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SOME GEOMETRIC PROPERTIES OF CLOSED SPACE CURVES
AND CONVEX BODIES

V. V. MAKEEV

Abstract. The main results of the paper are as follows.
1. On each smooth closed oriented curve in R

n, there exist two points the oriented
tangents at which form an angle greater than π/2 + sin−1 1

n−1
.

2. If n is odd, then an (n +1)-gon with equal sides and lying in a hyperplane can
be inscribed in each smooth closed Jordan curve in R

n. In particular, a rhombus can
be inscribed in each closed curve in R

3.
3. A right prism with rhombic base and an arbitrary ratio of the base edge to the

lateral edge can be inscribed in each smooth strictly convex body K ⊂ R
3.

In the sequel, by a convex body K ⊂ R
n we mean a compact convex body with

nonempty interior. A convex body K is said to be strictly convex if it has a unique
intersection point with each of its support planes.

As usual, for A ⊂ R
n, we denote by conv(A) and by int(A) the convex hull and the

interior of A, respectively.
As usual, by G+

2 (R3) (respectively, by G2(R3)) we denote the Grassmann manifold
of oriented (respectively, nonoriented) planes passing through the origin in R

3, and by
E

(+)
2 (R3) → G

(+)
2 (R3) the tautological vector bundle over G

(+)
2 (R3) in which the fiber

over a plane g ∈ G
(+)
2 (R3) is the plane itself regarded as a vector subspace of R

3.

§1. Oriented angles between oriented tangents to a space curve

Throughout the paper, γ(t) : [0, 1] � R
n is a regularly parametrized curve. We orient

the tangents to γ in accordance with the orientation of γ.
We begin with the following obvious statement.

Lemma. Let a ∈ R
n be a nonzero vector. Then either γ has oriented tangents that form

acute as well as obtuse angles with a, or γ lies in the hyperplane orthogonal to a.

Indeed, multiplying the equation
∫ 1

0
γ′ dt = 0 by a, we obtain

∫ 1

0
γ′ ·a dt = 0; therefore,

the function under the integral either takes both positive and negative values, or is zero
identically. �

Theorem 1. 1. For n ≥ 3, each curve γ : [0, 1] � R
n has two oriented tangents that

form an angle greater than π/2 + sin−1 1
n−1 .

2. Any two immersed curves γ1, γ2 : [0, 1] � R
3 have oriented tangents that form

acute and obtuse angles, respectively.
Both estimates are best possible.
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Figure 1.

Proof. Translating the unit velocity vectors of γ to the origin O ∈ R
n, we obtain a curve

γ1, which is the spherical indicatrix of the tangents to γ. We must prove that its angular
diameter on the unit sphere exceeds π/2 + sin−1 1

n−1 .
It is well known that O ∈ conv(γ1), because otherwise O is separated from γ1 by a

hyperplane P , and the projections of all velocity vectors of γ to the oriented normal to
P are codirectional, and, therefore, are all zero because the curve γ is closed.

Consequently, by the Carathéodory principle, O is a convex linear combination of n+1
points A1, . . . , An+1 ∈ γ1 (repetition of points is possible).

It is well known that, since γ1 is arcwise connected, the number of points can be
reduced to n. Indeed, moving A1 towards A2 along γ, we can find a moment when O
lies on the boundary of the polyhedron conv{A1, . . . , An+1} (e.g., when A1 = A2), which
allows us to reduce the number of points.

Thus, O ∈ conv{A1, . . . , An}, i.e.,
∑n

i=1 xiOAi = 0 for some xi ≥ 0 with
∑n

i=1 xi = 1.
For definiteness, let x1 = maxi≤n xi. We have

OA1 = −
n∑

i=2

xi

x1
OAi,

whence

1 = OA2
1 = −

n∑

i=2

xi

x1
OAi · OA1 = −

n∑

i=1

xi

x1
cos ∠AiOA1.

Thus,

−1 ≥
∑

i

xi

x1
cos ∠AiOA1,

where the sum is taken over all i such that cos∠AiOA1 < 0. Consequently, we have −1 ≥∑
i cos ∠AiOA1, so that the greatest angle ∠AkOA1 satisfies the inequality −1/(n−1) ≥

cos ∠AkOA1.
Equality is attained only if x1 = x2 = · · · = xn and the corresponding points

A1, . . . , An are the vertices of a regular simplex. If O ∈ int(conv(γ1)), then, by small
perturbations of the points Ai, we can arrange that the Ai are not the vertices of a regu-
lar simplex, and the above inequality becomes strict. If the indicatrix γ1 (and, therefore,
the curve γ) lies in a hyperplane, then the number of points Ai can be reduced, and,
consequently, the inequality can be sharpened.

To prove that the inequality obtained is best possible, we consider the following curve
γ1 (see Figure 1). Let A1, . . . , An be the vertices of the regular simplex inscribed in
the equatorial sphere of the unit sphere Sn−1 ⊂ R

n. We assume that γ1 goes around
each point Ai in a small neighborhood of Ai and then moves along great circles to the
south pole of the sphere Sn−1. Let O ∈ int(conv(γ1)). Obviously, the angular diameter
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Figure 2.

Figure 3.

of γ1 can be made arbitrarily close to the diameter of the simplex A1, . . . , An, i.e., to
π/2 + sin−1 1

n−1 .
It remains to construct a curve γ such that the indicatrix of tangents of γ is γ1.

Suppose that the parameter t along γ1 ranges in [0, 1]. By Gromov’s lemma, the condition
O ∈ int(conv(γ1)) implies the existence of a positive continuous function f on [0, 1] such
that 0 =

∫ 1

0
f(t)γ1(t) dt; consequently, γ1 is the indicatrix of tangents of the closed

regular curve γ(s) =
∫ s

0
f(t)γ1(t) dt.

Observe that, in this case, the curve γ itself is C0-close to the polygonal line formed
by the vectors OA1, . . . , OAn going to the vertices of the regular simplex from its center.
For n = 3, such a curve is depicted in Figure 2. The first statement of the theorem is
proved.

The second statement follows from the lemma proved above. The fact that the esti-
mate is best possible is proved by the example of the curves γ1 and γ2 in R

3 that are
shown in Figure 3 together with their indicatrices γ′

1 and γ′
2. The angles between the

oriented tangents to γ1 and γ2 take values in the interval [π/2 − ε, π]. If we reverse the
orientation on γ2, then the angles between the oriented tangents to γ1 and γ2 will be
replaced by the supplementary angles and will take values in the interval [0, π/2+ε]. �

Remarks. 1. Thus, for immersed oriented curves γ1, γ2 : [0, 1] � R
3, we can only state

that there exist orthogonal oriented tangents. If α �= π/2, then a pair of tangents forming
an angle of size α may fail to exist.

2. The author does not know what values can be taken by the angles between oriented
tangents for three and more circles immersed in R

n.
3. Probably, it is of some interest to estimate the angle between oriented tangent

planes for immersed spheres Sk � R
n.

§2. On rhombuses inscribed in a space curve

In general, a given quadrangle cannot be inscribed via a similarity transformation
in a typical circle γ smoothly embedded in R

3. Indeed, the similarity group of R
3 is
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seven-dimensional, and the property of being inscribed in γ imposes eight restrictions on
a quadrangle.

However, there may exist one-parameter families of such types of quadrangles with
the property that a similarity image of one of the quadrangles can be inscribed in every
smoothly embedded circle γ ↪→ R

3.
In [1], two families of such one-parameter nonplanar quadrangles were presented. The

first example, found by Stromkvist, consists of the quadrangles ABCD with

|AB| = |BC| = |CD| = |DA| and |AC| = |BD|.
In [1] Griffiths states that the family of twisted rectangles with one side turned around

the median perpendicular to it has the required property.
Below, we prove that, for each circle smoothly embedded in R

3, a rhombus can be
inscribed in it.

Theorem 2. Let n be odd, let f : S1 → R
n be a continuous mapping, and let ρ be

a metric on S1 continuous with respect to the standard metric and such that the limit
limy→x ρ(x, y)/|x − y| exists uniformly with respect to x and is a continuous positive
function. Then there exist n + 1 points A1, . . . , An+1 ∈ S1 such that

ρ(A1, A2) = ρ(A2, A3) = · · · = ρ(An, An+1) = ρ(An+1, A1)

and the points f(A1), . . . , f(An+1) lie in a hyperplane in R
n.

Proof. The metric ρ on the circle can be approximated as close as we wish by a smooth
function on S1 × S1 positive outside the diagonal (possibly, with loss of the triangle
inequality), with preservation of the local rectification condition for ρ given in the theorem
(with the same limit function). Therefore, in the sequel it is assumed that ρ(x, y) is a
smooth function of its arguments for x �= y. In the general case the proof is obtained by
passing to the limit.

We prove that, for a typical “smooth” function ρ described above and a typical smooth
mapping f : S1 → R

n, there is an odd number of required sets of points (A1, . . . , An+1)
arranged clockwise in a given order on the circle and considered up to a cyclic permuta-
tion.

Let U ⊂ (S1)n+1 be the open set of ordered collections of points (A1, . . . , An+1)
arranged on the oriented circle S1 in the given order.

We denote

Mρ := {(A1, . . . , An+1) ∈ U | ρ(A1A2) = ρ(A2A3) = · · · = ρ(An+1A1)} ⊂ U.

For a typical metric ρ as above, the set Mρ is a smooth one-dimensional compact sub-
manifold of U . (The compactness of Mρ follows from the fact that no two points Ai

in the collection in question can come arbitrarily close to each other. Obviously, only
all points simultaneously can come close, but this contradicts the “local rectification”
condition imposed on ρ.)

We consider the function

F : Mρ → R, (A1, . . . , An+1) �→ (A1A2, A2A3, . . . , AnAn+1),

where (v1, . . . ,vn+1) denotes the oriented volume of the parallelepiped constructed by
the vectors v1, . . . ,vn+1. For a typical smooth mapping f : S1 → R

n+1, the condition
F (A1, . . . , An+1) = 0 distinguishes a finite subset in Mρ invariant with respect to the
cyclic permutations of the coordinates (A1, . . . , An+1).

Since all “metrics” ρ in question and the smooth mappings f : S1 → R
n are smoothly

homotopic, the standard topological considerations show that the parity of the number
of the collections (A1, . . . , An+1) considered up to a cyclic permutation of coordinates
does not depend on the choice of a specific typical pair (ρ, f).
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We prove that, in the typical situation, this number is odd.
For this, we consider the metric ρ on S1 induced by a smooth embedding f : S1 → R

n

close to the standard one. Then Mρ
∼= S1, and for each point A1 ∈ S1 there is a unique

collection (A1(t), A2(t), . . . , An+1(t)) ∈ Mρ (smoothly depending on A1). We have

F (A2, A3, . . . , An+1, A1) = −F (A1, . . . , An+1)

because n is odd. Therefore, in the typical situation, the function F vanishes an odd
number of times if A1(t) ∈ (A1, A2), which completes the proof of Theorem 2. �

In the case where f : S1 ↪→ R
3 is a smooth embedding and the metric ρ is induced by

f , i.e., ρ(x, y) = |f(x)f(y)|, we obtain the following statement.

Theorem 3. If n is odd, then every circle smoothly embedded in R
n admits inscribing

an (n + 1)-gon with equal sides and lying in a hyperplane. In particular, a rhombus can
be inscribed in each circle smoothly embedded in R

3.

Remarks. 1. In the paper [2], Shnirel′man gave two proofs of the fact that a square can
be inscribed in every smooth Jordan curve in the plane. The second proof involves a
one-parameter family of rhombuses (similar to the family considered above) inscribed in
the curve.

2. N. Yu. Netsvetaev called the author’s attention to the fact that Theorem 3 implies
the existence of an inscribed square for each smooth Jordan curve on a sphere (because the
rhombuses inscribed in a sphere are squares), and implies also the Shnirel′man theorem
mentioned above (the limit case as the radius of the sphere increases).

§3. On parallelepipeds inscribed in a three-dimensional convex body

In this section, we apply Theorem 3 to the search of parallelepipeds inscribed in a
convex body K ⊂ R

3. There are octagons in R
3 the homothetic images of which cannot

be inscribed in a given smooth convex body K ⊂ R
3, because the similarity group of

R
3 is seven-dimensional, while the property of being inscribed for an octagon is given by

eight conditions on the vertices.
However, there exist one-parameter families of octagons such that, for every smooth

convex body K ⊂ R
3, a homothetic image of an octagon in this family can be inscribed

in K. Griffiths [1] proved that this property is shared by the family of “twisted regular
quadrangular prisms” with a given ratio of the height to the base edge (such “prisms” are
the convex hulls of the union of two equal squares lying in planes that are perpendicular
to the line through the centers of the squares).

Theorem 4. Let K ⊂ R
3 be a smooth strictly convex body, let x > 0, and let l be a line.

Then:
1. There exists a parallelepiped with rhombic base and a lateral edge parallel to l that

is inscribed in K and has the ratio of the base edge to the lateral edge equal to x.
2 There exists a right prism that is inscribed in K and has rhombic base and the ratio

of the base edge to the lateral edge equal to x.

Proof. 1. Performing the Steiner symmetrization of the body K with respect to the plane
P passing through the point O ∈ R

3 and perpendicular to the given line l, we obtain a
smooth strictly convex body KP ⊂ R

3.
The lengths of chords of K and KP parallel to l vary in the interval (0, hP ], where hP

is the distance between the support planes of Kp parallel to P .
The endpoints of the chords of KP parallel to l and having a fixed length a ∈ (0, hP )

form two equal smooth plane curves γ1 and γ2 parallel to P , and, for the body K,
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the endpoints of similar chords also form two smooth space curves γ′
1 and γ′

2 that are
diffeomorphically projected onto γ1 and γ2 along l.

Inscribing a rhombus in γ′
1 by Theorem 3, we see that in K we can inscribe a paral-

lelepiped having rhombic base with side c and such that the lateral edge of it is parallel
to l and has an arbitrary length a ∈ (0, hp); in the typical situation, the number of such
parallelepipeds is odd. It is clear that lima→0 c/a = +∞ and lima→hp

c/a = 0.
For a typical body K, i.e., for an open set of such bodies dense in the C1-topology, and

for a fixed plane P , the parallelepipeds in question form a one-dimensional noncompact
manifold in the twelve-dimensional manifold of parallelepipeds in R

3. Since, for almost
all fixed a, the number of such parallelepipeds is odd, there exists a continuous branch
of such parallelepipeds (and, in fact, an odd number of such branches) connecting the
parallelepipeds with lateral edges of lengths ε and hp − ε for a sufficiently small ε >
0. Since, for sufficiently small ε > 0, the former parallelepipeds have a small ratio of
edges c/a < x, and the latter ones have a large ratio of edges c/a > x, we can find
a parallelepiped required in item 1 of Theorem 4. It is easily seen that, typically, the
number of such parallelepipeds is odd, namely, there are an odd number of them on each
of the continuous branches considered above and, in general, an even number on each of
the other components.

2. Let Mx denote the set of parallelepipeds inscribed in K, having a rhombic base, and
such that the ratio of the base edge to the lateral edge is equal to x. For a typical strictly
convex smooth body K, the set Mx is a compact two-dimensional manifold because,
obviously, the parallelepipeds described above cannot degenerate.

We define a continuous mapping Mx → E+
2 (R3), where E+

2 (R3) is the space of the
tautological vector bundle E+

2 (R3) → G+
2 (R3). For a parallelepiped m ∈ Mx, we consider

oriented planes P+ and P− perpendicular to a lateral edge of the parallelepiped (these
planes differ only in orientation). With m, we associate the projection of the outer unit
normal to the upper face of m with respect to P+ (respectively, P−) to the plane P+

(respectively, P−). By construction, it is clear that the projections of m to P+ and P−

differ in sign.
Therefore, we obtain a continuous mapping φ from Mx to the space of the tangent

bundle over the projective space G2(R3), after identifying the subspaces P+ and P− via
central symmetry with respect to the origin.

It follows that the image of Mx in the space of the tangent bundle over the projective
space intersects a typical fiber at an odd number of points. Therefore, this image real-
izes a generator of the two-dimensional homology group with coefficients in Z2 and has
intersection index 1 modulo 2 with the zero section. Consequently, the image of Mx in
some plane P+(P−) is zero, which proves the second statement of Theorem 4. �
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