = p/q ∈ Q.
Now we analyze which values q can take. By the Nielsen realization theorem, the class

mc(β) contains a periodic autohomeomorphism ψ : Dn → Dn (i.e., ψq ≡ id). We denote
by Dn an n-point compactification of Dn, i.e., Dn is the unit disk D2 with n distinguished
points. Then, obviously, ψ extends to a periodic autohomeomorphism ψ : Dn → Dn of
order q preserving the set of distinguished points.

By the Kerékjártó theorem (see [4, 9, 2]), each orientation-preserving periodic auto-
homeomorphism of the disk is conjugate to a Euclidean rotation. We do not consider
the “trivial” case where q = 1: then mc(β) is a trivial element, and ψ is an identical
mapping. If q ≥ 2, then ψ has a fixed point O ∈ Dn, the “center of the rotation”.
Obviously, there are two possibilities:

i) none of the distinguished points coincides with O;
ii) O is one of the distinguished points.
The autohomeomorphism ψ acts on the set of distinguished points, splitting it into

orbits. Since ψ is conjugate to a rotation, in case i) each orbit consists of q elements;
hence, q divides n. In case ii), the orbit of O is a singleton, while each of the other orbits,
as before, consists of q elements, so that q divides n − 1. Thus, q divides either n or
n − 1, whence ω(β) = p/q ∈ Q[n].

11.4.2. Pseudo-Anosov type. When considering this case, we use the notions and results
of the theory of geodesic laminations (see [16, 15]), assuming that Dn is equipped with
a hyperbolic structure (see §2).

So, suppose that the braid β is pseudo-Anosov, i.e., mc(β) is a class of pseudo-Anosov
type. We denote by L one of two invariant laminations for the class mc(β). We recall that
L is a closed subset of Dn and is a union of disjoint simple geodesics. These geodesics
are the leaves of L, and the connected components of the set Dn \ L are the domains of
the lamination L. The leaves adjoining a certain domain are called the boundary leaves
of this domain.

Consider the domain of L containing the circle ∂Dn; we denote this domain by U . It
is well known that the interior of U (i.e., the set U \∂Dn) is isometric to the interior of a
certain crown. (A crown is a complete hyperbolic surface having finite area and geodesic
boundary and homeomorphic to the space (S1 × [0, 1]) \ V , where V is a finite subset
of the circle S1 × {1}.) As before, U denotes a universal covering space of Dn. We let
U∼ ⊂ U be the connected component of the preimage of U in U that contains a geodesic
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I (see the notation in §§2 and 3). The restriction of the covering map U → Dn to U∼ is
a universal covering of U , and the deck transformation Θ|U∼ generates a cyclic group of
deck transformations of the latter. Factorizing the space clos(U∼), which is the closure
of U∼ in U , by the orbits of the action Θ, we obtain a crown with interior isometric to
the interior of U .

Claim. There exists an autohomeomorphism φ ∈ g such that φ(L) = L.

(We recall that g ∈ MCG(Dn) is the mapping class corresponding to the braid β.)

Proof. By the Thurston theorem, the class mc(β) contains autohomeomorphisms pre-
serving L. Let ψ ∈ mc(g) satisfy ψ(L) = L. We observe that the lamination L does not
intersect some tubular neighborhood A of the boundary ∂Dn, so that L ⊂ Dn \ A.
Obviously, there is an autohomeomorphism φ ∈ g with φ|Dn\A ≡ ψ|Dn\A, whence
φ(L) = ψ(L) = L. �

In what follows, we fix such an autohomeomorphism φ.
As in §2, we denote by φ∼ : U → U the lifting of φ that is identical on I, and by φ�

the extension of φ∼ to D.
We observe that φ preserves the domain U and cyclically permutes the boundary leaves

of U . (Also, it is easily seen that φ∼(clos(U∼)) = clos(U∼).) We denote by q the number
of the boundary leaves in U . Then the autohomeomorphism φq preserves each of these
leaves (and, obviously, preserves their orientations). Let � ⊂ L be a boundary leaf of the
domain U , and let �1 ⊂ clos(U∼) be one of the geodesics covering the leaf � and lying
on the boundary of the component U∼. Then the geodesic �2 := (φ∼)q(�1) ⊂ clos(U∼)
also covers �. Hence, Θp(�1) = �2 for some p ∈ Z. (Each geodesic in clos(U∼) that
covers � is mapped to �1 by a certain deck transformation of the covering U∼ → U ,
while the element Θ|U∼ generates the group of deck transformations of this covering.)
We denote by y ∈ J any of the two limit points of �1 on the absolute. By construction,
we have (φ�)qy = Θpy, i.e., (Ω̃(βq))y = y + p. Since Ω̃(βq) ∈ Hõmeo+(S1), it follows
that (Ω̃(βq))(y + z) = y + z + p for each integer z. Recalling the definition of the twist
number, we see that ω(βq) = p, and we have ω(β) = p/q by property 6.4.2′.

We show that the number q of the boundary leaves of U is at most n − 2. It is well
known that the hyperbolic area of a disk with n punctures equals 2π(n−1) (we recall that
Dn is equipped with a hyperbolic metric such that the boundary ∂Dn is geodesic and
the punctures are cusps; see Subsection 2.1). The area of the crown U with q “prongs”
equals qπ. Each puncture is contained in a certain domain of the lamination L, different
from U (U already contains the boundary, and so cannot contain any punctures), and it
is known that each domain contains at most one puncture. The area of any domain is
at least π, and the number of punctures is n; thus, the sum of the areas of the domains
containing the punctures is at least nπ. Therefore, qπ+nπ ≤ 2(n−1)π, whence q ≤ n−2.

Thus, in the pseudo-Anosov case we have ω(β) = p/q ∈ Q[n−2] ⊂ Q[n].

11.4.3. Reducible type. This case reduces to the two previous ones, because each reducible
braid is a satellite of a certain pseudo-Anosov or periodic braid.

Indeed, suppose that β is reducible and C ⊂ Dn is a nonempty one-dimensional
submanifold satisfying the requirements of the definition of a reducible class. (See Sub-
section 11.2: none of the components of C is contractible either to a point or to ∂Dn; C
is preserved by a certain autohomeomorphism in the class mc(β); and on each (possibly,
disconnected) component of the cut surface Dn \ C the induced autohomeomorphism
belongs either to the periodic or to the pseudo-Anosov type.)

We denote by M the component of Dn \ C containing ∂Dn. The surface M is home-
omorphic to a disk with m punctures, because M is obtained from the punctured disk
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Dn by cutting out several closed disks. Furthermore, we have m < n, because each of
the cut-out disks contains at least two punctures of the disk Dn.

Arguing as in the pseudo-Anosov case, we see that there is an autohomeomorphism
φ ∈ g such that φ(C) = C. Since φ(∂Dn) = ∂Dn, we have φ(M) = M , so that the class
[φ|M ] ∈ MCG(M) = MCG(Dm) is well defined.

A similar situation was considered in the proof of Theorem 10.2, where it was shown
that under the given assumptions we have ω(β) = ω([φ|M ]). (The arguments used in that
proof also imply that the braid β̂ is a satellite of the braid α̂ corresponding to the class of
the autohomeomorphism φ|M .) Since the autohomeomorphism φ|M is of pseudo-Anosov
or periodic type, Subsections 11.4.1 and 11.4.2 imply that ω([φ|M ]) ∈ Q[m]. Therefore,
ω(β) ∈ Q[m] ⊂ Q[n]. �
11.5. Remark. A more careful analysis shows that for a reducible braid β ∈ Bn (as
well as for a pseudo-Anosov one) we have ω(β) ∈ Q[n−2].

Indeed, in the notation of Subsection 11.4.3 we have the following: if m ≤ n− 2, then

ω(β) = ω([φ|M ]) ∈ Q[m] ⊂ Q[n−2];

and if m = n − 1 and [φ|M ] is a class of pseudo-Anosov type, then the arguments used
in Subsection 11.4.2 imply that

ω(β) = ω([φ|M ]) ∈ Q[m−2] ⊂ Q[n−3].

It remains to consider the case where m = n − 1 and the class [φ|M ] is of periodic type.
In this case, the condition m = n − 1 implies that the φ-invariant submanifold C ⊂ Dn

consists of one component (the interior of which contains precisely two punctures of Dn).
This means that φ preserves the only component of C, i.e., [φ|M ] preserves the puncture
of M corresponding to the curve C. We use the arguments presented in Subsection 11.4.1.
Since the autohomeomorphisms in the class [φ|M ] preserve one of the punctures, [φ|M ]
falls into case ii). Therefore, the order of the element mc([φ|M ]) ∈ mcg(M) = mcg(Dm)
divides m − 1, i.e.,

ω(β) = ω([φ|M ]) ∈ Q[m−1] = Q[n−2].

11.6. Assertion. We have ω(Bn) ⊃ Q[n].

Proof. We use the following standard designation:

δ := σ1σ2 · · ·σn−1 ∈ Bn.

As we know, δn = ∆2. For m ≤ n, we define

ρn,m := δσn−1 · · ·σm+1σm ∈ Bn.

(Here, ρn,n = δ.)
We shall show that for any k ∈ Z and any m ∈ {1, . . . , n} we have

ω(ρk
n,m) =

k

m
.

By property 6.4.2′, for fixed m (and n) it suffices to prove the above relation for some
nonzero value of k. For example, it suffices to prove one of the following two relations:

ω(ρn,m) =
1
m

and ω(ρm
n,m) = 1.

In the case where m = n, the relation ω(ρn
n,n) = 1 follows from the familiar relation

∆2 = δn(= ρn
n,n) and Lemma 5.1.

In the case where m = n− 1, the obvious relation σiδ = δσi−1 (for i ∈ {2, . . . , n− 1})
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implies that

ρn−1
n,n−1 = (δσn−1)n−1 = δn−1σ1σ2 · · ·σn−1 = δn = ∆2,

whence ω(ρn−1
n,n−1) = ω(∆2) = 1.

In the case where m ≤ n − 2, the closed braid ρ̂n,m is a satellite of the closed braid
ρ̂m+1,m ⊂ Bm+1. (This is easy to check if we observe that the class of autohomeomor-
phisms of Dn corresponding to the braid ρn,m preserves the class of a simple curve without
inflection points and with interior containing the punctures with numbers m + 1, . . . , n
(see Subsection 1.3): “gluing together” the strands of the closed braid ρ̂n,m correspond-
ing to these punctures into one strand, we obtain a closed braid ρ̂m+1,m.) By Theorem
10.2 and the case (considered above) where m = n−1 (i.e., n = m+1), this implies that
ω(ρn,m) = ω(ρm+1,m) = 1/m.

Thus, we have

ω(Bn) ⊃ {ω(ρk
n,m) | k ∈ Z, m ∈ {1, . . . , n}}

=
{ k

m
| k ∈ Z, m ∈ {1, . . . , n}

}
def= Q[n].

Theorem 11.1 is proved. �

§12. Computation of the twist number

In practice, the twist number of a braid can be computed, for example, with the help of
the known algorithms for comparison of braids in Dehornoy’s ordering (see, e.g., [5, 12]).
Indeed, these algorithms allow us to compute the Dehornoy floor in the braid group. The
following proposition shows that this suffices for finding the twist number of any braid.

12.1. Proposition. For each β ∈ Bn and N > n2 − n, we have

{ω(β)} =
[
[βN ]D

N
,
[βN ]D + 1

N

]
∩ Q[n].

(Here [·, ·] ⊂ R is a closed interval of the real line.)

Proof. We define z := [βN ]D. By Lemma 7.4, ω(βN ) ∈ [z, z +1]. Since the twist number
is a pseudocharacter, we have ω(β) = ω(βN )/N . Thus, ω(β) ∈ [z/N, (z + 1)/N ]. On the
other hand, ω(β) ∈ Q[n] by Theorem 11.1. However, the interval [z/N, (z + 1)/N ] has
length 1/N < 1/(n2 − n), so that it contains at most one number in Q[n], which means
that this number is ω(β). �

§13. Estimates for the twist number

Our aim in this section is the proof of the following assertion.

13.1. Proposition. 1) Suppose a braid β ∈ Bn is represented by a word W containing
precisely r occurrences of the generator σi and s occurrences of the generator σ−1

i for
some i ∈ {1, . . . , n − 1}. Then

−s ≤ ω(β) ≤ r.

2) Suppose, moreover, that n ≥ 4 and i �= 1, n − 1. Then

−s

2
≤ ω(β) ≤ r

2
.
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13.2. Remarks. 1. In the course of the proof of Theorem 6.3, we established (for n > 2)
that ω(ρ2σn−1) = 1, where ρ2 is a braid written in the generators σ1, . . . , σn−2. Thus,
the braid (ρ2σn−1)r with twist number r is represented by a word containing precisely r
occurrences of the generator σn−1. This means that for n > 2 the estimate of assertion 1)
of Proposition 13.1 is sharp in the case where i = n−1, and hence also in the case where
i = 1.

2. In the proof of Assertion 11.6, we established that the twist number of the braid

ρn,1 = σ1σ2 · · ·σn−2σn−1σn−1σn−2 · · ·σ2σ1 ∈ Bn

is equal to 1. Thus, the braid ρr
n,1 with twist number r is represented by a word containing

precisely 2r occurrences of the generator σi for each i ∈ {1, . . . , n− 1}. This means that
the estimate of assertion 2) of Proposition 13.1 is sharp.

For the proof of assertion 1) of Proposition 13.1, we need the following result.

13.3. Lemma. For any β1, β2 ∈ Bn and any i ∈ {1, . . . , n − 1}, we have

ω(β1σiβ2) ≤ ω(β1β2) + 1.

Proof. This is obvious for n = 2. For n > 2, the braid σi ∈ Bn is split, and by Lemma
5.4 we have ω(σi) = 0. Since the twist number is a conjugacy invariant (property 6.4.3),
and since its defect is 1 (property 6.4.1), we obtain

ω(β1σiβ2) = ω(β2β1σi) ≤ ω(β2β1) + ω(σi) + 1 = ω(β1β2) + 0 + 1. �
Proof of assertion 1) of Proposition 13.1. This follows from Corollary 5.5 and Lemma
13.3. �
Proof of assertion 2) of Proposition 13.1. We prove the inequality ω(β) ≤ r/2. (The
inequality −s/2 ≤ ω(β) is proved in a similar way.)

We need some notation. Let W denote a word representing the given braid β and
containing precisely r occurrences of the generator σi. We denote by V the word in
the generators σ1, . . . , σn−1 that is obtained from W by deleting all occurrences of the
generators σ−1

1 , . . . , σ−1
n−1. (Like W , the word V contains precisely r occurrences of σi.)

Let α ∈ Bn be the braid represented by V . Lemma 5.2 implies that ω(β) ≤ ω(α).
We use induction on the index n of the braid β. (The base step here is the case where

n = 4.)
Suppose n = 4 (in this case, we have i = 2). We denote by U the word obtained

from V by replacing each occurrence of the letter σ2 in V by the word σ1σ2σ3σ1σ2σ1

(representing the braid ∆ ∈ B4). Let γ ∈ B4 be the braid represented by U . Then
ω(α) ≤ ω(γ) by Lemma 5.2. Since in the group B4 we have the relations σ1∆ = ∆σ3

and σ3∆ = ∆σ1, and the generators σ1 and σ3 commute, it follows that γ = ∆rσx
1σy

3

for some x, y ∈ Z. Obviously, the braid ∆rσx
1σy

3 ∈ B4 is a satellite of the braid σr
1 ∈ B2,

whence ω(γ) = ω(σr
1) = r/2 by Theorem 10.2. Thus, for n = 4 we have

ω(β) ≤ ω(α) ≤ ω(γ) = ω(σr
1) =

r

2
.

Suppose n ≥ 5. Without loss of generality, we can assume that i ≤ n− 3. (Indeed, in
the case where i = n−3 we consider the braid ∆α∆−1.) We denote by X the braid word
obtained by substituting the word σn−2σn−1σn−1σn−2 for each letter σn−1 or σn−2 in
the braid word V . Let α1 ∈ Bn be the braid represented by X. Then Lemma 5.2 implies
that ω(α) ≤ ω(α1). We denote by Y the braid word obtained from X by substituting
the word σn−2σn−2 for each subword σn−2σn−1σn−1σn−2 in X. Let α2 ∈ Bn−1 be the
(n− 1)-strand braid represented by Y . We observe that, by construction, Y is a word in
the generators σ1, . . . , σn−2, and it contains exactly r entries of the letter σi. Hence, by
the induction hypothesis, we have ω(α2) ≤ r/2. At the same time, it is easily seen that
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the braid α1 is a satellite of the braid α2. Then, by Theorem 10.2, we have ω(α1) = ω(α2),
so that

ω(β) ≤ ω(α) ≤ ω(α1) = ω(α2) ≤
r

2
. �

§14. Transformations of closed braids and Menasco’s conjectures

A transformation of a closed braid α̂ is a transition from α̂ to a braid β̂ that represents
the same link as α̂. Important results of the theory of braids and links are related to the
transformations of stabilization and destabilization introduced by Markov, as well as to
“exchange move” and “flype” defined by Birman and Menasco (see the definitions below).
While stabilization can always be performed, the other transformations mentioned above
are not applicable to each braid. No algorithm determining whether or not one of these
transformations is applicable to a given closed braid has been found up to now.

Using the Nielsen–Thurston classification of automorphisms of surfaces, Menasco [10]
defined certain characteristics of periodic and pseudo-Anosov braids, and in terms of these
characteristics he stated four conjectures concerning the applicability of destabilization,
exchange move, and flype to a closed braid. It turns out that for braids of both types
indicated above, Menasco’s characteristics coincide with the twist number of a braid (see
the definitions in [10] and §11 above).

In Theorem 14.2, in terms of the twist number we establish restrictions on the possibil-
ity of applying destabilization, exchange move, and flype to closed braids. Theorem 14.2
implies the validity of all four conjectures, and some of them in a stronger form (with
the exception of the conjecture on periodic braids in the part concerning flype: as shown
in [11], this part is not true).

14.1. Definitions.

14.1.1. Destabilization. We say that a closed braid α̂ ⊂ Bn−1 of index n − 1 is obtained
from a closed braid β̂ ⊂ Bn of index n by destabilization if there is a braid γ ∈ α̂ such
that γσn−1 ∈ β̂ or γσ−1

n−1 ∈ β̂:

β̂ � γσ±1
n−1 
−→ γ ∈ α̂.

Thus, β̂ admits destabilization if β̂ contains a braid that can be written with only one
(in total) occurrence of the generators σn−1 and σ−1

n−1.

14.1.2. Exchange move. Suppose α̂, β̂ ⊂ Bn are two closed braids of index n. We say
that α̂ is obtained from β̂ by an exchange move if there are γ1, γ2 ∈ Bn−1 ⊂ Bn such
that γ1σn−1γ2σ

−1
n−1 ∈ β̂ and γ1σ

−1
n−1γ2σn−1 ∈ α̂:

β̂ � γ1σn−1γ2σ
−1
n−1 
−→ γ1σ

−1
n−1γ2σn−1 ∈ α̂.

Thus, a closed braid β̂ admits an exchange move if β̂ contains a braid word of the form
Uσn−1V σ−1

n−1, where U and V are words in the generators σ±1
1 , . . . , σ±1

n−2.

14.1.3. Flype. Since the algebraic definition of flype is rather awkward, we define only the
admissibility of this transformation. (See [13] for the consistency of this definition.) We
say that a closed braid β̂ of index n admits a flype if β̂ contains a braid word of the form
Uσn−1V σ±1

n−1Wσ−1
n−1, where U and V are words in the generators σ±1

1 , . . . , σ±1
n−2. The

above definitions and assertion 1) of Proposition 13.1 immediately imply the following
result.
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14.2. Theorem. Suppose β ∈ Bn.
1) If |ω(β)| > 1, then the closed braid β̂ admits neither destabilization, nor exchange

move.
2) If |ω(β)| > 2, then the closed braid β̂ does not admit a flype. �

14.3. Remarks. 1. The restrictions on the admissibility of transformations that are
provided by Theorem 14.2 can be somewhat refined in terms of orderings on the braid
group (see [13, Theorem 5.1]).

2. In terms of the twist number, we can also obtain restrictions on other transfor-
mations of closed braids. (We do not present these restrictions here; they automatically
follow from the proved properties of the twist number and the results of [13].)

§15. The twist number and links

Closed braids representing the same link may have different twist numbers, so that
the twist number is not an invariant of a link. Nevertheless, the twist number of a braid
provides some information on the corresponding link. For example, in Theorem 15.3
below, in terms of the twist number we establish sufficient conditions of primality of the
link represented by a braid.

15.1. We recall some notions of link theory. A link L ⊂ S3 is trivial if there is a sphere
S2 ⊂ S3 such that L ⊂ S2. A link L ⊂ S3 is split if there is a sphere S2 ⊂ S3 \ L that
does not bound a ball (in S3 \L). A link L ⊂ S3 is composite if there is a sphere S2 ⊂ S3

that intersects the link L at two points and splits it into two links (“tangles”) such that
none of them is an unknotted arc. A link is prime if it is not either composite, or split,
or trivial.

We denote by L(β) an oriented link represented by a braid β̂.

15.2. Proposition [13]. Suppose β ∈ Bn, where n > 2, and suppose that the link L(β)
is not prime. Then the closed braid β̂ admits an exchange move.

Combining this with Theorem 14.2, we obtain the following (the case where n = 2 is
trivial).

15.3. Theorem. Suppose β ∈ Bn. If |ω(β)| > 1, then L(β) is a prime (i.e., noncom-
posite, nonsplit, and nontrivial) link.

15.4. Remark. Sufficient conditions of primality for a link that are given by Theorem
15.3 can be refined somewhat in terms of orderings on the braid group (see [13, Theorem
6.2]).
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[2] L. E. J. Brouwer, Über die periodischen Transformationen der Kugel, Math. Ann. 80 (1919), 39–41.
[3] A. Casson and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math.

Soc. Stud. Texts, vol. 9, Cambridge Univ. Press, Cambridge, 1988. MR0964685 (89k:57025)
[4] A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc
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