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PIECEWISE-SMOOTH REFINABLE FUNCTIONS

V. YU. PROTASOV

ABSTRACT. Univariate piecewise-smooth refinable functions (i.e., compactly sup-
ported solutions of the equation ¢(5) = 2,1;’:0 cxp(x—k)) are classified completely.
Characterization of the structure of refinable splines leads to a simple convergence
criterion for the subdivision schemes corresponding to such splines, and to explicit
computation of the rate of convergence. This makes it possible to prove a factoriza-
tion theorem about decomposition of any smooth refinable function (not necessarily
stable or corresponding to a convergent subdivision scheme) into a convolution of a
continuous refinable function and a refinable spline of the corresponding order. These
results are applied to a problem of combinatorial number theory (the asymptotics
of Euler’s partition function). The results of the paper generalize several previously
known statements about refinement equations and help to solve two open problems.

§1. INTRODUCTION AND THE STATEMENT OF THE PROBLEM

Refinement equations of the type

(1) o(5) = ki_ocwu k)

(univariate two-scale difference equations with compactly supported mask) have found
many applications in wavelets and subdivision algorithms in approximation theory, as
well as in the design of curves and surfaces, in probability theory, combinatorial number
theory, mathematical physics, and so on (see [I]-[3] and the references therein). The
sequence of complex coefficients c¢g, ..., cy is called the mask of the equation (coeny #
0, N > 1); the characteristic polynomial m(z) = L3V ¢p2* is the symbol of the
equation. The compactly supported solutions of such equations (refinable functions)
are the main object in the construction of wavelets with compact support [4] and in
exploring the subdivision algorithms [5, [6]. It is well known that if a refinement equation
possesses a compactly supported distributional solution, then chvzo cx = 2", where r is
an integer. Up to normalization, under this condition the equation always possesses a
unique nontrivial compactly supported solution ¢ in the space of distributions, and this
solution is supported on the segment [0, N] (see [1]). The main problem is to compute or
estimate the regularity of the solution ¢ in various function spaces. This solution cannot
be infinitely smooth on R; its smoothness is limited by the length N of the support.
For any N > 1 there is no refinement equation possessing a CV~!(R)-solution; the only
refinable function belonging to the space W' ! (i.e., with summable (N —1)st derivative)
is the cardinal B-spline By_1(x) = X[0,1) * - ** * X[0,1), Which is the convolution of N
characteristic functions of the half-interval [0,1) (see [1]). Here we take the half-interval

2000 Mathematics Subject Classification. Primary 41A15; Secondary 42C40.

Key words and phrases. Refinable functions, splines, regularity, subdivision algorithms, convergence.

This work was supported by RFBR (grant nos. 02-01-00248, 03-01-06300) and by the SS Program
(grant no. 304.2003.1).

(©2005 American Mathematical Society
821



822 V. YU. PROTASOV

[0,1) instead of the segment (otherwise, in the case where N = 1 the cardinal B-spline
By would satisfy the corresponding refinement equation ¢(z/2) = ¢(z) + ¢(z — 1) not
for all x, but for almost all). The corresponding refinement equation has the symbol

m(z) = (%)N All other equations of degree N have solutions of lower smoothness
and, as a rule, of a very complicated structure (see [4, [0l [7] for a general discussion of
this aspect and for many examples from applications).

Although they are not infinitely smooth, the cardinal B-splines are piecewise infinitely
smooth. They are polynomials on each unit segment [k, k + 1], & € Z. This makes them
much more convenient to deal with as compared to other refinable functions. A natural
question arises in this context: Do there exist refinable splines different from B-splines,
and if they do exist, might they be useful in applications, in particular, in construction of
compactly supported wavelets and subdivision schemes? The first result in this direction
was obtained by Cavaretta, Dahmen, and Micchelli in [6, Chapter 8], where they classified
all refinable splines with integral nodes. A complete answer was given by Lawton, Lee,
and Shen in [§], where it was shown that all refinable splines have integral nodes and,
therefore, are covered by the classification given in [6]. Also we mention the paper
[2], where similar results were obtained independently in a weaker form. Before giving
the precise statements, we recall some definitions. A function f is called a spline of
order 1 > 1 if there exist points xg < - -+ < x4 (the nodes of the spline) such that on each

segment (—oo, zol, [To, Z1], - - -, [Tg—1, %4, [T4, +00) this function is a polynomial of degree
at most [, and f belongs to C'~!(R), i.e., the functions f, f', ..., U= are continuous at
the nodes. A spline of order [ = 0 is a piecewise constant function with nodes zo, ..., z,.

Everywhere below we set x9 = 0 and x4 = IV, and we assume that f is identically zero on
the rays (—oo, zg) and (x4, +00). We say that a node xy, is proper if f is not a polynomial
on the interval (xg_1,2x+1) (here we set x_1 = —00, xn 41 = +00).

By Z = {z1,...,2,} we denote a finite subset of the unit circle {z € C,|z| = 1}.
Some elements of Z may coincide, in which case we count them with multiplicities.
Denote Z;, = ZU{l,...,1} (s units, i.e., the element 1 is repeated s times). Also, let
22 = {2% 2 € Z}. Now we formulate the classification of the refinable splines in its
strongest version, as given in [g].

Theorem 1 (Lawton, Lee, and Shen, 1995, [8]). Up to normalization, for any integer
N > 1 and any 1l € [0, N — 1] there exist finitely many splines of order | that solve the
refinement equations of degree N. Every such spline S(x) has integral proper nodes and
is given by the formula

(2) S(z)=>_ peBi(x — k),
k=0

where By is the cardinal B-spline of order I, and the py are coefficients of the polynomial

P(z)=> pet* =p. [[ (- 2),
k=0

ZjEZ
Dy 1S a constant, and Z is a finite subset of the unit circle such that ZZQJr1 C Z141-

Remark 1. Recall that we are interested in refinable functions up to their normalization.
That is why we set p,, = 1 in the definition of the polynomial P everywhere below, unless
otherwise stipulated.

If I = 0, the function S(z) = > _ PrX(0,1)(x — k) is also a spline solution of the same
refinement equation; however, it does not coincide with [2)) at the integers. To avoid this
uncertainty, for [ = 0 we consider solutions continuous from the right.
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The reader will have no difficulty in showing that for any NV there are finitely many sets
241 of cardinality at most N (counting with multiplicities) and such that 27, C Zi41.
Thus, Theorem [0 classifies all refinable splines of a given degree N. For | = N — 1
we have only the B-spline By_1, for [ = N — 2 there are two refinable splines S(z) =
Bn_1(z) = By—1(z — 1) and S(x) = By—_2(z) + By_2(x — 1), and so on. For [ = 0
we get several refinable step functions with integral nodes. For any refinable spline (2)),
the corresponding refinement equation has the symbol m(z) = (ZTH)ZHP(ZQ) /P(2).
Therefore, for any N there are only finitely many equations of degree N having spline
solutions. In [§] it was shown that all of them, except for the B-splines, possess linearly
dependent translates by integers, so that they do not generate wavelets and can hardly
be applied in subdivision schemes. This was the conclusion about possible applications
of refinable splines.

However, the next natural question arises: Do there exist piecewise-polynomial refin-
able functions (not necessarily splines), or piecewise-analytic refinable functions? More
precisely:

1) Do there exist refinable functions that are analytic (or, at least, infinitely smooth)
on each interval (zy, zx41) of some partition 0 = 29 < 1 < -+ < z4—1 < £, = N and
are different from the splines ([2])?

2) More generally, do there exist refinable functions and the corresponding finite par-
titions such that the smoothness on each interval (zy,zr41) exceeds the smoothness on
the entire real line, and the refinable functions in question are different from the splines
@7

We emphasize that in both problems we do not impose any assumptions on the values
of the functions at the nodes x;. A function can be discontinuous at some nodes, or
unbounded (and even nonintegrable) on some intervals (zy, zr4+1). A positive answer to
any of the above two questions would have led to “locally good” refinable functions that
could have been convenient in applications. The first attempt to attack these problems
was made in the same monograph [6 Chapter 6]. We shall discuss this in more detail
in Remark @l In the next section we give a negative answer to both questions posed
above. Roughly, any “locally good” refinable function must coincide with one of the
splines (2)). This will follow from Theorem [2, which gives a complete classification of all
piecewise-smooth refinable functions.

Nevertheless, this negative result admits an unexpected application to combinatorial
number theory (namely, to the problem of asymptotics for Euler’s partition function)
and helps solving a problem stated by Reznick in 1989 (see [9]). This is the subject of
§5 of this paper. In §3 we study the structure of the manifold of all refinable splines
and show that these splines can be employed in subdivision algorithms, in spite of their
instability (linear dependence of their translates by integers). We classify the splines for
which the corresponding subdivision schemes converge, and for all of them we compute
the rate of convergence explicitly. In §4 we prove the following factorization theorem:
any smooth refinable function (of class C'*!, [ > 0) is the convolution of a continuous
refinable function and a refinable spline of order [. This extends a series of earlier results
in this direction, obtained in [ 2 0] and, in the case of one variable, answers a question
stated by Caveretta, Dahmen, and Micchelli in [6].

§2. A CLASSIFICATION OF PIECEWISE-SMOOTH REFINABLE FUNCTIONS

As usual, we denote by C"(R), r > 0, the space of r times continuously differentiable
functions on R; C°(R) = C(R) is the space of continuous functions. Given a < b, we
denote by C"(a,b), r > 0, the space of r times continuously differentiable functions on the
interval (a,b). A function f belongs to C"(a,b) if it belongs to C"[a, §] for any segment
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[a, 8] C (a,b). Note that functions in C"(a,b) may have no limits at the endpoints a
and b, and may be unbounded and even nonintegrable on (a,b). Let w(h),h > 0, be a
monotone nondecreasing continuous function such that w(0) = 0; we introduce the space
CY(R) = {f € C"(R),w(f"),h) < Ch~"w(h)}, where the constant C' depends only on
f. Here w(g,h) = supy, <, [|9(- + h) — g(-)[lc is the modulus of continuity, and r = r(w)
is the largest integer such that h="w(h) — 0, as h — 0 (if ™ "w(h) — 0 for all r, then
C¥ = C). The corresponding spaces on segments and intervals are defined in a similar
way. If w(h) = h®, a > 0, then we get the Lipschitz spaces Lip,. The Holder exponent
af is the supremum of all o such that f € Lip,. We recall that if o is an integer, then
C® is contained in Lip,, but does not coincide with the latter space.

Suppose that a function f is supported on [0, N] and does not belong to C¥(R), but
for some partition 0 = rg < 71 < -+ < ¥y = N we have f|y, +,.,) € C¥(2k, vp41) for
any k. In this case we say that a node xy is proper if f|u,_, 2,.) ¢ C*(Tx—1,Tr+1) (here
we set x_1 = —oo0 and zyy1 = +00).

Now we consider the refinement equation () with the only restriction coey # 0. We
are interested in the compactly supported solutions of (1), i.e., in the solutions supported
on the segment [0, N]; these solutions may be nonintegrable.

Theorem 2. a) If for some r > 0 a compactly supported solution ¢ of equation ([Il) does
not belong to C"(R), but there is a partition 0 = xg < z1 < -+ < x4, = N such that
Ol@n,apsr) € C"(wh, Try1) for all k, then all proper nodes of this partition are integers,
and ¢ is a spline of the form @) for somel <r.

b) If for some w(h) a compactly supported solution ¢ of equation () does not belong
to C¥(R), but there is a partition 0 = 29 < x1 < --- < ¥y = N such that ¢|(z, z,.,) €
C¥(x, xp41) for all k, then all proper nodes are integers, and ¢ is a spline of the form

Corollary 1. Any discontinuous, but piecewise-continuous refinable function is a step
function with integral nodes obtained by formula @) with | =0 and By = xjo,1)-

Moreover, Theorem [2] implies that we can consider piecewise-continuous functions
that may fail to have one-sided limits at the nodes and may be nonintegrable on the
corresponding intervals. Corollary [l is still true for such functions.

Corollary 2. If for a refinable function ¢ there is a partition such that the Holder
exponent of ¢ on each interval exceeds the Hélder exponent of ¢ on R, then ¢ is a
refinable spline.

Corollary 3. If for a refinable function ¢ there is a partition such that ¢ is N —1 times
continuously differentiable on each interval, then ¢ is a refinable spline.

Subsequently (see Corollary M), we improve this result. It turns out that even if ¢ is
N — 1 times continuously differentiable in a neighborhood of an endpoint of the support
(i.e., of the point 0 or N), then ¢ is a refinable spline.

Remark 2. A special case of Corollary [3 was established in [6, Proposition 8.4], where it
was shown that if o € CN~1[k,k+ 1],k =0,...,N — 1, then ¢ is a spline.

Thus, all piecewise infinitely differentiable (and, therefore, all piecewise-analytic) re-
finable functions are among the splines classified in Theorem [l In particular, this shows
that the splines (2) are the only refinable functions that can be defined by explicit formu-
las; all other refinable functions are obtained via passage to a limit and have fractal-like
properties.

The proofs of both parts of Theorem [2] are very similar. We give the proof of part a)
and then show how to modify that proof to obtain b). The proof starts with two lemmas.
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Lemma 1. If for some r > 0 a refinable function ¢ does not belong to C"(R), but for
some partition {xy} we have Y|z, 2.y € C"(Tr, Try1) for all k, then all proper nodes
of this partition are integers; moreover, the points 0 and N are proper nodes.

Proof. Assuming that there are nonintegral proper nodes, we let z; be the smallest among
them. Substituting = «; + h in equation () and resolving it for ¢(z; + h), we obtain

N
1 z; h Ck
3 i+h)=— (—j 7)— — i—k+h).
(3) ploj+h)= o5+ kglcow(% +h)
Since the numbers %, z; —1,...,2; — N, are all nonintegers and are smaller than z;,

it follows that none of them is a proper node. Therefore, the right-hand side of (@) is
r times continuously differentiable in h on some small interval h € (—¢,¢). Hence, we
have ¢ € C"(z; — e,2; + €), so that the point x; is not a proper node. Therefore, all
proper nodes are integers. Now, let z; be the smallest proper node. Assume z; # 0.
Since %J < z;, all the points %,xj —1,...,2; — N are not proper nodes. Using (3],
again we conclude that x; is not a proper node. Thus, z; = 0. To show that x = N is
also a proper node, we consider the function ¢*(-) = (N — ), which satisfies the adjoint
equation * (%) = SNy en_k@*(x — k). The same argument shows that 0 is a proper
node for ¢*; hence, N is a proper node for ¢. (I

Lemma 2. Under the assumptions of Lemmal[ll let s denote the largest integer such
that p € C5~1(R) (if ¢ ¢ C(R), then we set s = 0). Then for any node x, the limits
0 (21, — 0) and o) (z +0) exist and are finite.

Proof. We establish the lemma for the left limits (%) (2}, —0). Take the smallest node x;
for which this limit either does not exist or is infinite (we assume that such nodes exist;
otherwise there is nothing to prove). Obviously, z; is a proper node and j # 0, because
for £y = 0 the limit in question exists and is equal to 0. This shows that at each of the
points %, xzj—1,...,2;— N the limit ©(®)(x —0) exists and is finite. Now we differentiate
both sides of [B]) s times with respect to h and take the limit as h — —0. We see that
the limit ¢(*)(x; — 0) also exists and is finite, which contradicts the definition of z;. To
prove the lemma for the right limits go(s)(xk + 0), we can invoke the adjoint function ¢*
once again. ([

Proof of Theorem[l. Let s be the number defined in Lemma [l The function ¢(*) is not
continuous on R, but it is piecewise continuous (Lemma [2]) with integral nodes (Lemma
d). By the same argument as above, we show that ¢(*) is not continuous at the point
0 (otherwise we denote by x; the smallest point of discontinuity and use (@) to obtain
a contradiction). By Lemma B the limit a = ¢(*)(+0) exists and is finite. Since ¢(*)
is not continuous at the point 0, we have a # 0. Now we differentiate () s times,
obtaining ¢(*)(£) = chvzo 25c,) (z — k). This identity holds true at all nonintegral
points z, because by Lemma [I] such points are not proper nodes, so that the function
¢®) is well defined at them. For z € (0,1) this implies ¢(*) (%) = 2%cop(¥)(z). Iterat-
ing n times, we get ¢(*)(27"z) = (2500)nap(3) (). Therefore, lim,, (2Sco)ncp(s)(x) =
lim,, o0 ©*)(27"2) = a. Since a # 0, we have p(®)(z) # 0, whence lim,_, ¢ (2500)n =
a/e®)(x). Since the left-hand side does not depend on z, we see that ¢(*)(x) is identi-
cally constant on the interval (0,1). Now, let j be the largest integer such that j < N —1
and cp(s) is identically constant on each interval (k,k+ 1), k=0,...,5. We have j > 0.
Suppose j < N —1. Then we differentiate (@) s times and put z; = j. Since each term of
the sum 2-*100 @) (% +4) - i\;l & (*)(j — k + h) is constant on the interval h € (0,1),
so is the function ©(*)(j 4+ h). This contradicts the definition of j. Therefore, we have




826 V. YU. PROTASOV

j = N — 1, which means that ©(®) is a step function with integral nodes. Hence, ¢ is a
spline with integral nodes. Now we apply Theorem [Tl and conclude the proof of part a).

Part b) is established in the same way. First, we argue as in Lemma [ to show
that if ¢ does not belong to the space C¥(R), but for some partition {zj;} we have
Ol(@n,apsr) € C¥(Tr, Try1) for all k, then all proper nodes are integers and the points 0
and N are proper nodes. Then, as in Lemma[2] we define s to be the largest integer such
that ¢ € C*~1(R) (if ¢ ¢ C(R), then s = 0). If ¢| (s, 2,,1) € C* (k> Tpq1) for all k, then,
as in Lemma[2] we check that for any node k both limits ¢(*) (k —0) and ¢(*)(k+0) exist
and are finite. Then we repeat the proof of part a) and conclude that either ¢ is a spline,
or s = r(w) and the function ¢(*) is continuous on R. But this implies ¢ € C*(R), which
contradicts the choice of s. It remains to consider the case where |, »,,,) & C*(zj, 7j41)
for some j. Then s—1 = r(w), so that ¢ € C"(R), where r = r(w). We show that for every
node z; there exists e/ > 0 such that Play—e ] € C¥(z; — e, x;], which means that
I (z) — o (y)] < Clz — y|""w(|z — y|) for all z,y € (v; — sj_,xj], x # y. Obviously,
this is true for zg = 0. Let x; be the smallest node for which the above claim fails.
Then, as in the proof of Lemma [2 differentiating ([B)) = times yields a contradiction.

Now we can use the adjoint function ¢* to show the existence of Ei > 0 such that

Plajastel) € C¥[z;,x; —l—Ei), j=0,...,N. Thus, the function ¢ belongs to C* on every
interval (z; — el xj + gi) This implies that ¢ € C¥(R). This contradiction completes
the proof. 0

We conclude this section with the following proposition, which improves Theorem

Proposition 1. Let ¢ be a refinable function. If there exists € > 0 such that the smooth-
ness of ¢ on the interval (0,) (or on the interval (N —e, N)) exceeds its smoothness on
R, then ¢ is a refinable spline.

Proof. We consider only the interval (0,¢) (the case of (N — &, N) will then follow by
taking the adjoint function ¢*, as above). For z € (0,1) equation (II) gives ga(%) =
cop(x). Tterating n times, we get ©(27"x) = cfjo(x). Therefore, the smoothness of ¢
on the interval (0,27") is equal to that on the interval (0,1). Taking n so large that
€ > 27" we see that the smoothness of ¢ on (0,1) is equal to that on (0,e). Now we
apply the same trick as in the proofs of Lemmas[Il and 2k denote by j the largest integer
such that 7 < N — 1 and the smoothness of ¢ on each interval (k,k+1), k=0,...,7, is
not less than that on (0,e). We know that j > 0. We assume that j < N — 1 and apply
@) for z; = j. The smoothness of each term on the right-hand side of (3) on the interval
h € (0,1) is not less than the smoothness of ¢ on (0,¢). Therefore, the same is true for
the function ¢(j + h), which contradicts the choice of j. Thus, we have j = N — 1, which
implies that the smoothness of ¢ on any interval (k, k+ 1), where k is an integer, exceeds
its smoothness on R. Applying Theorem [2, we conclude the proof. (]

Corollary 4. If for some € > 0 a refinable function is N — 1 times continuously differ-
entiable on the interval (0,€) or on the interval (N —e, N), then this function is a spline

given by (2.

Remark 3. It is well known that the smoothness of a refinable function (not a spline)
on some intervals (a,b) C [0, N] can exceed its global smoothness. Moreover, there are
examples of refinable functions that are not splines but coincide with polynomials on
some intervals (see [2]). Proposition [I] shows that this situation can never occur at the
extremities of the support, i.e., on the intervals (0,¢) and (N — ¢, N). In an arbitrary
neighborhood of the endpoints of the support, smoothness is the same as on the entire
support!
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§3. STRUCTURE OF REFINABLE SPLINES AND THE CONVERGENCE OF THE
CORRESPONDING SUBDIVISION SCHEMES

So, there are no piecewise-smooth refinable functions except for the splines classified
in Theorem [l In [§] it was shown that all such splines except for the cardinal B-splines,
for which the polynomial P is equal to 1 identically, are unstable, i.e., their translates
by integers are linearly dependent over the space of bounded sequences. In particular,
for any such spline its integral translates do not form a Riesz basis of their linear span.
Therefore, the splines of this sort cannot generate compactly supported wavelets (see
[1]). Indeed, since any such spline is a linear combination of integral translates of the
corresponding B-spline, it follows that its multiresolution analysis coincides with that of
this B-spline. Thus, refinable splines do not give anything new for wavelets. However,
they may be of interest for subdivision schemes, because the stability of the subdivision
function is not necessary for the convergence of the corresponding scheme. In fact, the
subdivision schemes corresponding to refinable splines may converge, in spite of their
instability. For the first time, this phenomenon was observed in [6], where an example of
a converging subdivision scheme corresponding to a refinable spline (not a B-spline) was
treated. In [6] it was also noted that a refinable spline, even very smooth, may generate a
divergent scheme (see [0, §6] for the corresponding examples). In this section we classify
all refinable splines generating convergent schemes (Theorem [B]). It turns out that for
refinable splines convergence can be ensured by a very simple criterion. Moreover, we
compute the rate of convergence explicitly. For this, first we characterize the manifold
of refinable splines (Proposition [2I).

We need some notation. A set b = {Ay,...,\,} of distinct and nonzero complex
numbers is said to be cyclic if Aj411 = )\5, j=1,...,n (we put Apy1 = A1). Clearly, any
cyclic set lies on the unit circle {z € C, |z| = 1}. The simplest cyclic set is {1}; then the
two-element set {e27"/3, e*™/3} appears, and so on. For any n there are finitely many
cyclic sets of n elements. The reader will classify them easily. The smallest cyclic set
{1} is said to be trivial, all other cyclic sets are nontrivial.

Given a cyclic set b, we construct the corresponding cyclic tree Ty, as follows: the
elements A1, ..., A, of the set b form the root of the tree; they are vertices of level zero
(we identify a vertex with the corresponding number). For any J;, exactly one of the two
numbers +,/A; does not belong to b. This number (or vertex) is a neighboring vertex
to A;, and it belongs to the first level. So, there are n vertices on the zeroth level and n
vertices on the first level. Further construction is by induction. Every vertex A of the kth
level (k > 1) has two neighbors £v/\ at the (k+1)st level. Thus, there are n2*~! vertices
at the kth level. All vertices of the tree (i.e., the corresponding numbers) are different.
Let A be a subset of vertices of the tree; we assume that A contains no elements of the
root. Some elements of 4 may coincide, and we count them with their multiplicities. We
say that A is a cut set of multiplicity v (r > 1) if it has no elements of the root and every
infinite path along the tree ay — @ — --- that starts at the root (o is at the kth level,
all paths are without backtracking) has exactly » common elements with the set .A. For
example, the set of elements of the first level is a cut set of multiplicity 1. It is easy to
show that any cut set is finite.

For a given cut set A, we denote by B the set of vertices blocked by A, i.e., BNA = &,
and every infinite path along the tree that starts at any element b € BB has at least one
common element with A. An element b € B has multiplicity s > 1 if every path starting at
b has exactly s common elements with A (counting multiplicities). All elements of blocked
sets will also be counted with their multiplicities. Clearly, any blocked set contains the
root, and the multiplicity of each element of the root is equal to the multiplicity of A.
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Remark 4. It is not difficult to characterize all cut sets of a given multiplicity . Consider
the set A, formed by the elements of the first level taken with multiplicity r. This is a
cut set of multiplicity ». We take an arbitrary element \ € A, and replace it by the pair
of its neighbors at the next level: A — £v/X. We call this operation transfer to the next
level. The cardinality of the set increases by 1, and the set remains a cut set of the same
multiplicity r. It is not difficult to show that all cut sets of multiplicity r are obtained
from A, by several transfers to the next level.

The following fact is well known in combinatorics (see, e.g., [0, §8] and the references
therein). The reader will have no difficulty in proving it on his own.

Lemma 3. Any finite set Z C C\{0} such that 22 C Z is a disjoint union of several sets
By, ..., Bs blocked by the corresponding cut sets Ay, ..., As of some cyclic trees Ty, . .., Ts.

This fact enables us to classify all refinable splines given in Theorem [l

Proposition 2. For any refinable spline S(x) of order 1 > 0 there exists a unique family
of different cyclic trees T;,5 = 0,...,s, and their cut sets A; with multiplicities r; such
that

1) the tree Ty has a trivial root, the other trees have nontrivial roots, and the cut set
Ao has multiplicity rq > 1+ 1;

2) the spline S(x) is obtained by formula [2)) with the polynomial

S
() PE) = -1 T TG0,
j=0beB;
where the B; are the sets blocked by Aj;. The symbol of the corresponding refinement
equation 1s

(5) m(z) =271 H H (z —a).

j=0a€cA;
Conversely, for any family of different trees T;, j = 0,...,s, and their cut sets A; of
multiplicities r; > 1, where the tree Ty has a trivial root, and for any | € {0,...,ro — 1},
the solution of the refinement equation with symbol [B) is a spline of order 1. This spline
is obtained by formula (@) with the polynomial P given by ().

This proposition characterizes the structure of the family of refinable splines; also, it
enables us to answer the question about the convergence of the corresponding subdivision
schemes and cascade algorithms, and, moreover, to find the rate of convergence. First,
we recall some notation.

The subdivision operator I' corresponding to a mask {co, ..., cn} acts on the space of
bounded sequences I by the formula (I'g)r = ), cx—2igi, where g = (¢i)icz € I (here
and below we set ¢, = 0 for k < 0 and for £ > N). The subdivision scheme converges for
a given g € l if there exists a continuous function f such that || f(27™) —I"¢g|lcc — 0 as
n — oo, where || - ||oo is the uniform norm of the space lo. The subdivision scheme is said
to be convergent if it converges for every initial sequence g € l,. It is well known that if
a subdivision scheme converges, then the corresponding refinement equation possesses a
continuous solution ¢ and, moreover, for any g € o, the limit function f is decomposed
as follows:

(6) 76 =3 gl — k),

where the solution ¢ is normalized by the condition [¢(z)dz =1 (see [5]). The con-
vergence of a subdivision scheme is equivalent to the convergence of the corresponding
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cascade algorithm, i.e., to the relation ||T™fy — ¢|lc — 0 as n — oo, where [T f](z) =
>k ¢k f (22 — k) is the so-called transition operator, and fj is an arbitrary compactly sup-
ported continuous function satisfying the partition of unity condition ), fo(x — k) =1
(this is necessary for convergence). Often, the role of fy is played by the function x| 1)
(see [1L2]). The following conditions necessary for convergence are well known: the solu-
tion ¢ of the corresponding refinement equation must be continuous and the symbol m
must satisfy m(1) = 1 and m(—1) = 0. In [6] it was shown that under these conditions
the subdivision scheme converges provided the solution ¢ is stable. However, long ago it
was observed that, actually, stability is not necessary. This means that, generally speak-
ing, refinable splines (which are never stable except for the B-splines) are not forbidden
to generate convergent subdivision schemes. We shall formulate the main result of this
section in the general case, for the convergence in the spaces C!. We say that a cascade
algorithm converges in C' (I > 0) if the sequence T™ fy converges in this space (i.e., with
the first { —1 derivatives) to ¢ for any initial function fj that is compactly supported, has
bounded Ith derivative, and satisfies D, fo(x —k) =1 and ), (x — k)" fo(x — k) = const,
r=1,...,1. Often, the role of fj is played by B;. The convergence of subdivision schemes
in C! is defined similarly by using the derived schemes (see [5,[6]). The rate of convergence
of a cascade algorithm /subdivision scheme is v = [ +liminf;, o, —k~log, [|T*B; —¢||ct,
where [ > 0 is the largest integer for which this scheme converges in C'.

Theorem 3. The cascade algorithm/subdivision scheme corresponding to a refinable
spline converges in C*, k > 0, if and only if the following conditions are fulfilled:
Dro=Il+1>k+2;
Dl—r;j>kforalj=1,...,s;
3) the point z = —1 is contained in Ay with multiplicity r(—1) > k + 1,
where 1, Aj, and r; are as in Proposition 2 The rate of convergence is given by the
formula

(7) v =min{r(-1),l,70 —71,...,70 — s}

Thus, the problem of computing the rate of convergence, which is very difficult for
general subdivision schemes, becomes elementary for refinable splines. It suffices to
decompose the roots of the symbol into cut sets A; and to find their multiplicities.

Example 1. Consider the refinement equation with the following symbol:

2+ 1\e 22 +1
m) = (57) (5
where a, b, and r are some nonnegative integers. From Proposition [ it follows that the
corresponding refinable function ¢ is a spline of order [ = a + b — 1. The roots of the
symbol split into two cut sets Ag and A;. The set Ag of multiplicity a + b is a cut set
of the tree 7y with trivial root and contains {—1} with multiplicity a and 4i = ++/—1
with multiplicity b, and the set A; of multiplicity r is a cut set of the tree 7; with the
root {e2™/3 ¢™/3} and contains two elements 4+e™/3 with multiplicity ». By Theorem
Bl the corresponding subdivision scheme converges if and only if a > 1, a + b > 2, and
a+b>r+1. The rate of convergence is equal to v = min{a,a +b—1,a + b —r}. For
example, if a = 0, b = 3, and r = 1, then the function ¢ is a spline of order 2; ¢ is
piecewise quadratic with integral nodes and the support of ¢ is [0,8]. We have «, = 2,
but the scheme diverges, because a = 0. If a = 2, b = 1, and r = 1, then the function ¢
is again a piecewise quadratic spline with the same support and with the same regularity
. In this case the scheme converges even in C*, and v =2. If a =2,b=1, and r = 2,
then ¢ is also a spline of order 2 with o, = 2, the corresponding scheme converges in C,
but not in C!, and the rate of convergence is v = 1.

)b<22 —z+ 1),
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To prove Theorem [3] we need several auxiliary results. For a cut set A of some tree
7, denote by P4(z) the polynomial [],. 4(z — a) (the elements a € A are counted with
their multiplicities). Next, given a polynomial Q(z) and an arbitrary finite set Y C C,
we put p(Q,Y) = Her Q(y). Clearly, p(-,Y) is a multiplicative function on the ring of
polynomials. The reader can easily prove the following lemma by induction, or find the
proof in [IT].

Lemma 4. Let A be a cut set of a cyclic tree T with root b, and let r be the multiplicity
of A. Also, let by be an arbitrary cyclic set of cardinality n. Then

2" ifby = b,

® p(PA,bo{l o

The next statement was proved in [12].

Proposition 3. A cascade algorithm/subdivision scheme converges in C* (k > 0) if and
only if the following three conditions are satisfied:

a) the solution ¢ of the corresponding refinement equation belongs to C*;

b) m(1) =1, and the number z = —1 is a root of the symbol m of multiplicity r(—1) >
k+1;

c¢) for any cut set A corresponding to a tree T with a nontrivial root b and satisfying
m(A) =0 (i.e., m is divisible by the polynomial P4) we have p(m,b) < 27F.

The rate of convergence is given by the formula

: 1 ‘
(9) V= mln{awr(—l), - log, |p(m,bj)|,7 =1,.. .,s},
j

where o, is the Holder exponent of v, Aj;, b;, j =1,...,s, are all possible cut sets and
nontrivial roots as in c), and n; is the cardinality of b;.

Proof of Theorem 3. Consider a refinable spline given by formula (). Obviously, it be-
longs to C'~1 and does not belong to C'. Item a) of Proposition Bl implies that [ — 1 > k,
whence [ + 1 > k + 2. Furthermore, the symbol m of the equation is given by (&), and
by Proposition Bl we have m = 27'"1[[/_, Pa,. Applying Lemma H and using the mul-
tiplicativity of the function p(-,b;), we obtain p(m,b;) = 2=+ [T7_ p(Pa,,b;) =
27 (" =1=1) for every j = 0,...,s. For the trivial root by = {1} this yields m(1) =
p(m,1) = 2ro~!=1 By Proposition B we have m(1) = 1, so that ro = [ + 1. For the
nontrivial cyclic sets b;, j > 1, we get —nijlog2 lp(m,bj)| = —n%log2 ong(rj—1=1) —
l+1—7r; =ro—r;. Now it remains to apply item c) of Proposition B and formula

@. 0

Remark 5. Using the same arguments, it is easy to compute the rate of convergence of
the subdivision schemes corresponding to splines in other function spaces, e.g., in LP (see
[13] for the definitions and properties of subdivision schemes in L?).

§4. A FACTORIZATION THEOREM FOR REFINABLE FUNCTIONS

Theorem [2] in §2 restricts the set of piecewise smooth refinable functions. All but
finitely many refinement equations of a given degree have “bad” irregular solutions. In
this sense the result is negative. As a compensation, however, we can establish the
following positive fact.

Theorem 4. Any C'*T'-refinable function ¢ (I > 0) can be presented as the convolution
@ = Sxp, where S is a refinable spline of order | and ¢ is a continuous refinable function.
Moreover, o, = az +1+1.
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Thus, any smooth refinable function is the convolution of a refinable spline and a
continuous refinable function.

Remark 6. In terms of the smoothness of ¢, we can express not only that of ¢, but also
the rate of convergence of the corresponding subdivision scheme. By using Proposition
and Theorem [3] it can be shown that

~ 1 -
(10) V:min{r(—l),l/+l—|—1,—n—log2 |p(m,bj)‘+7’0—7'j7j:17...,8},
J

provided m(1) = 1, where 7(—1) is the multiplicity of the root z = —1 of the symbol m.

Remark 7. Theorem Ml reduces the study of smooth refinable functions to continuous
refinable functions. Results in this direction can be found in many publications on
refinement equations and wavelets, starting with the classical paper [6]. For refinable
functions with orthogonal translates by integers, the statement of Theorem [ is well
known and was mentioned in [2,[T4]. In fact, this result can be extended without essential
modifications to all stable refinable functions (see [3]). In both cases, the spline S(x)
is a B-spline and the polynomial P is equal to 1 identically. As to general refinement
equations, for | = 0 an analog of Theorem [ was established in [2]. In [10] Villemoes
proved that any refinable function is a linear combination of integral shifts of a stable
refinable function having the same smoothness. In [12] it was shown that any smooth
refinable function is the convolution of a continuous (and even stable) refinable function
and a spline. However, in contrast to Theorem [, this spline is not necessarily refinable,
i.e., it may fail to satisfy a refinement equation. In this context we note that the statement
of Theorem @ cannot be improved in the sense that the function ¢ may fail to be stable.
In fact, there are equations whose smooth solutions cannot be written as the convolution
of a refinable spline and a stable refinable function.

Caveretta, Dahmen, and Micchelli (see [6] §2]) were the first to observe that con-
volution with a smooth refinable function increases both smoothness and the rate of
convergence of subdivision schemes. Therefore, taking the convolution with, say, a re-
finable spline is a convenient way to produce smooth refinable functions and rapidly
convergent schemes. The following problem was stated in [0, Remark 2.6]: Is the con-
verse true? Is taking a convolution the only way to obtain smooth refinable functions?
Can any smooth refinable function ¢ be written as some convolution of simpler refin-
able functions? For univariate refinement equations, Theorem [ answers this question in
the affirmative. Moreover, we see that one of the functions to be convolved can always
be taken as a refinable spline whose order is smaller by 1 than the smoothness of .
Theorem @ and formula (I0]) express smoothness and the rate of convergence in terms
of the corresponding parameters of the convolution operands. Here, of course, it should
be mentioned that these results concern only univariate refinement equations, while the
general question was stated in [6] for the multivariate case.

Proof of Theorem [l Again we refer to the paper [12], where it was shown that the sym-
bol of a refinement equation admitting a C'*!-solution can be decomposed as m(z) =
m(2)27" " 1520 [Taea, (# — a), where 7 is a polynomial such that m(1) = 1 and the A,
are cut sets of some trees 7;; the root of the tree 7 is trivial and ro > [ + 1. More-
over, the solution @ of the refinement equation with the symbol m is continuous, and
agz = a, — 1 — 1. It remains to note that the solution of the refinement equation with
the symbol 2771 ]°_ [l.ca,(z — a) is a refinable spline, which will be denoted by S
(Proposition[2)). Then the function S satisfies the refinement equation with the symbol
m, and this completes the proof. O
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Remark 8. The factorization theorem can be improved in several ways. For example,
its complete analog is valid in the space WIZJH. Moreover, in fact, any C'T!-refinable
function involves a spline of order I + 1, and not merely I. More precisely: any Ck-
refinable function ¢ (k > 0) is the convolution ¢ = S * ¢, where S is a refinable spline
of order k and ¢ is a refinable function. In particular, any continuous refinable function
involves a refinable step function. This fact is proved in the same way as Theorem [4l
However, in contrast to Theorem Ml the function @ is not necessarily continuous and, in
general, is a distribution, possibly irregular.

§5 APPLICATION TO COMBINATORIAL NUMBER THEORY

Theorem [2] in which the piecewise-smooth refinable functions are classified, has quite
an unexpected application in combinatorial number theory. We use this theorem to solve
a problem concerning the asymptotics of the Euler binary partition function.

For an arbitrary integer d > 2, the binary partition function b(k) = b(d, k) is defined
on the set of nonnegative integers k as the total number of different binary expansions
k=372 d;27, where the “digits” d; take values in the set 0,...,d — 1. For d = oo the
value b(k) is the number of such expansions with arbitrary nonnegative integral digits.
For the first time, the partition function appeared for d = oo in the work of Leonhard
Euler (see [15]), in connection with some power series. Clearly, for d = 2 we have
b(k) = 1. For d > 3 such a binary expansion is not necessarily unique, and the following
problem arises: to characterize the total number b(k) of these expansions asymptotically
as k — oo. In the context of various problems of number theory and power series,
this problem was studied by Mahler [16], de Bruijn [I7], Reznick [9], Knuth [I8]; see
also [19, 20] 2I]. Most of those papers were devoted to the case where d = co. The
first results for finite d were obtained by Tanturri in 1918 (see [20] and two references
therein). In [9] Reznick showed that if d = 2"*1 where r > 0 is an integer, then the
partition function has the following simple asymptotics: b(k) = C,.k" + o(k") as k — oc.
Here C, is an effective constant and, as usual, o(x) means a value that tends to zero after
being divided by x as x — co. It was also noted in [9] that this asymptotics can also be
derived from the results of Tanturri. For the other even d = 2n we have

Crk'os2™ < b(k) < CaE'%=2",
where C!, C2 are positive constants (see [9]). We denote

g1 = liminf k= 1°827b(k);  pp = limsup k™ 1°82"b(k).
k—o0 k—o0

Since C} < pu; < ps < C2, we see that for any n the values p; and pp are both
positive and finite. If n is an integral power of 2, then p; = po. So, in this case the
partition function has a very simple asymptotic behavior: b(k) ~ ck'°82" as k — oo,
where ¢ = pu; = po. However, for general n this is not always the case. In [9] Reznick
showed (referring also to the earlier paper [22] by Carlitz) that if d = 6 and n = 3, then
u1 # po. The question for other values of n was formulated as an open problem. Is it
true that p; = pso only for the numbers n that are integral powers of 27 The following
theorem gives the answer.

Theorem 5. If y1 = uo, then n =2" for some integer r > 0.

Remark 9. For odd values of d the asymptotic behavior of b(k) is more complicated (see
9, 21]).

We shall prove this theorem and, moreover, express the values u; and ps in terms of a
special refinable function (Proposition d and Corollary [l). Also, we indicate a method of
computing these values for any n. Before doing this, we make some observations. First,
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we extend the function b(k) to the negative values of k by zero: b(k) = 0 for all integers
k < 0. It can easily be checked that for every k € Z we have the following recurrence
relations:

(11) b(2k) = yi: bk —j); b2k +1) = i b(k — j).

These formulas look very similar to iterations of a subdivision algorithm. Indeed, if we
take the initial sequence gy = 1,g; = 0 for ¢ # 0, then for every j > 0 we obtain

(T7g), =n~7b(k) forall k <27 —1,

where T is the subdivision operator related to the mask {co,...,con—1} = {%, ce, %}
This is shown by simple induction on j. For j = 0, indeed we have (I'°g)x = g = b(k)
for all k < 29— 1= 0. Passage from j to j + 1 is realized directly by formulas (ITJ).
A subdivision scheme with positive coefficients always converges provided m(1) = 1,
m(—1) = 0 (see [23]). Therefore, so does the scheme with the mask {co,...,con—1} =
%, e %} From (@) it follows that this scheme converges to a continuous solution ¢ of
the corresponding refinement equation and [ ¢(z) de = 1. By the definition of convergent
schemes, we have ||[I[7g—¢(277+)||oc — 0 as j — oco. Denoting §; = max<ai_; [n"7b(k) —
©(277k)|, we see that §; — 0 as j — oo.
This proves the following statement.

Lemma 5. For every 7 >0 and k < 27 — 1 we have
k082 (k) — (2*11@)’1(’%%(2*%)‘ < (277k)5;,

where 6; — 0 as j — oo.

If we take k in the segment [207% 29751 where s > 1 is an integer, then 2% €

[275,21=°]. Now we denote M (s,j) = {£,2975 <k < 27751} and ¢(z) = 2~ 1°82"p(z).
Since ¢ is continuous, v (x) is uniformly continuous on the segment [27%,2!75]. There-
fore, mingepp—s 01519 (z) = lim; 4o mingeprs,5) ¥ (). By Lemma [l the quantity
mingens(s,j) ¥ () is equivalent to ming;—s<p<oi—s+1 k~1og2np(k) as j — oo. Clearly,

lim min k= lo82mp (k) = liminf &~ '°82"b(k).

j—00 2i—s < <20 —s+1 k—o0
Thus,

Y(z) = liminf k= 1982 "p(k) = py.

z€[275,21-9] k—o0
The same argument shows that sup,ecjg-—s o1+ Y(x) = pg. Thus, we have found expres-
sions for p; and po.

Proposition 4. Let n > 1 be an integer, and let b(k) = b(2n,k) be the corresponding
partition function. Then for any integer s > 1 we have
= min T); = max ),
M= i v = max (@)
where Y(z) = 2719827 p(z), and ¢ is the continuous solution of the refinement equation
with the symbol m(z) = o= S oot 2F.

n
These formulas make it possible to compute both g1 and ps with an arbitrarily pre-
scribed accuracy. For this, we need only to approximate the function ¢. This can be
done, e.g., with the help of subdivision schemes.

Corollary 5.

p= inf P(z); pe= sup P(z).
z€(0,1) z€(0,1)
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Proof of TheoremBlL If py = g, then inf,ec 1)z~ 82 p(z) = SUPge(0,1) 1082 (7)
by Corollary Hence, on the interval (0,1) we have ¢(z) = Cz'°%2", where C is a
constant. Since this function is infinitely smooth on (0, 1), Corollary @] shows that ¢ is a
refinable spline. Consequently, log, n is an integer, which completes the proof. O
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