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ESTIMATES OF DEVIATIONS FROM EXACT SOLUTIONS
FOR BOUNDARY-VALUE PROBLEMS

WITH INCOMPRESSIBILITY CONDITION

S. REPIN

Dedicated to the memory of O. A. Ladyzhenskaya

Abstract. Methods of estimating the difference between exact and approximate so-
lutions are considered for boundary-value problems in spaces of solenoidal functions.
The estimates obtained apply to any functions in the energy space of the respective
problem, and their computation requires solving only finite-dimensional problems.
In the paper, two different methods are considered: one involves variational formula-
tions and duality theory, and in the other, estimates are obtained from the integral
identities that define generalized solutions of the problems in question. It is shown
that estimates of deviations from an exact solution must include an additional penalty
term with a factor determined by the constant in the Ladyzhenskaya–Babuška–Brezzi
condition.

§1. Introduction

This paper is devoted to estimates of the difference between weak solutions of bound-
ary-value problems and arbitrary functions in the respective function classes that contain
these solutions. Such estimates are always required if we need to have reliable informa-
tion on the accuracy of an approximate computed solution. The classical convergence
theory for numerical approximations of partial differential equations makes it possible to
construct asymptotic estimates of approximation errors. The ultimate aim in that theory
is to prove that the difference between an exact solution u and an approximate solution
un found in a finite-dimensional subspace of dimension n tends to zero as n → ∞. The
proof of asymptotic convergence can be regarded as a justification of the mathematical
consistency of the approximation method in question. More precise estimates show the
convergence rate, i.e., establish inequalities of the form

(1.1) ‖u − un‖ ≤ C(1/n)k,

where C and k are some positive numbers. The constant C depends on the solution u and
the type of approximations involved. Often, estimates of the form (1.1) are called a priori
error estimates. Asymptotic a priori estimates show the convergence rate for the entire
class of approximations in question. However, with the help of them we cannot reliably
evaluate the error bound for a specific approximate solution. Furthermore, estimates of
type (1.1) are usually based on some additional regularity of exact solutions, which may
be absent in many practically important cases. The above reasons stimulated developing
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new error estimation methods able to correctly characterize the accuracy of approximate
solutions and applicable both to problems with sufficiently regular solutions and to those
without additional regularity. For partial differential equations these questions started
receiving serious attention in the 1980s. Nowadays, the investigations devoted to a
posteriori error control form a new important line in numerical analysis; the purpose is
to obtain computable estimates of various norms of the difference between approximate
and exact solutions, and also to construct error indicators that show distributions of local
errors.

The main approaches to deriving such estimates can be demonstrated by the example
of the following simple problem. Let Ω be a bounded domain in R

d with Lipschitz
boundary ∂Ω, and let f be a given function in L2(Ω). Here and in what follows the norm
in the space of square integrable functions in Ω is denoted by ‖ · ‖. The weak solution of
the first boundary-value problem for the Laplace operator is defined as a function u ∈ V0

that satisfies the integral identity

(1.2)
∫

Ω

∇u · ∇w dx =
∫

Ω

fw dx, w ∈ V0,

where · denotes the scalar product of vectors, and V0 is the subspace of W 1
2 (Ω) that

consists of functions with zero traces on the boundary. Let v ∈ V0 be an approximate
solution of this problem. Then

(1.3)
∫

Ω

∇(u − v) · ∇w dx = Fv(w), w ∈ V0,

where Fv(w) :=
∫
Ω
(fw − ∇v · ∇w) dx is a linear functional on V0 (here the symbol :=

means “equals by definition”). It is easily seen that this functional is equal to zero if v
coincides with u. In all other cases, the norm of this functional, defined by the relation

(1.4) |||||| Fv |||||| := sup
w∈V0,w �=0

|Fv(w)|
‖∇w‖ ,

is positive. Therefore, it is natural to call Fv the error functional. Let us show that this
norm is indeed a measure of the deviation of v from u. By (1.3) and (1.4), we have∫

Ω

|∇(u − v)|2 dx = Fv(u − v) ≤ |||||| Fv |||||| ‖∇(u − v)‖,

whence

(1.5) ‖∇(u − v)‖ ≤ |||||| Fv |||||| .

However, we have |Fv(w)| ≤ ‖∇(u− v)‖‖∇w‖, so that (1.4) implies the inequality oppo-
site to (1.5). Thus, the norm of the deviation from the exact solution coincides with the
norm of Fv. The problem is in the computation of such a norm in practice for a specific
v. Clearly, a straightforward computation of the norm with the help of (1.4) is hardly
possible. A more promising way is to find some computable upper bounds of |||||| Fv |||||| .

In the 1980s and 1990s, in numerical analysis, the so-called residual method was used
quite often to estimate errors of finite element approximations. This method was sug-
gested in the paper [17] of Babuška and Rheinboldt and in some other publications of
these authors.

Further development of this method was exposed in numerous papers of various au-
thors and summarized in the books by Ainsworth and Oden [14], Babuška and Strouboulis
[18], and Verfürth [58].
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Basically, this method suggests the following way of finding an upper bound for the
error functional. First, we assume that v is a Galerkin approximation on a finite-
dimensional space Vh ∈ V0, i.e., v = uh, where∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx, wh ∈ Vh.

In this case,

Fuh
(w) =

∫
Ω

∇(u − uh) · ∇w dx

=
∫

Ω

∇(u − uh) · ∇(w − πhw) dx,

where πh is a continuous operator mapping V0 to Vh (e.g., the Clement interpolation
operator [29]). Suppose Ω is split into a collection of subdomains Ωk, k = 1, 2, . . . , M ,
and uh is a smooth function in each subdomain. Then

Fuh
(w) :=

M∑
k=1

∫
Ωk

∆(uh − u)(w − πhw) dx

+
M∑

k,l=1

∫
∂Ωkl

[
∂(u − uh)

∂νkl

]
(w − πhw) dx,

where ∂Ωkl is a common part of the boundaries of Ωk and Ωl, νkl is the unit normal
to this boundary, and [ ] denotes the jump that arises at the boundary ∂Ωkl. If Ωk are
simplexes, then for πh we have the following estimates (see [29]):

‖v − πhv‖Ωk
≤ γ1k diam(Ωk)‖v‖1,2,ω1k(Ωk),

‖v − πhv‖∂Ωkl
≤ γ2k|∂Ωkl|1/2‖v‖1,2,ω2k(Ωk),

where the right-hand sides involve norms in the space W 1
2 , ω1k and ω2k are certain

domains containing Ωk, and the constants γ1k and γ2k depend not only on Ωk, but also
on the form of neighboring subdomains (simplexes). These estimates allow us to present
the norm of the error functional as the sum of the local quantities

(1.6) η2
k := diam(Ωk)2‖∆h + f‖2

Ωk
+

1
2

M∑
l=1

|∂Ωkl|
∥∥∥∥[

∂uh

∂νkl

]∥∥∥∥2

∂Ωkl

that are related to the residual on Ωk and to the jumps of the normal component of the
gradient on the boundary. Accordingly, the overall error can be estimated as follows:

(1.7) |||||| Fuh
|||||| ≤

( M∑
k=1

ckη2
k

)1/2

,

where the constants ck depend on all γ1k and γ2k associated with the simplexes in ques-
tion. The principal difficulty of this approach to the estimation of |||||| Fuh

|||||| is clearly seen
even in this simple example. This difficulty consists in the necessity to find a large
number of local constants ck, which depend on how the domain was discretized and,
consequently, change if one sampling is replaced by another. In [26], Carstensen and
Funken showed that the exact evaluation of these constants may be a fairy hard task,
and using approximate values of γ1k and γ2k may lead to a highly excessive estimate
of the total error. In spite of these difficulties, the residual method is widely used in
numerical analysis because the quantities ηk are often used as error indicators that show
the distribution of local errors in Ω rather than a guaranteed upper bound of the total
error.
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Naturally, error control problems have attracted much attention of specialists working
in computational hydrodynamics. A significant part of the difficulties arising in the pro-
cess of solving such problems is related to the incompressibility condition. Typically, this
condition is taken into account by projecting a discrete solution to the set of solenoidal
fields or by introducing appropriate penalty terms (see, e.g., Chorin [28], Weinan E and
Liu [31], Girault and Raviart [34], Heywood and Rannacher [35], Rannacher [45, 46],
Shen [56], Temam [57]). Stationary problems are often solved by passing to a mini-
max formulation and by using the so-called mixed approximations for the velocity and
pressure fields (see, e.g., Brezzi and Douglas [23], Brezzi and Fortin [24]).

For approximations of the Stokes problem, a posteriori error estimates constructed
by various types of finite element methods were obtained in numerous papers, mainly in
the framework of certain modifications of the residual method (see, e.g., Ainsworth and
Oden [13], Bank and Welfert [19], Dari, Durán, and Padra [30], Carstensen and Funken
[27], Heywood and Rannacher [36], Johnson and Rannacher [37], Johnson, Rannacher
and Boman [38], Oden, Wu, and Ainsworth [43], Padra [44], Verfürth [59, 60]). In these
estimates, the right-hand side is given by the sum of local quantities ηk that unlike
(1.7) involve additional terms that take into account violations of the incompressibility
condition.

It should be noted that, for finite element approximations, a posteriori estimates were
also constructed by special type averagings of approximate solutions and by using the
so-called superconvergence phenomenon (see, e.g., Oganesjan and Ruhovec [6], Zlámal
[62], Wahlbin [61]). Such a phenomenon may arise if solutions have a higher regularity,
which results in certain limitations for applicability. Starting with the paper [63] by
Zienkiewicz and Zhu, various averagings of approximate solutions were widely used to
obtain indicators of the accuracy of approximate solutions (see, e.g., Carstensen and
Bartels [25]). Note that these methods as well as the residual method are justified
mathematically only for the Galerkin approximations. Moreover, such estimates give
only error indicators and usually provide no guaranteed error bounds.

Computable error estimates of a different type were obtained in [8]–[11], [47]–[55], and
some other papers. These estimates apply to any approximations of the energy function
class and contain no constants depending on discretization and the solution method.
Therefore, they can be called functional type a posteriori estimates, or estimates of
deviations from exact solutions. For variational problems, such estimates were obtained
with the help of the duality theory of the calculus of variations (this method was analyzed
in detail in [8, 11, 48]). For example, the corresponding a posteriori estimate for (1.2)
can be presented in the following form:

(1.8) ‖∇(u − v)‖ ≤ ‖∇v − y‖ + CF ‖ div y + f‖.

Here CF is a constant in the Friederichs inequality ‖w‖ ≤ CF ‖∇w‖ for w ∈ V0, and y(x)
is an arbitrary function in the space H(Ω, div) of all functions in L2(Ω, Rd) that have
square integrable divergence. Estimate (1.8) is valid for any v ∈ V0 and involves only
one constant CF depending on the domain Ω. It is easy to observe that the right-hand
side of (1.8) is nonnegative and vanishes if and only if v = u and y = ∇u. Moreover,
this estimate is sharp in the sense that the function y can always be taken in such a
way that the right-hand side of (1.8) is equal to the left-hand side. In terms of the
variational approach, the function y has a clear meaning: y is the basic variable of the
dual variational problem. In [11], it was shown that such estimates can also be deduced
from variational identities. In essence, this way can be viewed as another method of
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finding upper estimates of the norm (1.4). Indeed,

|Fv(w)| ≤
∣∣∣∣ ∫

Ω

(fw − y · ∇w) dx

∣∣∣∣ +
∣∣∣∣ ∫

Ω

(y −∇v) · ∇w dx

∣∣∣∣.
If y ∈ H(Ω, div), then the first and the second integrals are estimated by the quantities
CF ‖ div y + f‖‖∇w‖ and ‖∇v − y‖‖∇w‖, respectively, which leads to (1.8).

Estimate (1.8) and other similar estimates can be regarded as generalizations of the
classical energy estimates that involve the function v, together with the data of the
problem (see, e.g., Ladyzhenskaya [1, 2], Ladyzhenskaya and Ural′tseva [5])).

Note that the right-hand side of (1.8) is a functional depending on v and y. Its exact
lower bound is zero and is attained if and only if v = u and y = ∇u. By choosing suitable
subspaces for v and y, we can minimize this functional with respect to these variables.
Then, the corresponding value of the functional controls the difference between the exact
solution and the approximation obtained.

For the Stokes problem, estimates of the type (1.8) were derived for the first time in
[51], where the variational approach was used. In this paper, we consider both methods
(variational and nonvariational) and show how such estimates can be obtained for other
models of viscous incompressible fluids. The outline of the paper is as follows. In §2, we
obtain estimates of the deviation from the exact solution for the stationary Stokes prob-
lem and some other linear problems. In §3, such estimates are obtained in the general
form for problems whose solution lies in a certain subspace. The method used in §§2
and 3 is based upon transformations of the integral identities that define weak solutions
of the problems under study. In §4 we use the variational method to study stationary
problems in the theory of nonlinear viscous fluids. Here, we consider models with dissi-
pative potentials representable as the sum of a quadratic and a convex functional. Such
models belong to the class of the so-called generalized Newtonian fluids introduced by
O. A. Ladyzhenskaya (see [3, 40]). Estimates are obtained both for approximations satis-
fying the incompressibility condition and for those that violate it. In the latter case, the
error majorant involves an additional term that presents a penalty for possible violation
of the incompressibility condition. The coefficient of this term depends on the constant
in the well-known Ladyzhenskaya–Babuška–Brezzi condition. It is shown that for the
Stokes problem these estimates coincide with those obtained in §2 by the nonvariational
method.

§2. Stokes problem

2.1. Ladyzhenskaya–Babuška–Brezzi condition. It is natural to start the consid-
eration of methods of obtaining deviation estimates for boundary-value problems that
involve the incompressibility condition with the stationary Stokes problem. Let Ω ⊂ R

d

(d = 2, 3) be a bounded domain. We need to find a vector-valued function u (velocity),
a tensor-valued function σ (stress), and a scalar function p (pressure) that satisfy the
system

− div σ + ∇p = f in Ω,(2.1)

σ = νε(u) in Ω,(2.2)

div u = 0 in Ω,(2.3)

u = u0 on ∂Ω.(2.4)

This system describes a slow motion of an incompressible fluid whose viscosity is char-
acterized by a positive constant ν.

In what follows, we denote by J̇∞(Ω) the set of smooth solenoidal functions with
compact support in Ω. The closure of J̇∞(Ω) with respect to the norm ‖∇v‖ gives the
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space J̊1
2 (Ω). Let V := W 1

2 (Ω, Rd), and let Σ := L2(Ω, Md×d), where M
d×d denotes

the space of symmetric (d × d)-matrices (tensors); the scalar product of such tensors is
denoted by two dots (i.e., a colon). V0 is the subspace of V that consists of functions with
zero traces on ∂Ω. The affine set V0 + u0 is the subset of V formed by all functions w+u0,
where w ∈ V0, and u0 is a given solenoidal vector-valued function. Similarly, J̊1

2 (Ω) + u0

consists of the functions w + u0, where w ∈ J̊1
2 (Ω). The tensor of small deformations

ε(v) := 1
2 (∇v + (∇v)T ) is viewed as an operator from V to Σ. Also, we introduce the

Hilbert space Σdiv(Ω), that is, the subspace of Σ formed by the tensor-valued functions
τ such that div τ ∈ L2. The scalar product in this space is defined by the relation

(τ, η) :=
∫

Ω

(τ : η + div τ · div η) dx.

The space of square integrable functions with zero mean is denoted by
∼
L2(Ω).

Assume that
f ∈ L2(Ω, Rd), u0 ∈ W 1

2 (Ω, Rd), div u0 = 0.

The weak solution of the Stokes problem is defined as the function u ∈ J̊1
2 (Ω) + u0 that

satisfies the integral identity

(2.5) ν

∫
Ω

ε(u) : ε(v) dx =
∫

Ω

f · v dx, v ∈ J̊1
2 (Ω).

A solution of this problem exists, is unique, and is a minimizer of the functional

I(v) =
∫

Ω

(ν

2
|ε(v)|2 − f · v

)
dx

on the set J̊1
2 (Ω) + u0. One of the major difficulties of the problem under consideration

is that the admissible fields must be subject to the condition div u = 0. Therefore, this
condition is often taken into account only approximately, with the help of the penalty
method or by introducing Lagrangian multipliers. Then, the question arises how to esti-
mate the deviation from the exact solution for functions that do not belong to the above
subspace. To answer this question, we use results of Ladyzhenskaya [1] and Ladyzhen-
skaya and Solonnikov [4] obtained in the proof of solvability for the Stokes problem in
domains with nonsmooth boundary. The first result concerns the possibility of extending
a solenoidal field inside a domain so that the resulting function norm will be dominated
by the trace norm on the boundary.

Lemma 2.1. Let Ω be a bounded domain with Lipschitz boundary. Then there exists a
positive constant cΩ depending only on Ω and such that for any vector-valued function
a ∈ W

1/2
2 (∂Ω) satisfying

∫
∂Ω

a · ν dx = 0 there is a function ū ∈ V0 with div ū = 0 and

(2.6) ‖∇ū‖ ≤ cΩ‖a‖1/2,∂Ω.

This lemma implies the following statements.

Lemma 2.2. Let Ω be a bounded domain with Lipschitz boundary. Then there exists a

positive constant CΩ depending on Ω and such that for any f ∈
∼
L2(Ω) there is a function

ū ∈ V0 satisfying the condition div ū = f and the inequality

(2.7) ‖∇ū‖ ≤ CΩ‖f‖.
The above lemmas, their consequences, and methods of constructing functions arising

in (2.6) and (2.7) were investigated in the paper [4].
Lemma 2.2 has an important corollary. Let f = div v̂, where v̂ is a function in V0.

Then these exists uf ∈ V0 such that

div(v̂ − uf ) = 0, ‖∇uf‖ ≤ CΩ‖ div v̂‖.
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This means that for the solenoidal field w0 = (v̂ − uf ) ∈ V0 we have

(2.8) ‖∇(v̂ − w0)‖ ≤ CΩ‖ div v̂‖.
Also, Lemma 2.2 implies the following condition, known in the literature as the

Ladyzhenskaya–Babuška–Brezzi (or LBB) condition: there exists a positive constant
CLBB such that

(2.9) inf
φ∈

∼
L2(Ω),φ �=0

sup
w∈V0,w �=0

∫
Ω

φ div w dx

‖φ‖ ‖∇w‖ ≥ CLBB .

Indeed, by Lemma 2.2, for any φ ∈
∼
L2(Ω) there is a function vφ ∈ V0 satisfying

(2.10) div vφ = φ, ‖∇vφ‖ ≤ CΩ‖φ‖.
Then

sup
v∈W̊ 1

2 (Ω),w �=0

∫
Ω

φ div v dx

‖∇v‖ ‖φ‖ ≥
∫
Ω

φ div vφ dx

‖∇vφ‖ ‖φ‖
‖φ‖

‖∇vφ‖
≥ 1

CΩ
,

whence we see that (2.9) is true with CLBB = (CΩ)−1. Relation (2.9) and its discrete
analogs are often used for proving the convergence of approximations in various problems
related to the theory of viscous incompressible fluids. In [16, 22] Babuška and Brezzi
used this condition to justify the convergence of what is called mixed methods, in which
a boundary-value problem is reduced to a saddle-point problem for a certain Lagrangian.
It should be noted that (2.9) can also be deduced from the Nečas inequality; a simple
proof of the latter for domains with Lipschitz boundary can be found in the paper [21] by
Bramble. Also, in [21], it was shown that the well-known Korn inequality follows from
(2.9).

The constant in the LBB-condition plays an important role in problems involving the
incompressibility condition. This constant arises in the projection type error estimates
for the velocity and pressure fields and in the corresponding asymptotic rate convergence
estimates for mixed methods (this issue was considered in the book [24] by Brezzi and
Fortin). Also, the same constant is crucial in the analysis of the rate of convergence
for numerical methods based upon the minimax formulation of the problem (see, e.g.,
Kobelkov and Olshanskĭı [39]). Below, we shall see that the constant CLBB also arises in a
posteriori functional type estimates if the exact solution is compared with an approximate
solution that does not satisfy the incompressibility condition. Therefore, finding two-
sided estimates of CLBB for various domains is an important problem. We note that
CLBB can be estimated in terms of CF and the constant CP in the Poincaré inequality.
Indeed,

CLBB = inf
q∈

∼
L2(Ω),q �=0

E(q),

E(q) = sup
w∈V0,w �=0

∫
Ω

q div w dx

‖q‖ ‖∇w‖ .

For q ∈
∼
W (Ω) :=

∼
L2(Ω) ∩ W 1

2 (Ω) we have

E(q) = sup
w∈V0,w �=0

∫
Ω
∇q · w dx

‖q‖ ‖∇w‖ ≤ ‖∇q‖
‖q‖ sup

w∈V0,w �=0

‖w‖
‖∇w‖

≤ CF
‖∇q‖
‖q‖ .

Let CP be the smallest constant in the inequality

‖q‖ ≤ CP ‖∇q‖, q ∈
∼
W (Ω),
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i.e.,

inf
q∈

∼
W (Ω),q �=0

‖∇q‖
‖q‖ =

1
CP

.

Then

CLBB = inf
q∈

∼
L2(Ω),q �=0

E(q) ≤ inf
q∈

∼
W (Ω),q �=0

E(q) ≤ CF

CP
.

This estimate gives some information about the value of CLBB . However, mainly we
are interested in the lower estimate. Two-sided estimates for rectangular domains were
obtained in [7] by Ol′shanskĭı and Chizhonkov.

2.2. Estimates for the velocity field. We pass to estimates of deviations from the
field of velocities u corresponding to the exact solution of the Stokes problem. Let
v ∈ J̊1

2 (Ω) + u0. Then (2.5) implies the identity

(2.11)
ν

∫
Ω

ε(u − v) : ε(w) dx =
∫

Ω

(f · w − νε(v) : ε(w)) dx,

w ∈ J̊1
2 (Ω).

For any tensor-valued function τ ∈ Σ, the functional

Fτ (w) :=
∫

Ω

(f · w − τ : ε(w)) dx

is linear and continuous on J̊1
2 (Ω), and as its norm we can take the number

[]Fτ [] := sup
w∈J̊1

2 (Ω),w �=0

∫
Ω
(f · w − τ : ε(w)) dx

‖ε(w)‖ .

We write (2.11) as

ν

∫
Ω

ε(u − v) : ε(w) dx = Fτ (w) +
∫

Ω

(τ − νε(v)) : ε(w) dx,

w ∈ J̊1
2 (Ω).

Setting w = u − v, we arrive at the estimate

(2.12) ν‖ε(u − v)‖ ≤ []Fτ [] + ‖νε(v) − τ‖.

Observe that

[]Fτ [] = sup
w∈J̊1

2 (Ω),w �=0

∫
Ω
(f · w + q div w − τ : ε(w)) dx

‖ε(w)‖

≤ sup
w∈V0,w �=0

∫
Ω
(f · w + q div w − τ : ε(w)) dx

‖ε(w)‖ ,

where q is an arbitrary function in
∼
L2(Ω). Here the left-hand side is the norm of a linear

functional on V0. Denoting this norm by |||||| div τ + f −∇q |||||| , we obtain

(2.13) ν‖ε(u − v)‖ ≤ ‖νε(v) − τ‖ + |||||| div τ + f −∇q |||||| .

It is convenient to rewrite this estimate in the form

(2.14)
ν2‖ε(u − v)‖2

≤ (1 + β)‖νε(v) − τ‖2 +
(
1 +

1
β

)
|||||| div τ + f −∇q |||||| 2.
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Estimates (2.13) and (2.14) are valid for any τ ∈ Σ, q ∈
∼
L2(Ω), and β > 0. If τ ∈ Σdiv

and q ∈
∼
W (Ω), then

|||||| div τ + f −∇q |||||| = sup
w∈V0,w �=0

∫
Ω
(f −∇q + div τ ) · w dx

‖ε(w)‖
≤ cF ‖ div τ + f −∇q‖,

where cF is the constant in the inequality ‖w‖ ≤ cF ‖ε(w)‖ for w ∈ V0. As a result, the
right-hand side of the estimate in question is represented as a sum of integrals, namely,

(2.15) ν2‖ε(u − v)‖2 ≤ (1 + β)‖νε(v) − τ‖2 +
(1 + β)c2

F

β
‖ div τ + f −∇q‖2.

If the comparison function v̂ ∈ V0 + u0 does not satisfy the incompressibility condition,
then the estimate of its deviation from u can be obtained as follows. By Lemma 2.2, for
the function v̂0 := v̂ − u0 we can find w0 ∈ J̊1

2 (Ω) such that ‖ε(v̂0 − ŵ0‖ ≤ CΩ‖ div v̂0‖.
Then

(2.16) ν‖ε(u − v̂)‖ ≤ ν‖ε(u − ŵ0 − u0)‖ + ν‖ε(v̂0 − ŵ0)‖.
We use (2.13) to estimate the first norm on the right in this inequality. This yields

ν‖ε(u − v̂)‖ ≤ ‖νε(ŵ0 + u0) − τ‖ + |||||| div τ + f −∇q |||||| + ν‖ε(v̂0 − ŵ0)‖
≤ ‖νε(v̂) − τ‖ + |||||| div τ + f −∇q |||||| + 2ν‖ε(v̂0 − ŵ0)‖.

Since div u0 = 0, we obtain

(2.17) ν‖ε(u − v̂)‖ ≤ ‖νε(v̂) − τ‖ + |||||| div τ + f −∇q |||||| +
2ν

CLBB
‖ div v̂‖.

If τ ∈ Σdiv(Ω) and q ∈
∼
W (Ω), then (2.17) implies the estimate

(2.18) ν‖ε(u − v̂)‖ ≤ ‖νε(v̂) − τ‖ + cF ‖ div τ + f −∇q‖ +
2ν

CLBB
‖ div v̂‖.

Set τ = η + qI, where I is the unit tensor and η ∈ Σdiv(Ω). Then (2.18) takes the form

ν‖ε(u − v̂)‖ ≤ ‖νε(v̂) − η − qI‖ + cF ‖ div η + f‖ +
2ν

CLBB
‖ div v̂‖.

Thus, if the constants cF and CLBB are known (or we know suitable upper bounds for
them), then (2.18) provides a way for evaluating the deviation of v̂ from u. For this, we
should select certain finite-dimensional subspaces Σk and Qk for the functions τ (or η)
and q, respectively. Minimization of the right-hand side of (2.18) with respect to τ and
q gives an estimate for the deviation, and this estimate will be sharper if we increase the
dimension of the subspaces involved.

2.3. Estimates for the pressure field. Let q ∈
∼
L2(Ω) be an approximant of the

pressure field p. Then (p − q) ∈
∼
L2(Ω), and condition (2.9) implies that

sup
w∈V0,w �=0

∫
Ω
(p − q) div w dx

‖p − q‖∇w
≥ CLBB .

Thus, for any small positive ε there exists a nonzero function wε
pq ∈ V0 such that

(2.19)
∫

Ω

(p − q) div wε
pq dx ≥ (CLBB − ε)‖p − q‖‖∇wε

pq‖.

Since
ν

∫
Ω

ε(u) : ε(wε
pq) dx =

∫
Ω

(f · wε
pq + p div wε

pq) dx,
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we have ∫
Ω

(p − q) div wε
pq dx

= ν

∫
Ω

ε(u − v̂) : ε(wε
pq) dx +

∫
Ω

(νε(v̂) − τ ) : ε(wε
pq) dx

+
∫

Ω

(
τ : ε(wε

pq) + ∇q · wε
pq − f · wε

pq

)
dx,

(2.20)

where as v̂ we can take an arbitrary function in V0 + u0, and as τ an arbitrary tensor-
valued function in Σ.

Relations (2.19) and (2.20) lead to the estimates

‖p − q‖ ≤ 1
(CLBB − ε)‖∇wε

pq‖

×
[
ν

∫
Ω

(
ε(u − v̂) : ε(wε

pq) + (νε(v̂) − τ ) : ε(wε
pq)

)
dx

+
∫

Ω

(
−wε

pq · div τ + ∇q · wε
pq − f · wε

pq

)
dx

]
≤ 1

(CLBB − ε)
[
ν‖ε(u − v̂)‖ + ‖νε(v̂) − τ‖ + |||||| div τ + f −∇q ||||||

]
.

The first term on the right-hand side of this inequality is estimated by (2.17). Since ε
may be taken arbitrarily small, we obtain the following estimate for the deviation from
the exact pressure field:

(2.21)
1
2
‖p − q‖ ≤ ν

C2
LBB

‖ div v̂‖ +
1

CLBB
‖νε(v̂) − τ‖ +

1
CLBB

|||||| div τ + f −∇q |||||| .

It is easily seen that the right-hand side of (2.21) consists of the same terms as the
right-hand side of (2.17) and vanishes if and only if v̂ = u, τ = σ, and p = q. However,
in this case, the dependence of the penalty factors from the constant CLBB is stronger.

If τ ∈ Σdiv and q ∈
∼
W , then the last term on the right in (2.21) is estimated by the

quantity ‖ div τ + f −∇q‖, which is easy to compute.
Estimates (2.17), (2.18), and (2.21) have a clear meaning. They show that the norms

of the deviations of v̂ ∈ V0 + u0 and q ∈
∼
L2(Ω) from the exact solutions u and p of the

Stokes problem are dominated by the sum of the residuals that arise when we substitute
in (2.1)–(2.3) the tensor-valued function τ , which can be regarded as an approximant
for the stress field σ. In these estimates, the penalty multipliers depend only on the
constants cF , CLBB , and ν.

Remark 2.1. It may happen to be convenient to search an approximate solution v of the
stationary Stokes problem in the class W 1

2 without requiring that the boundary condition
(2.4) be satisfied exactly (such a situation may arise, e.g., when Ω has a very complicated
boundary). In this case, the respective error majorant will involve yet another term,
which can be viewed as a penalty for the violation of the boundary condition (for problem
(1.2) this question was analyzed in the paper [54]). The errors arising due to discrepancies
in boundary conditions of other types can be estimated by the method developed by
Repin, Sauter and Smolianski in [55]. For the nonstationary Stokes problem, a posteriori
error estimates can be obtained by the method exposed in [53]. They have the same
structure as for the stationary Stokes problem, with the only difference that integration
should be done additionally over the time variable in the limits of the time interval
considered.
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Remark 2.2. Estimates of the energy norm of the deviation from an exact solution make it
possible to obtain exact upper bounds of the error in local norms. For example, consider
problem (1.2) and the corresponding estimate (1.8). Let ω be some subdomain of Ω. We
are interested in the quantity ‖∇(u − v)‖ω :=

(∫
ω
|∇(u − v)|2 dx

)1/2. Consider the set

V0ω := {w ∈ V0 | w(x) = α, x ∈ ω, α ∈ R}.
For any w ∈ V0ω and any number α, we have

‖∇(u − v)‖ω ≤ ‖∇(v + w − u)‖.
Therefore,

‖∇(u − v)‖ω ≤ ‖∇(v + w) − y‖ + CF ‖ div y + f‖.
To obtain the sharpest upper estimate for the local norm, we must take the infimum on
the right–hand side with respect to y ∈ H(div, Ω) and w ∈ V0ω. Similar local estimates
for the Stokes problem follow from (2.15) and (2.18).

2.4. Estimates for other stationary problems.

2.4.1. Problems with the condition div u = φ. In many cases, (2.3) is replaced by the
condition

(2.22) div u = φ in Ω,

where φ is a given function in
∼
L2(Ω). Suppose uφ ∈ V0 satisfies the above condition.

Then, setting u = ū + uφ and ū0 = u0 − uφ, we represent the corresponding boundary-
value problem in the following form: find ū ∈ J̊1

2 (Ω) + ū0 such that

− div σ̄ + ∇p = f̄ in Ω,(2.23)

σ̄ = νε(ū) in Ω,(2.24)

where f̄ = f + ν div ε(uφ) ∈ H−1. Assume that u is approximated by some v ∈ V0 + u0.
We write v in the form v = v̄ + uφ. Applying (2.17), we obtain

‖∇(u − v)‖ = ‖∇(ū − v̄)‖

≤ ‖νε(v̄) − τ‖ + |||||| div τ + f̄ −∇q |||||| +
2ν

CLBB
‖ div v̄‖.

Here we set τ = −νε(uφ) + η, where η ∈ Σ. Then div τ + f̄ = div η + f and νε(v̄)− τ =
νε(v) − η. Therefore,

(2.25) ‖∇(u − v)‖ ≤ ‖νε(v) − η‖ + |||||| div η + f −∇q |||||| +
2ν

CLBB
‖ div v − φ‖.

2.4.2. Problems for almost incompressible fluids. Models of almost incompressible fluids
are often used for constructing sequences of functions converging to a solution of the
Stokes problem. In this case, the incompressibility condition is replaced by a term that
contains the divergence with a large coefficient. Namely, we must find uδ ∈ V satisfying
the integral identity∫

Ω

(
νε(uδ) : ε(w) +

1
δ

div uδ div w
)

dx =
∫

Ω

f · w dx, w ∈ V0,(2.26)

and the boundary condition

(2.27) uδ = u0 on ∂Ω.

It is not difficult to show (see, e.g., [57]) that uδ tends to the solution u of the Stokes

problem in the W 1
2 norm, and pδ = −1

δ div uδ ∈
∼
L2(Ω) converges to the corresponding

pressure function p in L2 as δ → 0.
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By (2.17), we obtain an estimate for the difference between u and uδ. In (2.17), we
set τ = τδ := νε(uδ) and q = pδ. Then ‖νε(uδ) − τδ‖ = 0, and

|||||| div τδ + f −∇pδ |||||| = sup
w∈V0

∫
Ω

(−νε(uδ) : ε(w) + f · w + pδ div w) dx

‖∇w‖
= 0.

Thus, we conclude that

(2.28)
1
2
‖ε(u − uδ)‖ ≤ 1

CLBB
‖ div uδ‖.

We observe that the deviation from the exact solution of the Stokes problem is controlled
by the norm of the divergence of the problem (2.26)–(2.27). A similar estimate can be
obtained for the approximations constructed with the help of the Uzawa algorithm.

2.4.3. Convection–diffusion equation. The method described above can be used to derive
estimates of deviations from exact solutions for models of processes with convection and
diffusion. As an example, we consider the problem

− div A∇u + a · ∇u = f in Ω ∈ R
2,(2.29)

u = 0 on ∂Ω.(2.30)

Here A is a symmetric matrix with bounded measurable coefficients and such that

(2.31) ν1|y|2 ≤ Ay · y ≤ ν2|y|2,
and a is a given vector-valued function satisfying the conditions

(2.32) a ∈ L∞(Ω, Rd), div a ∈ L∞, div a ≤ 0.

The solution u ∈ W̊ 1
2 (Ω) is the function that satisfies the integral identity

(2.33)
∫

Ω

(A∇u · ∇w + (a · ∇u)w) dx =
∫

Ω

fw dx, w ∈ W̊ 1
2 (Ω);

this relation can also be presented in the form∫
Ω

(A∇(u − v) · ∇w + (a · ∇(u − v))w) dx

=
∫

Ω

(fw − A∇v · ∇w − (a · ∇v)w) dx.

(2.34)

Observe that
1
2

∫
Ω

(div a)(u − v)2 dx = −1
2

∫
Ω

a · ∇((u − v)2) dx

= −
∫

Ω

(u − v)a · ∇(u − v) dx.

Setting w = u − v, we rewrite (2.34) as follows:

|||∇(u − v)|||2 − 1
2

∫
Ω

(div a)(u − v)2 dx

=
∫

Ω

((f − a · ∇v + div y)(u − v) + (y − A∇v) · ∇(u − v)) dx,

(2.35)

where y(x) is an arbitrary function in H(Ω, div), and |||z|||2 :=
∫
Ω

Az · z dx. This yields
the estimate

(2.36) ν1|||∇(u − v)||| ≤ ‖y − A∇v‖ + CF ‖f − a · ∇v + div y‖.
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If div a(x) ≤ −2δ2, then (2.35) implies that

(2.37)

|||∇(u − v)|||2 + δ2‖u − v‖2

≤
∫

Ω

(f − a · ∇v + div y)(u − v) + (y − A∇v) · ∇(u − v) dx

≤
√

1
δ2

‖f − a · ∇v + div y‖2 +
1
ν2
1

‖y − A∇v‖2
√
|||∇(u − v)|||2 + δ2‖u − v‖2,

which leads to the estimate

|||∇(u − v)|||2 + δ2‖u − v‖2

≤ 1
δ2

‖f − a · ∇v + div y‖2 +
1
ν2
1

‖y − A∇v‖2.(2.38)

2.4.4. Oseen equation. The classical formulation of the Oseen boundary-value problem
with Dirichlet boundary conditions looks like this:

−ν∆u + div(a ⊗ u) = f −∇p in Ω,(2.39)

div u = 0 in Ω,(2.40)

u = 0 on ∂Ω.(2.41)

Here a is a vector-valued function satisfying div a = 0, and ⊗ denotes the tensor product
of vectors. A function u ∈ J̊1

2 (Ω) that satisfies the integral identity

(2.42)

∫
Ω

(ν∇u : ∇w − (a ⊗ u) : ∇w) dx =
∫

Ω

f · w dx,

w ∈ J̊1
2 (Ω),

is a weak solution of this problem. Let v ∈ J̊1
2 (Ω). We reshape (2.42) to the form∫

Ω
(ν∇(u − v) : ∇w − (a ⊗ (u − v)) : ∇w) dx

=
∫

Ω

(f · w − ν∇v : ∇w + (a ⊗ v) : ∇w) dx,(2.43)

w ∈ J̊1
2 (Ω).

Setting w = u − v, we observe that∫
Ω

(a ⊗ w) : ∇w dx = −
∫

Ω

div(a ⊗ w) · w dx

= −
∫

Ω

(a · ∇w) · w dx.

Since ∇(w · w) = 2∇w · w, we have∫
Ω

(a ⊗ w) : ∇w dx = −1
2

∫
Ω

a · ∇(w · w) dx = 0.

Consequently, (2.43) leads to the inequality

(2.44) ν‖∇(u − v)‖ ≤ ‖τ − ν∇v‖ + |||||| f −∇q − div(a ⊗ v) + div τ |||||| ,

where τ (x) ∈ Σ and q ∈
∼
L2(Ω). Assume that τ and q have some higher regularity

(namely, τ ∈ H(Ω, div) and q ∈
∼
L2(Ω) ∩ W 1

2 ). Then, (2.44) implies

(2.45) ν‖∇(u − v)‖ ≤ ‖τ − ν∇v‖ + CF ‖f −∇q − div(a ⊗ v) + div τ‖,
which is a generalization of the estimates obtained for the Stokes problem.
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If u is approximated by a function v̂ ∈ V0, then the corresponding estimate for the
deviation norm can be deduced in the same way as for the Stokes problem. In this case,
the majorant includes an additional term which penalizes the possible violations of the
incompressibility condition. This estimate has the following form:

ν‖∇(u − v̂)‖

≤ ‖τ − ν∇v̂‖ + CF ‖f −∇q − div(a ⊗ v̂) + div τ‖ +
2ν

CLBB
‖ div v̂‖.

(2.46)

§3. Estimates for deviations from the exact solutions

to be searched in a subspace

The method described above can be extended to a wide range of problems whose
solutions are searched in a certain subspace of the basic energy space. Suppose V is a
reflexive Banach space embedded in a Hilbert space U with scalar product (·, ·) and norm
‖ · ‖. Let V0 be a linear subspace of V , let Λ denote a bounded linear operator acting
from V0 to U , and let Λ

∗ : U → V ∗
0 denote the operator conjugate to Λ in the sense that

(3.1) (y, Λw) = 〈〈〈Λ∗y, w〉〉〉, w ∈ V0.

Here and in what follows 〈〈〈w∗, w〉〉〉 denotes the value of the functional w∗ ∈ V ∗
0 at w ∈ V0.

Let A ∈ L(U, U) be a selfadjoint operator satisfying the relation

(3.2) ν1‖y‖2 ≤ (Ay, y) ≤ ν2‖y‖2, y ∈ U,

with positive constants ν1 and ν2 independent of y. This operator determines an equiv-
alent norm |||y||| := (Ay, y)1/2. Let Y denote the space U endowed with this norm. The
inverse operator A−1 is also nondegenerate. It determines another equivalent norm
|||y|||∗ := (A−1y, y)1/2, and the space U endowed with this norm will be denoted by Y ∗.

We define another pair of mutually conjugate linear operators B : V0 → H and
B∗ : H → V ∗

0 , where H is a Hilbert space with scalar product (., .)H . It is convenient to
present the spaces and operators under consideration by the following diagram:

H
B←− V0

Λ−→ U (Y, Y ∗)���
H

B∗
−→ V ∗

0
Λ∗
←− U.

Consider the following problem: find p ∈ H and u ∈ V0 satisfying the relation

(3.3) (AΛu, Λw) + 〈〈〈f − B∗p, w〉〉〉 = 0, w ∈ V0,

where
V0 := {v ∈ V0 | Bv = 0}.

Let v ∈ V0. From (3.3) it follows that

(3.4) (AΛ(u − v), Λw) = (y −AΛv, Λw) − 〈〈〈f + Λ
∗y, w〉〉〉

for any w ∈ V0 and y ∈ U . Recalling (3.3) and the relation

〈〈〈B∗q, w〉〉〉 = (q, Bw) = 0,

we arrive at the following estimate:

sup
w∈V0

|〈〈〈f + Λ
∗y, w〉〉〉|

|||Λw||| = sup
w∈V0

|〈〈〈f + Λ
∗y − B∗q, w〉〉〉|
|||Λw|||

≤ sup
w∈V0

|〈〈〈f + Λ
∗y − B∗q, w〉〉〉|
|||Λw||| ≤ 1

√
ν1

sup
w∈V0

|〈〈〈f + Λ
∗y − B∗q, w〉〉〉|
‖Λw‖ .



ESTIMATES OF DEVIATIONS FROM EXACT SOLUTIONS 851

The supremum on the right determines a norm to be denoted by |||||| f +Λ
∗y−B∗q |||||| . Thus,

(3.4) with w = u − v leads to the estimate

(3.5) |||Λ(u − v)||| ≤ |||y −AΛv|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q |||||| .

For elements not belonging to the subspace V0, their deviations from u can be esti-
mated provided that the operator B satisfies conditions similar to those stated in Lemma
2.2. Namely, assume that there is a constant c with the property that for any g belonging
to Im B := {z ∈ H | ∃v ∈ V0 : Bv = z} we can find an element ug ∈ V0 such that

(3.6) Bug = g and ‖ug‖V ≤ c‖g‖.
Set g = Bv̂, where v̂ is an element of V0. Then we can find vg ∈ V0 satisfying B(v̂−vg) = 0
and such that

(3.7) ‖vg‖V ≤ c‖Bv̂‖.
Therefore, w0 = (v̂ − vg) ∈ V0 satisfies the relation

‖v̂ − w0‖V ≤ c‖Bv̂‖.
Since Λ is a bounded operator, we have

(3.8) ‖Λ(v̂ − w0)‖ ≤ C‖Bv̂‖
with constant C independent of v̂.

Suppose u is compared with a function v̂ ∈ V0. Let w0 ∈ V0 be a function satisfying
(3.8). Then

(3.9)

|||Λ(u − v̂)||| ≤ |||Λ(u − w0)||| + |||Λ(v̂ − w0)|||

≤ |||AΛw0 − y|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q |||||| + |||Λ(v̂ − w0)|||

≤ |||AΛ(v̂ − w0)|||∗ + |||AΛv̂ − y|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q |||||| + |||Λ(v̂ − w0)|||

= 2|||Λ(v̂ − w0)||| + |||AΛw0 − y|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q ||||||

≤ 2
√

ν2‖Λ(v̂ − w0)‖ + |||AΛw0 − y|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q |||||| .

Thus, we arrive at the estimate

(3.10) |||Λ(u − v̂)||| ≤ 2
√

ν2C‖Bv̂‖ + |||AΛv̂ − y|||∗ +
1

√
ν1

|||||| f + Λ
∗y − B∗q |||||| .

It is easily seen that the problem under consideration can be presented as the following
system: ⎧⎪⎨⎪⎩

〈〈〈Λ∗σ + f − B∗p, w〉〉〉 = 0, w ∈ V0,

σ = AΛu,

Bv = 0.

Each term on the right-hand side in (3.10) is a penalty for the possible violation of one
of the equations in this system.

For the Stokes problem we have Λv = ε(v) and A = νI, where I denotes the identity
operator and Bv = − div v. It is easily seen that in this case we have ν1 = ν2 = ν, and

|||AΛv̂ − y|||∗ =
1√
ν
‖νε(v) − y‖.

Since |||Λ(u − v̂)||| =
√

ν‖Λ(u − v̂)‖, we see that estimate (3.10) coincides with (2.17).
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§4. Estimates of deviations from exact solutions for some models

of nonlinear viscous fluids

4.1. Mathematical models of generalized Newtonian fluids. We demonstrate
the variational method for obtaining estimates of deviations from exact solutions by the
example of the model describing the stationary flow of a generalized Newtonian fluid.
The classical formulation of this problem is as follows: find a vector-valued function
u, a scalar-valued function p, and a tensor-valued function σ that satisfy the system
(2.1), (2.3), and (2.4), where (2.2) is replaced by the following constitutive relation of a
nonlinearly viscous fluid:

(4.1) σ ∈ ∂g(ε(u)) in Ω.

Here, the function g determines the so-called dissipative potential and depends on the
physical properties of the fluid, and ∂g denotes the subdifferential of g (if g is Gateaux
differentiable, then the subdifferential is well defined and coincides with the derivative
g′).

In what follows, we consider dissipative potentials of the form

(4.2) g(ε) =
ν

2
|ε|2 + ψ(ε),

where ψ : M
d×d → R+ is a convex function such that

(4.3) ψ(0) = 0, ψ(ε) ≤ c1|ε|2 + c2, c1 > 0.

The cases where ψ ≡ 0 and ψ(ε) = k∗|ε| with k∗ > 0 correspond to the models of the
Newtonian and the Bingham fluid, respectively.

Models with dissipative potentials of the above type belong to the class of generalized
Newtonian fluids; this class was introduced by Ladyzhenskaya in [3, 40]. At present, a
large number of models of viscous fluids of this type are known (see, e.g., [12, 41, 42]). For
various models of generalized Newtonian fluids with smooth and nonsmooth potentials,
the regularity of weak solutions was investigated in the book [33] by Fuchs and Seregin.

A weak solution of the problem under consideration is defined as a function u ∈
J̊1

2 (Ω) + u0 satisfying the integral identity

(4.4)

∫
Ω

νε(u) : ε(v − u) dx + Ψ(ε(v)) − Ψ(ε(u)) ≥
∫

Ω

f · (v − u) dx,

v ∈ J̊1
2 (Ω) + u0,

where Ψ(ε) :=
∫
Ω

ψ(ε) dx. Also, such a solution can be defined as the minimizer of the
following variational problem.

Problem P. Find u ∈ J̊1
2 (Ω) + u0 such that

J(u) = inf P := inf
v∈J̊1

2 (Ω)+u0

J(v), J(v) =
∫

Ω

g(ε(v)) dx −
∫

Ω

f · v dx.

The existence and uniqueness of a minimizer of this problem follows from the known
results of the calculus of variations for problems with convex lower semicontinuous func-
tionals (see, e.g., [32]).

4.2. Variational method of deriving estimates for deviations from exact so-
lutions. For the class of problems described above, it is convenient to derive estimates
of deviations from exact solutions by the variational method, which is based on esti-
mation of the quantity in question in terms of the difference between the values of the
corresponding functionals. In our case, this estimate has the form

(4.5)
ν

2

∫
Ω

|ε(v − u)|2 dx ≤ J(v) − J(u),
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where v is an arbitrary function in J̊1
2 (Ω)+u0. Estimate (4.5) follows from (4.4) and the

identity

J(v) − J(u) =
∫

Ω

(ν

2
|ε(v − u)|2 + νε(u) : ε(v − u)

)
dx

+ Ψ(ε(v)) − Ψ(ε(u)) −
∫

Ω

f · (v − u) dx.

To estimate J(u) from below, we construct a family of variational problems with
functionals defined on a function class wider than J̊1

2 (Ω)+u0. We refer to these problems

as “perturbed”. We take q ∈
∼
L2(Ω) and τ2 ∈ Σ and consider the functional

J(v) :=
∫

Ω

(ν

2
|ε(v)|2 + τ2 : ε(v) − ψ∗(τ2) − f · v − q div(v − u0)

)
dx,

where ψ∗ : M
d×d → R is the functional conjugate to ψ in the sense of Young–Fenchel,

i.e.,
ψ∗(κ∗) = sup

κ∈Md×d

{κ∗ : κ − ψ(κ)}.

Now, the following variational problem arises.

Problem P. Find u ∈ V0 + u0 such that

J(u) = inf P := inf
v∈V0+u0

J(v).

It is clear that the minimizer u depends on q and τ2, so that we should denote u
by uq,τ2 and the problem itself by Pq,τ2 . However, for simplicity, we shall not do this,
assuming that the bar above means that a quantity depends on the above functions. It
is easy to verify that Problem P is uniquely solvable and that

(4.6) inf P ≤ inf P.

Indeed, the existence and uniqueness of u follows from the properties of the convex
functional J and the closed set V0 + u0. In accordance with the definition of ψ∗, for any
v ∈ J̊1

2 (Ω) + u0 we have the inequality

J(v) =
∫

Ω

(ν

2
|ε(v)|2 + τ2 : ε(v) − ψ∗(τ2)

)
dx −

∫
Ω

f · v dx ≤ J(v).

Therefore,
inf

v∈V0+u0
J(v) ≤ inf

v∈J̊1
2 (Ω)+u0

J(v) ≤ inf
v∈J̊1

2 (Ω)+u0

J(v) = inf P,

which gives (4.6).
Relations (4.5) and (4.6) imply that

(4.7)
ν

2

∫
Ω

|ε(v − u)|2 dx ≤ J(v) − inf P.

Inequality (4.7) cannot be used straightforwardly for estimation of deviations from the
exact solution because the value of inf P is unknown. However, this difficulty can be
avoided if we invoke the so-called dual variational problem (we denote it by P∗

), which
is a maximization problem for a certain functional. If we manage to establish that
inf P = supP∗

, then inf P in (4.7) can be replaced by a lower estimate of supP∗
.

Estimates obtained in this way will depend on τ2 and q and also on the variables of the
dual problem. Note that there are different variational problems that may be viewed as
dual to P. The problem is to find a proper version in this collection, namely, a version
that leads to estimates convenient for practice and having good accuracy. For the class
of problems under consideration, the following version is possible.
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Define the Lagrangian

L(v; τ1) :=
∫

Ω

(
ε(v) : (τ1 + τ2) −

1
2ν

|τ1|2 − ψ∗(τ2)
)

dx

−
∫

Ω

f · v dx −
∫

Ω

q · div ·(v − u0) dx.

Then

J(v) = sup
τ1∈Σ

L(v; τ1),

so that Problem P is equivalent to the minimax problem infv∈V0+u0supτ1∈ΣL(v; τ1). The
corresponding dual problem is supτ1∈Σinfv∈V0+u0L(v; τ1). Observe that

inf
v∈V0+u0

L(v; τ1) =

{
I(τ1) in τ1 ∈ Σf (Ω),
−∞ in τ1 �∈ Σf (Ω),

where

I(τ1) =
∫

Ω

(
ε(u0) : (τ1 + τ2) −

1
2ν

|τ1|2 − ψ∗(τ2) − f · u0

)
dx,

and Σf is the affine subset in Σ that consists of the functions τ satisfying the condition
div(τ + τ2) = ∇q − f (in the sense of distributions), i.e.,

Σf (Ω) :=
{

τ ∈ Σ(Ω)
∣∣∣ ∫

Ω

ε(w) : (τ + τ2) dx =
∫

Ω

(f · w + q div w) dx, w ∈ V0

}
.

Thus, we arrive at the following formulation of the dual variational problem.

Problem P∗
. For given τ2 ∈ Σ and q ∈

∼
L2(Ω), find a function σ1 ∈ Σf (Ω) such that

I(σ1) = supP∗
:= sup

τ1∈Σf

I(τ1).

Theorem 4.1. Problem P∗
has a unique solution σ1 satisfying the conditions

inf P = J(u) = supP∗
= I(σ1),(4.8)

νε(u) = σ1.(4.9)

Proof. The functional −I is strictly convex and Σf is a convex and closed subset of Σ.
Therefore, Problem P∗

has a unique solution. We verify (4.8) and (4.9). First, note that
supP∗ ≤ inf P. This fact follows from the inequality sup inf L ≤ inf sup L, which is true
for all minimax problems. Next, we use the fact that u satisfies the integral identity∫

Ω

(νε(u) : ε(w) + τ2 : ε(w)) dx =
∫

Ω

(f · w + q div w) dx,

w ∈ V0.

It follows that∫
Ω

f · u dx

=
∫

Ω

(ν|ε(u)|2 − νε(u) : ε(u0) + τ2 : ε(u − u0) + f · u0 − q div(u − u0)) dx.
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Therefore,

inf P = J(u)

=
∫

Ω

(ν

2
|ε(u)|2 + τ2 : ε(u) − ψ∗(τ2)

)
dx +

∫
Ω

(q div(u − u0) − f · u) dx

=
∫

Ω

(
τ2 : ε(u0) −

ν

2
|ε(u)|2 − ψ∗(τ2) + νε(u0) : ε(u)

)
dx −

∫
Ω

f · u0 dx.

Since νε(u) ∈ Σf , we have I(νε(u)) ≤ supP∗
, and

I(νε(u))

=
∫

Ω

(
ε(u0) : (νε(u) + τ2) −

ν

2
|ε(u)|2 − ψ∗(τ2)

)
dx −

∫
Ω

f · u0 dx ≤ supP∗

≤ inf P

=
∫

Ω

(
τ2 : ε(u0) −

ν

2
|ε(u)|2 − ψ∗(τ2) + νε(u0) : ε(u)

)
dx −

∫
Ω

f · u0 dx.

Consequently, νε(u) = σ1 and inf P = supP∗
. �

4.3. Estimates of deviations from exact solutions for solenoidal fields. Suppose
v ∈ J̊1

2 (Ω) + u0, i.e., the exact solution u is compared with a vector-valued function v
satisfying div v = 0.

From (4.5), (4.7), and (4.8) it follows that for any v ∈ J̊1
2 (Ω) + u0 and any τ1f ∈ Σf (Ω)

we have the inequality

(4.10)
∫

Ω

ν

2
|ε(v − u)|2 dx ≤ J(v) − inf P = J(v) − supP∗ ≤ J(v) − I(τ1f ).

We estimate the right-hand side of (4.10) as follows:

J(v) − I(τ1f ) ≤
∫

Ω

(
ν

2
|ε(v)|2 +

1
2ν

|τ1f |2 − ε(u0) : τ1f

)
dx

+
∫

Ω

(ψ(ε(v)) + ψ∗(τ2) − ε(u0) : τ2) dx +
∫

Ω

f · (u0 − v) dx.

Let q ∈
∼
L2(Ω). Since τ1f ∈ Σf (Ω) and v ∈ J̊1

2 (Ω) + u0, we have∫
Ω

f · (u0 − v) dx =
∫

Ω

(f · (u0 − v) + q div(u0 − v)) dx

=
∫

Ω

ε(u0 − v) : (τ1f + τ2) dx.

As a result, we obtain the estimate

(4.11)
ν

2
‖ε(v − u)‖2 ≤ M1(v, τ1f , τ2) := D1(ε(v), τ1f ) + D2(ε(v), τ2),

where

D1(ε(v), τ1f ) :=
∫

Ω

(
ν
2 |ε(v)|2 + 1

2ν |τ1f |2 − ε(v) : τ1f

)
dx = 1

2ν ‖νε(v) − τ1f‖2;

D2(ε(v), τ2) :=
∫

Ω

(ψ(ε(v)) + ψ∗(τ2) − ε(v) : τ2) dx.

Clearly, both functionals D1 and D2 are nonnegative. Moreover, D1(ε(v), τ1f ) = 0 if
and only if τ1f = νε(v). By the properties of conjugate functionals (see, e.g., [11, 32]),
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D2(ε(v), τ2) = 0 if and only if τ1f ∈ ∂ψ(ε(v)). Now, it is easy to analyze the meaning of
estimates (4.11). For this, we represent the main system in the form

− div(σ1 + σ2) = f −∇p in Ω,(4.12)

div u = 0 in Ω,(4.13)

σ1 = νε(u), σ2 ∈ ∂ψ(ε(u)) in Ω,(4.14)

u = u0 on ∂Ω.(4.15)

If v ∈ J̊1
2 (Ω) + u0 and τ1f ∈ Σf (Ω), then − div(τ1f + τ2) = f − ∇q and div v = 0, so

that for v, τ1f , τ2, and q, relations (4.12), (4.13) and (4.15) are satisfied. Estimate (4.11)
shows that, in this case, the energy norm of the deviation from the exact solution is
controlled by the quantities D1(ε(v), τ1f ) and D2(ε(v), τ2), which characterize the “degree
of inconsistency” in (4.14). Therefore, the majorant M1(v, τ1f , τ2) attains its exact lower
bound (which is equal to zero) if and only if v = u, τ1f = σ1, and τ2 = σ2.

Certainly, the condition τ1f ∈ Σf (Ω) is inconvenient, and it is desirable to lift it
somehow. This can be done as follows. Let τ1 �∈ Σf (Ω). Then

D1(ε(v), τ1f ) ≤ (1 + β)D1(ε(v), τ1) +
1
2ν

(
1 +

1
β

)
‖τ1f − τ1‖2,

where β is an arbitrary positive number. Then, by (4.11),

ν

2
‖ε(v − u)‖2 ≤ (1 + β)D1(ε(v), τ1) + D2(ε(v), τ2) +

(
1 +

1
β

) 1
2ν

‖τ1f − τ1‖2,

and this estimate is valid for any τ1f ∈ Σf . We use this in order to estimate the last
term. Observe that for any g belonging to the space V ∗

0 conjugate to V0, there exists
τg ∈ Σ such that div τg = g (in the sense of distributions) and

‖τg‖ ≤ |||||| g |||||| := sup
V0

|〈g, w〉|
‖ε(w)‖ .

This fact follows from the solvability of the following problem: find u ∈ V0 satisfying the
integral identity

∫
Ω

ε(u) : ε(w) dx = 〈g, w〉 for any w ∈ V0, and the relation ‖∇u‖ ≤ |||||| g |||||| .
Since

div(τ1 − τ1f ) = ḡ := div(τ1 + τ2) + f −∇q,

we conclude that there is a function τḡ satisfying the conditions div τḡ = ḡ and ‖τḡ‖ ≤
|||||| ḡ |||||| . It is easily seen that the function τ̂ = τ1 − τḡ satisfies div τ̂ = − div τ2 − f + ∇q

and, consequently, belongs to Σf . Set τ1f = τ̂ . Then

‖τ1f − τ1‖ = ‖τ̂ − τ1‖ = ‖τḡ‖ ≤ |||||| div(τ1 + τ2) + f −∇q |||||| .

Thus, we arrive at the desired estimate

(4.16)

ν

2
‖ε(v − u)‖2

≤ (1 + β)D1(ε(v), τ1) + D2(ε(v), τ2) +
1 + β

2νβ
|||||| div(τ1 + τ2) + f −∇q |||||| 2,

which is true for any v ∈ J̊1
2 (Ω) + u0, any pair (τ1, τ2) ∈ Σ×Σ, and any β > 0. The right-

hand side of (4.16) is a majorant for the norm of the deviation from the exact solution;
we denote this majorant by M2(β, v, τ1, τ2, q). If the sum τ1 + τ2 has a somewhat higher

regularity, so that (τ1 + τ2) ∈ Σdiv(Ω) and, moreover, q ∈
∼
W (Ω), then the last term of
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the above majorant is estimated by an explicitly computable integral, the same way it
was done in §2. As a result, we obtain the estimate

(4.17)

ν

2
‖ε(v − u)‖2

≤ (1 + β)D1(ε(v), τ1) + D2(ε(v), τ2) +
1 + β

2νβ
C2

F ‖ div(τ1 + τ2) + f −∇q‖2.

Assume that the right-hand side of (4.16) is equal to zero. Then

− div(τ1 + τ2) = f −∇q

in the sense of distributions (if (τ1 + τ2) ∈ Σdiv(Ω) and q ∈
∼
W (Ω), then this identity

is fulfilled in the sense of L2-functions). Moreover, the vanishing of D1(ε(v), τ1) and
D2(ε(v), τ2) means that τ1 = νε(v) and τ2 ∈ ∂ψ(ε(v)) almost everywhere. Since v ∈
J̊1

2 (Ω) + u0, relations (4.13) and (4.15) are also satisfied. Consequently, in this case v
coincides with the exact solution u, τ1 = σ1, and τ2 = σ2.

We summarize the above in the following statement.

Theorem 4.2. 1. Suppose β ∈ R+, v ∈ J̊1
2 (Ω) + u0, τ1 ∈ Σ, τ2 ∈ Σ, and q ∈

∼
L2(Ω);

then the functional M2(β, v, τ1, τ2, q) majorizes the quantity ‖ε(v − u)‖2.
2. For any β ∈ R+, the infimum of this functional on the set (J̊1

2 (Ω) + u0)×Σ×Σ×
∼
L2(Ω) is equal to zero, and it is attained if and only if v = u, τ1 = σ1, τ2 = σ2, and
q = p.

We illustrate this result by two examples.

Example 1. For the Stokes problem we have ψ(ε) ≡ 0. Set τ2 = 0. Then D2(ε(v), τ2) ≡
0, and (4.16) takes the form (2.14).

Example 2. For the Bingham model we have ψ(ε) = k∗|ε|, and

ψ∗(τ (x)) =

{
0 if |τ (x)| ≤ k∗,

+∞ if |τ (x)| > k∗.

Therefore,

D2(ε(v), τ2) =
∫

Ω

(k∗|ε(v)| − ε(v) · τ2) dx

if τ2 satisfies the condition |τ2(x)| ≤ k∗ almost everywhere. Otherwise, D2(ε(v), τ2) =
+∞. Then (4.16) takes the form

(4.18)

ν

2
‖ε(v − u)‖2

≤
∫

Ω

( (1 + β)
2ν

|νε(v) − τ1|2 + k∗|ε(v)| − ε(v) : τ2

)
dx

+
1 + β

2βν
|||||| div(τ1 + τ2) + f −∇q |||||| 2.

If τ1, τ2, and q are such that q ∈
∼
W and div(τ1 + τ2) ∈ L2(Ω), then the last term in

(4.18) is estimated by an integral.
It is well known that a Bingham fluid may have two zones: the congestion zone Ω0

(where ε(u) ≡ 0) and the flow zone Ω1 (where |ε(u)| > 0). Assume that the right-hand
side of (4.18) vanishes for some functions v, τ1, τ2, and q. Then in Ω0 we have ε(v) = 0,
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and, consequently, τ1 = 0 and div τ2 + f −∇q = 0 for some τ2 satisfying |τ2(x)| ≤ 1. At
the same time, in the flow zone Ω1 we have

τ2 = k∗
ε(v)
|ε(v)| , τ1 = νε(v), div(τ1 + τ2) + f −∇q = 0.

4.4. Estimates of deviations from exact solutions for velocity fields of general
type. Suppose the exact solution is compared with a function v̂ ∈ V0 + u0. To obtain
estimates of the difference between v̂ and u in the energy norm we can apply the same
method as was used in §2 for the Stokes problem. Namely, take v ∈ J̊1

2 (Ω) + u0. For any
γ > 0 we have

‖ε(v̂ − u)‖2 ≤ (1 + γ)
γ

‖ε(v̂ − v)‖2 + (1 + γ)‖ε(v − u)‖2.

Since v ∈ J̊1
2 (Ω) + u0, the second term is estimated by (4.16). As a result, we obtain an

estimate involving a function v, which may be chosen arbitrarily in the set J̊1
2 (Ω) + u0.

Therefore, we can pass to the infimum over all such functions. All the details of this
procedure can be found in [52]. For this reason, here we omit all technical details and
present only the final estimate:

(4.19)

ν

2
‖ε(v̂ − u)‖2

≤ c1D1(ε(v̂), τ1) + c2

(
D2(ε(v̂), τ2) + δ

2ν ‖η̂2 − τ2‖2
)

+ c3 |||||| div(τ1 + τ2) + f −∇q |||||| 2 + c4Rdiv(v̂),

where η̂2 ∈ ∂ψ(ε(v̂)), and the coefficients c1, c2, c3, and c4 are computed in terms of the
positive constants γ, δ, α1, α2, and α3 by the formulas

c1 = (1 + γ)
(
1 + α1 +

1
α3

)
, c2 = c4 = (1 + γ), c3 = (1 + α2 + α3)

1 + γ

2ν
.

The functional Rdiv is a penalty for the possible violation of the incompressibility
condition. It is defined by the relation

Rdiv(v̂) = inf
v∈J̊1

2 (Ω)+u0

{µ

2
‖ε(v̂ − v)‖2 + R(v, v̂)

}
.

If the potential ψ is differentiable, then R(v, v̂) is defined by the formula

R(v, v̂) =
∫

Ω

(ψ′(v) − ψ′(v̂)) : ε(v − v̂) dx,

where µ = ν
(
1 + 1

γ + 1
α1

+ 1
α2

+ 1
δ

)
.

The right-hand side of (4.19) will be denoted by M3(v, τ1, τ2, q, δ, γ, α1, α2, α3); it is a
nonnegative functional. It is easily seen that, for any positive parameters, this functional
vanishes if and only if the velocity field v̂ ∈ V0 + u0 and the tensor-valued functions τ1

and τ2 (which correspond to the two parts of the stress field) satisfy the conditions

div(τ1 + τ2) + f −∇q = 0 in Ω,

div v̂ = 0 in Ω,

τ1 = ν(ε(v̂)), τ2 = ∂ψ(ε(v̂)) in Ω.

This means that

(4.20) v̂ = u, τ1 = σ1, τ2 = σ2, q = p.

All the above is summarized in the following statement.
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Theorem 4.3. 1. For any τ1 ∈ Σ, τ2 ∈ Σ, q ∈
∼
L2(Ω) and any positive γ, δ, α1, α2,

and α3, the functional M3(v̂, τ1, τ2, q) is a majorant of the energy norm of the difference
between v̂ and the exact solution u.

2. For any positive γ, δ, α1, α2, and α3, the infimum of this functional over all

v̂ ∈ V0 + u0, τ1 ∈ Σ, τ2 ∈ Σ, and q ∈
∼
L2(Ω) is equal to zero, and it is attained if these

variables coincide with the corresponding components of the true solution, i.e., if (4.20)
is fulfilled.

The first two terms of M3 can be computed directly. The third can be estimated

by a computable quantity provided τ1 + τ2 ∈ Σdiv(Ω) and q ∈
∼
W (Ω). Thus, it remains

to obtain a realistic and computable bound for the term Rdiv(v̂). In the paper [52], it
was shown how to do this for the Bingham model and for models with power growth
dissipative potentials.

Note that estimate (4.19) can be reshaped to a more compact form if we set τ2(v̂) ∈
∂ψ(ε(v̂)). Then

ν

2
‖ε(v̂ − u)‖2

≤ c1D1(ε(v̂), τ1) + c3 |||||| div(τ1 + τ2(v̂)) + f −∇q |||||| 2 + c4Rdiv(v̂).

In particular, if ψ is a differentiable functional, then
ν

2
‖ε(v̂ − u)‖2

≤ c1D1(ε(v̂), τ1) + c3 |||||| div(τ1 + ψ′(ε(v̂))) + f −∇q |||||| 2 + c4Rdiv(v̂).

Finally, we note that the majorants M1, M2 and M3 can be viewed as new functionals
defined on all possible approximations of the fields u, σ∗, and p. These majorants are
weighted sums of the residuals in relations (4.12)–(4.15), and they vanish only if the
exact solution is substituted in the majorant. The majorants constructed for many other
problems have a similar form (see, e.g., [10, 11, 50, 53]). These observations make it
possible to suggest that the majorants for the energy norm of the deviations from exact
solutions should consist of terms that may be thought of as penalties for the possible
violation of each of the relations, and the corresponding coefficients are determined by
the constants in the embedding theorems associated with the mathematical formulation
of the problem in question.
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