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HOMOGENIZATION OF A STATIONARY
PERIODIC MAXWELL SYSTEM

T. A. SUSLINA

Abstract. The homogenization problem is considered for a stationary periodic
Maxwell system in R3 in the small period limit. The behavior of four fields is stud-
ied, namely, of the strength of the electric field, the strength of the magnetic field,
the electric displacement vector, and the magnetic displacement vector. Each field is
represented as a sum of two terms. For some terms uniform approximations in the

L2(R3)-norm are obtained, together with a precise order estimate for the remainder
term.

§0. Introduction

0.1. In the present paper, we consider the homogenization problem for a stationary
periodic Maxwell system in the small period limit. This problem was studied intensively;
in particular, it was discussed in the books [BaPa, BeLP, ZhKO, Sa]. However, the known
results give only the weak convergence of solutions to the solution of the “homogenized”
system with constant coefficients.

We rely on the abstract approach developed in [BSu1, BSu2]. This approach makes
it possible to establish the convergence of resolvents in the operator L2-norm to the
resolvent of the homogenized problem, and simultaneously gives a remainder estimate of
precise order. At the same time, the Maxwell operator can be included in the class of
differential operators studied in [BSu1, BSu2] only in the case where one of two periodic
characteristics of the medium is constant. In [BSu2, Chapter 7], the homogenization
problem for the Maxwell operator was considered in the case where µ = 1. Here we
study the much more difficult general case, which requires essential modification of the
technique. The detailed comparison of the methods and results of the present paper and
those of [BSu2] is given below in Subsection 0.8.

0.2. Setting of the problem. We denote G = L2(R3; C3) and J = {f ∈ G : div f = 0}.
Let Γ be a lattice of periods in R3, and let Ω ⊂ R3 be the elementary cell of Γ. Assume
that the dielectric permittivity η(x) and the magnetic permeability µ(x) are Γ-periodic
matrix-valued functions and that η and µ are bounded and uniformly positive. We denote
by u the strength of the electric field and by v the strength of the magnetic field; w = ηu
is the electric displacement vector, and z = µv is the magnetic displacement vector. We
write the Maxwell operator M in terms of the displacement vectors, assuming that w
and z are solenoidal. Then M = M(η, µ) acts in the space J ⊕ J and is given by the
formula

M(η, µ) =
(

0 i curl µ−1

−i curl η−1 0

)
on the natural domain. The point λ = i is a regular point for M.
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Let ε > 0 be a parameter. Consider the family of operators Mε = M(ηε, µε) with
rapidly oscillating coefficients ηε(x) := η(ε−1x), µε(x) := µ(ε−1x). Our goal is to study
the behavior of the resolvent (Mε − iI)−1 as ε → 0. In other words, we are interested in
the behavior of the solution of the equation

(0.1) (Mε − iI)
(
wε

zε

)
=

(
q
r

)
, q, r ∈ J.

The corresponding strengths are given by uε = (ηε)−1wε and vε = (µε)−1zε. In detail,
(0.1) can be written as

(0.2)

⎧⎪⎨⎪⎩
i curl(µε)−1zε − iwε = q,

−i curl(ηε)−1wε − izε = r,

div wε = 0, div zε = 0.

Note that the resolvent of Mε could be considered not only at the point λ = i, but
also at any other nonreal point.

0.3. The main results. We represent each field as a sum of two terms. Namely,
wε = w(q)

ε + w(r)
ε , zε = z(q)

ε + z(r)
ε , where the pair of vectors w(q)

ε , z(q)
ε is the solution of

system (0.2) with r = 0, and the pair of vectors w(r)
ε , z(r)

ε is the solution of system (0.2)
with q = 0. Similarly, the fields uε, vε are also represented as sums.

For some terms, namely, for u(q)
ε , w(q)

ε and v(r)
ε , z(r)

ε , we obtain uniform approxi-
mations in the G-norm with a precise order remainder estimate. Such approximations
are the main results of the paper. For the remaining fields we still have only weak con-
vergence in G to the corresponding fields in the homogeneous “effective” medium with
characteristics η0, µ0. Here η0, µ0 are the “effective” matrices for the elliptic operators
− div η(x)∇, − div µ(x)∇, respectively. We recall the definition of the matrix µ0. Let
C ∈ C3, and let ΦC(x) be a periodic solution of the equation

(0.3) div µ(x)(∇ΦC + C) = 0, C ∈ C
3.

Then

µ0C = |Ω|−1

∫
Ω

µ(x)(∇ΦC + C) dx, C ∈ C
3.

The matrix η0 is defined similarly. The “elliptic” rule of finding the effective coef-
ficients for the Maxwell operator is well known (see, e.g., [BeLP, ZhKO, Sa]). Let
M0 = M(η0, µ0) denote the “effective” Maxwell operator with the constant coefficients
η0, µ0.

Now we describe the character of approximations. For definiteness, we dwell on the
case where q = 0. Let w(r)

0 , z(r)
0 be the solution of the “homogenized” system

(0.4) (M0 − iI)

(
w(r)

0

z(r)
0

)
=

(
0
r

)
.

We put u(r)
0 = (η0)−1w(r)

0 , v(r)
0 = (µ0)−1z(r)

0 . Besides the “homogenized” system (0.4),
we consider the “correction” system

(0.5) (M0 − iI)

(
ŵ(r)

ε

ẑ(r)
ε

)
=

(
0
rε

)
,

where the right-hand side rε depends on r and contains some (explicitly described) rapidly
oscillating (as ε → 0) factor with zero mean value. Then the solution of the “correction”
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system (0.5) weakly converges to zero in G. We put v̂(r)
ε = (µ0)−1ẑ(r)

ε . Approximations
for the fields v(r)

ε , z(r)
ε are chosen in the form

(0.6) ṽ(r)
ε = (1 + Y ε)(v(r)

0 + v̂(r)
ε ), z̃(r)

ε = (1 + Gε)(z(r)
0 + ẑ(r)

ε ),

where Y ε, Gε are appropriate rapidly oscillating periodic matrix-valued functions with
zero mean. We have

(0.7) ‖v(r)
ε − ṽ(r)

ε ‖G ≤ Cε‖r‖G, ‖z(r)
ε − z̃(r)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.

However, for u(r)
ε and w(r)

ε we still have only weak convergence to u(r)
0 , w(r)

0 .
In approximations (0.6) (after opening the parentheses), we distinguish the summands

v(r)
0 , z(r)

0 that do not depend on ε and are equal to the weak limits of v(r)
ε , z(r)

ε ; the other
summands weakly tend to zero in G. The rapidly oscillating factors in (0.6) and in
rε are described in terms of the periodic solutions ΦC of equations (0.3). Clearly, the
precise order estimates (0.7) are much more informative than the weak convergence of the
solutions (which follows from (0.7)). For the fields u(q)

ε , w(q)
ε , we obtain approximations

similar to (0.6), (0.7).

0.4. Reduction to an auxiliary second-order operator. Our method of investiga-
tion employs reduction to the homogenization problem for some vector elliptic second-
order operator. We explain this, again in the case of q = 0. In this case, (0.2) implies
that z(r)

ε is the solution of the problem

(0.8) curl(ηε)−1 curl(µε)−1z(r)
ε + z(r)

ε = ir, div z(r)
ε = 0, r ∈ J.

Then gε = (µε)−1/2z(r)
ε is the solution of the system

(0.9) (µε)−1/2 curl(ηε)−1 curl(µε)−1/2gε + gε = i(µε)−1/2r, div(µε)1/2gε = 0.

It is convenient to pass from (0.8) to (0.9), because the operator in (0.9) is selfadjoint
with respect to the standard inner product in G, while the operator in (0.8) is selfadjoint
with respect to the inner product with the weight (µε)−1 (which depends on ε).

Next, we extend system (0.9) in order to “remove” the divergence-free condition (de-
pending on the parameter ε). This leads us to consider the operator

(0.10) L = L(µ, η, ν) = µ−1/2 curl η−1 curl µ−1/2 − µ1/2∇ν div µ1/2,

which is selfadjoint in G. Here ν(x) is some bounded and uniformly positive Γ-periodic
function. Clearly, for application to the Maxwell operator it would suffice to assume that
ν(x) = 1. The operator L splits into the orthogonal sum G = G(µ) ⊕ J(µ), where the
subspace G(µ) consists of vector-valued functions of the form µ1/2∇ϕ, and J(µ) is formed
by the vector-valued functions f satisfying the divergence-free condition div µ1/2f = 0.
Mainly, we are interested in the part of L acting in J(µ). Let P(µ) denote the orthogonal
projection in G onto J(µ).

Let Lε := L(µε, ηε, νε) be an operator of the form (0.10) with rapidly oscillating
coefficients. Then the solution of system (0.9) can be written as

(0.11) gε = (Lε + I)−1(i(µε)−1/2r) = (Lε + I)−1P(µε)(i(µε)−1/2r).

Thus, our question reduces to the study of the behavior as ε → 0 of the resolvent
(Lε + I)−1 (more precisely, of its “solenoidal” part (Lε + I)−1P(µε)). The technical part
of the paper consists in the study of these objects.
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0.5. Inclusion in the framework of the abstract method of [BSu1, BSu2]. It is
essential that the operator (0.10) admits a factorization L = X ∗X , where X : G → G∗ =
L2(R3; C4) is the homogeneous first-order differential operator of the form

X =
(
−iη−1/2 curl µ−1/2

−iν1/2 div µ1/2

)
.

We decompose the periodic operator L in the direct integral of operators L(k) that act
in the space H = L2(Ω; C3) and depend on a parameter k ∈ R3. The operator L(k)
corresponds to the differential expression

µ−1/2 curlk η−1 curlk µ−1/2 − µ1/2∇kν divk µ1/2

with periodic boundary conditions. Here ∇k := ∇ + ik, divk := div +ik ·, curlk :=
curl +ik×. The operator L(k) also admits factorization: L(k) = X (k)∗X (k), where
X (k) is defined via X in the same way as L(k) is defined via L. The operator L(k) splits
into the orthogonal sum H = G(µ;k) ⊕ J(µ;k), where G(µ;k) is the subspace of the
periodic vector-valued functions of the form µ1/2∇kϕ, and J(µ;k) consists of periodic
vector-valued functions f satisfying divk µ1/2f = 0. In the direct integral decomposition
for L, the part LJ(µ) corresponds to the part (L(k))J(µ;k).

We can apply the abstract method suggested in [BSu1, BSu2] to the operator family
L(k). In [BSu1, BSu2], the family of selfadjoint operators of the form A(t) = X(t)∗X(t)
with t ∈ R, X(t) = X0 + tX1, was studied. Now the parameter k is three-dimensional.
To avoid this difficulty, we put (cf. [BSu2, Chapter 2]) k = tθ, t = |k|, θ ∈ S

2. Then
all the objects will depend on the additional parameter θ, and we need to trace this
dependence. We put L(k) =: L(t; θ), X (k) =: X(t; θ). Then X(t; θ) = X0 + tX1(θ) and
L(t; θ) = X(t; θ)∗X(t; θ).

The main notion of the abstract method of [BSu1, BSu2] is that of the spectral germ
S of the family A(t) at t = 0. In our case, the germ S(θ) of the operator family
L(t; θ) depends on θ; S(θ) is a selfadjoint operator acting in the three-dimensional kernel
N = KerL(0) = Ker X0. (The precise definition of the germ is given in Subsection 4.3.)
Let P denote the orthogonal projection in H onto the kernel N. Calculations show that
S(θ) is unitarily equivalent to the germ S0(θ) corresponding to the “effective” operator
L0 = L(µ0, η0, ν) with the constant effective coefficients. Here ν−1 = |Ω|−1

∫
Ω

ν(x)−1 dx.
We have S(θ) = U∗S0(θ)U , where U is the unitary operator of “identification of kernels”,
which maps N onto N0. Here N0 is the similar kernel corresponding to the operator L0.
The kernel N0 consists of constant vector-valued functions and can be identified with C3.
The operator U admits a natural description in terms of solutions of equations (0.3); see
Subsection 4.2.

0.6. Approximation of the resolvent near the bottom of the spectrum. The
lower edge of the spectrum of the operator L is the point λ = 0. The possibility of
homogenization is a “threshold effect” related to the behavior of the resolvent near the
bottom of the spectrum. This point of view on homogenization problems for periodic
operators was successively developed in [BSu1, BSu2]. Accordingly, we need to study the
behavior of the resolvent (L+ ε2I)−1 for small ε; in its turn, this reduces to the study of
the behavior of the resolvent (L(t; θ) + ε2I)−1. Also, we must separate the “solenoidal”
parts of these resolvents.

To the operators L(t; θ), we apply the abstract Theorem 1.5.5 of [BSu2] on the ap-
proximation of the resolvent in terms of the spectral germ. By that theorem, for small ε
the resolvent (L(t; θ) + ε2I)−1 can be approximated (in the operator norm in H) by the
operator (t2S(θ) + ε2IN)−1P . Then, using the relationship between the germs S(θ) and
S0(θ), we can approximate the resolvent (L(t; θ)+ε2I)−1 by the “sandwiched” resolvent
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(UP )∗(L0(t; θ)+ ε2I)−1(UP ) of the operator L0(t; θ), which corresponds to the effective
operator L0.

Let P(µ;k) be the orthogonal projection in H onto J(µ;k). In order to approxi-
mate the “solenoidal” part of the resolvent, i.e., the operator (L(t; θ) + ε2I)−1P(µ; tθ),
we need to study beforehand the behavior of the operator P(µ; tθ)P for small t. It
turns out that the limit of this operator as t → 0 depends on θ and is equal to
the projection onto some two-dimensional subspace Jθ of the kernel N. The sub-
space Jθ is invariant for the germ S(θ). As a result, we approximate the operator
(L(t; θ)+ε2I)−1P(µ; tθ) by the “sandwiched” solenoidal part of the resolvent of L0(t, θ),
that is, by (UP )∗(L0(t; θ) + ε2I)−1P(µ0; tθ)(UP ).

Next, using decomposition of the initial operator L in the direct integral of the op-
erators L(k) = L(t; θ), we obtain approximations (in the operator norm in G) for
the resolvent (L + ε2I)−1 by the “sandwiched” resolvent W∗(L0 + ε2I)−1W of L0.
The “solenoidal” part (L + ε2I)−1P(µ) of the resolvent is approximated by the “sand-
wiched” solenoidal part of the resolvent of the effective operator, i.e., by the operator
W∗(L0 + ε2I)−1P(µ0)W . The bordering operator W is described in Subsection 7.2.

Further analysis of the bordering operators W , W∗ allows us to replace them in
approximations by the simpler operators of multiplication by some periodic matrix-valued
functions W (x), W (x)∗. These matrices are expressed explicitly in terms of solutions of
equations (0.3).

0.7. The results on homogenization for the operator L. Finally, we apply the
scale transformation to obtain approximations in the operator norm in G for the resolvent
of the operator Lε and for its solenoidal part:

‖(Lε + I)−1 − (W ε)∗(L0 + I)−1W ε‖G→G ≤ Cε, 0 < ε ≤ 1,(0.12)

‖(Lε + I)−1P(µε) − (W ε)∗(L0 + I)−1P(µ0)W ε‖G→G ≤ Cε, 0 < ε ≤ 1.(0.13)

Estimates (0.12), (0.13) represent the main results of the paper concerning the homog-
enization problem for the operator L. The constants in these estimates are controlled
explicitly.

Now, the results concerning approximations in the homogenization problem for the
Maxwell operator follow from estimate (0.13) and the reduction (described above) of the
question to the behavior of the vector-valued function (0.11).

0.8. Comparison with [BSu2]. In the case where the magnetic permeability µ(x) is
constant, µ(x) = µ0, the operator L admits a factorization of the form

(0.14) L = b(D)∗g(x)b(D),

where the periodic (4 × 4)-matrix g(x) and the homogeneous first-order differential op-
erator b(D) : G → G∗ with constant coefficients are given by

g(x) =
(

η(x)−1 0
0 ν(x)

)
, b(D) =

(
−i curl(µ0)−1/2

−i div(µ0)1/2

)
.

The class of periodic matrix differential operators admitting factorization as in (0.14) was
distinguished and studied in detail in [BSu1, BSu2]. The study of the homogenization
problem for the Maxwell operator with µ(x) = 1 in [BSu2, Chapter 7] was based on
the representation (0.14). In the present paper, the following steps are borrowed from
[BSu2, Chapter 7]: representation of each field as a sum of two terms, reduction of the
problem to a second-order equation, and further extension of the operator. However, the
case of µ = µ0 is significantly simpler than the general case: it turns out that if µ = µ0,
then N = N0 and S(θ) = S0(θ), i.e., the kernel N and the germ S(θ) for the operator
L(t; θ) coincide with those for the effective operator L0(t; θ). In accordance with the
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terminology of [BSu2], the operators L(t; θ) and L0(t; θ) are threshold equivalent. In
this case, it is possible to approximate the resolvent (Lε + I)−1 directly by the resolvent
(L0 + I)−1 of the effective operator (without any bordering). As applied to the Maxwell
operator, this leads to the fact that the approximations (0.6) simply coincide with the
“homogenized” fields: ṽ(r)

ε = v(r)
0 , z̃(r)

ε = z(r)
0 . In the general case, the families L(t; θ)

and L0(t; θ) are not threshold equivalent. Approximations for the resolvent of Lε involve
“bordering” operators, and approximations (0.6) for v(r)

ε , z(r)
ε contain rapidly oscillating

factors. Besides, it is much more difficult (as compared to the case of µ = µ0) to sepa-
rate the solenoidal parts of the operators in approximations. All this requires essential
modification and complication of the technique, as compared with [BSu2]. It should be
mentioned that, for µ = 1, our result on approximations for v(r)

ε , z(r)
ε repeats the result

of [BSu2, Chapter 7]. At the same time, our analogs of approximations (0.6) for u(q)
ε ,

w(q)
ε refine the results of [BSu2, Chapter 7], where only weak convergence in G to u(q)

0 ,
w(q)

0 was proved for these fields.

0.9. The structure of the paper. §1 contains preliminaries. §2 is devoted to some
classes of vector-valued functions; here we analyze the required versions of the Weyl
decomposition in R

3 and in Ω. (The material of §2 is based on the results and techniques
of [BS1].) In §3, we define the operator L and the operators L(k) arising in the direct
integral decomposition for L; also, we study the properties of the band functions (the
eigenvalues of L(k)). In §4, the general method of [BSu2, Chapter 1] is applied to the
study of the operator family L(k) = L(t; θ), the spectral germ S(θ) is calculated, and
the analytic (in t) branches of eigenvalues and eigenvectors of L(t; θ) are investigated. §5
is devoted to approximation of the operator P(µ;k)P for small |k|. Here we prove the
crucial technical result of the paper (Theorem 5.1). In §6, we obtain approximations (for
small ε) in the operator norm in H for the resolvent (L(t; θ) + ε2I)−1 and its solenoidal
part. In §7, we find approximations in the operator norm in G for the resolvent (L+ε2I)−1

and its solenoidal part. The “bordering” operators W , W∗ are also calculated in §7. In
§8 it is shown that, in approximations, the “bordering” operators can be replaced by
the simpler operators of multiplication by some periodic matrix-valued functions W (x),
W (x)∗. Such a replacement only affects the constant in the remainder estimate. In
§9, we consider the homogenization problem for the operator Lε and establish estimates
of the form (0.12), (0.13). In §10, the results of §9 are adapted for application to the
Maxwell operator: the solutions of system (0.8) are approximated uniformly in the G-
norm. In §11, for completeness of exposition, we consider a comparatively elementary
question about weak convergence of the solutions and “flows” for system (0.8). (Results
of this type are quite traditional in homogenization theory; close results can be found,
e.g., in [BeLP].) Finally, §12 contains the main results of the paper on homogenization
for the stationary periodic Maxwell system. They follow from the results of §10 by direct
recalculation.
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§1. Preliminaries

1.1. Notation. Let G, G∗ be separable Hilbert spaces. The symbols (·, ·)G and ‖ · ‖G
stand for the inner product and the norm in G, and the symbol ‖ · ‖G→G∗ stands for the
norm of a linear continuous operator from G to G∗. By I = IG we denote the identity
operator in G, and by 0G the null operator. The symbol 〈·, ·〉 denotes the standard
inner product in Cn, and | · | is the norm of a vector in Cn. For z ∈ C, z+ denotes
the complex conjugate number. For vectors a = (a1, a2, a3),b = (b1, b2, b3) ∈ C3, we
use the notation a · b = a1b1 + a2b2 + a3b3; by a × b we denote the vector product. If
s is a (3 × 3)-matrix, |s| stands for the norm of s viewed as an operator in C

3. The
unit (3 × 3)-matrix is denoted by 1. Next, we write x = (x1, x2, x3) ∈ R3, ∂j = ∂/∂xj ,
Dj = −i∂j , j = 1, 2, 3; ∇ = (∂1, ∂2, ∂3), D = −i∇ = (D1, D2, D3). Notation for the
vector differential operations div, curl is standard. The classes Lp of Cn-valued functions
in a domain D ⊂ Rd are denoted by Lp(D; Cn), 1 ≤ p ≤ ∞. By H l(D; Cn), l ∈ R, we
denote the Sobolev classes of C

n-valued functions. For n = 1, we write simply Lp(D),
H l(D).

We introduce the class

H1(R3) :=
{

ϕ ∈ H1
loc(R

3) :
∫

R3
(|∇ϕ|2 + |x|−2|ϕ|2) dx < ∞

}
with the norm ‖ϕ‖H1 = ‖∇ϕ‖L2 . Then H1(R3) is a complete Hilbert space (see, e.g.,
[BS2]). The set C∞

0 (R3) is dense in H1(R3).
The Fourier transformation in L2(R3; Cn) is denoted by F.

1.2. Lattices. Fourier series. Let Γ be a lattice in R
3, and let a1, a2, a3 ∈ R

3 be a
basis in R3 generating the lattice Γ. Then

Γ =
{
a ∈ R

3 : a =
3∑

j=1

αjaj , αj ∈ Z

}
.

Let Ω be the elementary cell of the lattice Γ:

Ω =
{
x ∈ R

3 : x =
3∑

j=1

τ jaj , 0 < τ j < 1
}

.

The basis {b1,b2,b3} in R
3 dual to {a1, a2, a3} is defined by the relations 〈bl, aj〉 = 2πδl

j .
This basis generates the lattice Γ̃ dual to the lattice Γ:

Γ̃ =
{
b ∈ R

3 : b =
3∑

j=1

βjbj , βj ∈ Z

}
.

We denote by Ω̃ the Brillouin zone

Ω̃ = {k ∈ R
3 : |k| < |k − b|, 0 �= b ∈ Γ̃};

Ω̃ is a fundamental domain for Γ̃. This domain is a convex centrally symmetric polyhe-
dron. We use the notation |Ω| = mesΩ, |Ω̃| = mes Ω̃. Note that |Ω| |Ω̃| = (2π)3. Let r0

be the radius of the ball inscribed into clos Ω̃. Then

(1.1) 2r0 = min
0�=b∈Γ̃

|b|.

We denote B(r) = {k ∈ R3 : |k| ≤ r}, r > 0.
In what follows, H̃ l(Ω; Cn), l > 0, stands for the subspace of all functions in H l(Ω; Cn)

the Γ-periodic extension of which to R3 belongs to H l
loc(R

3; C3). By C̃∞(Ω) we denote
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the class of functions in Ω the Γ-periodic extension of which to R3 belongs to C∞(R3).
Below, if u ∈ L2(Ω; Cn), then ǔ denotes the Γ-periodic extension of u to R3.

Let l2(Γ̃; Cn) be the l2-space of Cn-valued sequences {vb}, b ∈ Γ̃, with the norm
(
∑

b∈Γ̃ |vb|2)1/2. The discrete Fourier transformation {ûb} �→ u,

(1.2) u(x) = |Ω|−1/2
∑
b∈Γ̃

ûb exp (i〈b,x〉), x ∈ Ω,

is associated with the lattice Γ. This transformation is a unitary mapping of l2(Γ̃; Cn)
onto L2(Ω; Cn):

(1.3)
∫

Ω

|u(x)|2 dx =
∑
b∈Γ̃

|ûb|2.

Let hl(Γ̃; Cn), l > 0, be the class of Cn-valued sequences {vb} such that∑
b∈Γ̃

(|b|2 + 1)l|vb|2 < ∞;

then u ∈ H̃ l(Ω; Cn) if and only if {ûb} ∈ hl(Γ̃; Cn).
We have

(1.4)
∫

Ω

|(D + k)u(x)|2 dx =
∑
b∈Γ̃

|b + k|2|ûb|2, u ∈ H̃1(Ω; Cn), k ∈ R
3.

The convergence of the series in (1.4) is equivalent to the fact that u ∈ H̃1(Ω; Cn).

1.3. The Gelfand transformation. Initially, the Gelfand transformation V is defined
on the functions belonging to the Schwartz class S by the formula

(1.5)
(Vf)(x,k) = f∗(x,k) = |Ω̃|−1/2

∑
a∈Γ

exp (−i〈k,x + a〉)f(x + a),

f ∈ S(R3; Cn), x ∈ Ω, k ∈ Ω̃,

and V extends by continuity up to a unitary mapping

(1.6) V : L2(R3; Cn) →
∫

Ω̃

⊕L2(Ω; Cn) dk =: K.

Usually, the parameter k is called the quasimomentum. The relation f ∈ H1(R3; Cn) is
equivalent to the fact that f∗(·,k) ∈ H̃1(Ω; Cn) for almost every k ∈ Ω̃ and

(1.7)
∫

Ω̃

∫
Ω

(|(D + k)f∗(x,k)|2 + |f∗(x,k)|2) dx dk < ∞.

The integral in (1.7) is equal to the square of the norm of f in H1(R3; Cn).
For ϕ in the Schwartz class S(R3), we have

(1.8)
∫

R3
|∇ϕ(x)|2 dx =

∫
Ω̃

∫
Ω

|(D + k)ϕ∗(x,k)|2 dx dk.

This allows us to extend the transformation V by continuity to H1(R3). Then the relation
ϕ ∈ H1(R3) is equivalent to the fact that ϕ∗(·,k) ∈ H̃1(Ω) for almost every k ∈ Ω̃ and
the integral on the right-hand side of (1.8) is finite.

Under the transformation V , the operator in L2(R3; Cn) of multiplication by a periodic
matrix-valued function turns into multiplication by the same matrix-valued function on
the fibers of the direct integral K. A linear differential operator b(D) (corresponding to
some symbol b(ξ)) applied to a function f in R3 turns into the operator b(D+k) applied
to f∗(·,k) with periodic boundary conditions.
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§2. Function classes. The Weyl decomposition

We need information concerning some classes of vector-valued functions in R3 and
in Ω related to the Maxwell operator. In [BS1], such classes were studied for arbitrary
domains under the boundary conditions of ideal conductivity. Our case differs from
the situation of [BS1]. First, in [BS1] the case of weighted L2-spaces was considered,
while in the present paper we work in the ordinary space L2. Second, we need classes of
functions in Ω depending on a parameter k ∈ R3, and with periodic boundary conditions.
Below, in Subsection 2.1, we give the necessary facts (without proof) pertaining to some
classes of functions in R

3; these facts can be deduced from the results of [BS1, §1] by
direct recalculation. In Subsection 2.2, we consider classes of functions in Ω; here a
full exposition is presented. However, in many respects this exposition is parallel to the
arguments of [BS1].

2.1. Classes of functions in R3. Let s(x) be a measurable (3 × 3)-matrix-valued
function in R

3 with real entries and such that

(2.1) c01 ≤ s(x) ≤ c′01, x ∈ R
3, 0 < c0 ≤ c′0 < ∞.

In the space G := L2(R3; C3), we distinguish the “gradient” subspace

G(s) = G(R3; s) = {u = s1/2∇ϕ : ϕ ∈ H1(R3)}.
The “solenoidal” subspace J(s) = J(R3; s) is defined via the orthogonal decomposition

(2.2) G = G(R3; s) ⊕ J(R3; s)

(the Weyl decomposition). Clearly, the subspace J(s) consists of vector-valued functions
u ∈ G such that div(s1/2u) = 0 (in the sense of distributions). Let Q(s) be the orthogonal
projection in G onto G(s), and let P(s) be the orthogonal projection in G onto J(s). The
projections Q(s) and P(s) act as follows. Let u ∈ G, and let ϕ ∈ H1(R3) be a (weak)
solution of the equation

(2.3) div s(x)∇ϕ = div(s(x))1/2u.

In other words, ϕ satisfies the identity

(2.4)
∫

R3
〈s(x)∇ϕ,∇ψ〉 dx =

∫
R3
〈(s(x))1/2u,∇ψ〉 dx, ψ ∈ H1(R3).

It suffices to check (2.4) for ψ ∈ C∞
0 (R3). The left-hand side of (2.4) determines an

inner product in H1(R3) (the corresponding norm is equivalent to the standard one),
and the right-hand side is an antilinear continuous functional over ψ ∈ H1(R3). Hence,
by the Riesz theorem, there exists a solution ϕ; this solution is unique and satisfies
‖s1/2∇ϕ‖G ≤ ‖u‖G. Then

(2.5) Q(s)u = s1/2∇ϕ, P(s)u = u − s1/2∇ϕ.

Let s̃(x) be yet another matrix-valued function satisfying conditions of the same type
as s(x).

Lemma 2.1. a) The operator P(s)s1/2s̃−1/2 maps J(s̃) bijectively onto J(s). The inverse
mapping is given by the operator P(s̃)s̃1/2s−1/2. b) The operator Q(s)s−1/2s̃1/2 maps
G(s̃) bijectively onto G(s). The inverse mapping is given by the operator Q(s̃)s̃−1/2s1/2.

We introduce the following class of vector-valued functions:

(2.6) F (s) = F (R3; s) = {u ∈ G : div s1/2u ∈ L2(R3), curl s−1/2u ∈ G}.
The class (2.6) is a complete Hilbert space relative to the norm

(2.7) ‖u‖F (s) :=
(
‖u‖2

G + a(s)[u,u]
)1/2

,



872 T. A. SUSLINA

where
a(s)[u,u] := ‖ div s1/2u‖2

L2(R3) + ‖ curl s−1/2u‖2
G.

Note that, for s = 1, we have F (1) = F (R3;1) = H1(R3; C3), and ‖u‖F (1) =
‖u‖H1(R3;C3).

Lemma 2.2. The projections P(s), Q(s) take the class F (s) into itself.

We introduce
G1(s) = F (s) ∩ G(s), J1(s) = F (s) ∩ J(s).

Lemma 2.3. The sets G1(s), J1(s) are closed with respect to the norm (2.7). The space
F (s) admits the decomposition

(2.8) F (s) = G1(s) ⊕ J1(s),

which is orthogonal relative both to the inner product in G and to the inner product in
F (s).

Lemma 2.4. a) The operator P(s)s1/2s̃−1/2 maps J1(s̃) continuously onto J1(s). We
have

a(s)[u,u] = a(s̃)[v,v], ‖u‖2
G ≤ ‖s‖L∞‖s̃−1‖L∞‖v‖2

G,

v ∈ J1(s̃), u = P(s)s1/2s̃−1/2v.

b) The operator Q(s)s−1/2s̃1/2 maps G1(s̃) continuously onto G1(s). We have

a(s)[f , f ] = a(s̃)[g,g], ‖f‖2
G ≤ ‖s−1‖L∞‖s̃‖L∞‖g‖2

G,

g ∈ G1(s̃), f = Q(s)s−1/2s̃1/2g.

Lemma 2.5. a) The set F (s) is dense in G. b) The set J1(s) is dense in J(s), and the
set G1(s) is dense in G(s).

Lemma 2.6. The operator B(s) = P(1)s−1/2P(s) + Q(1)s1/2Q(s) maps F (s) con-
tinuously onto F (1). The inverse mapping is given by the operator P(s)s1/2P(1) +
Q(s)s−1/2Q(1). We have

a(s)[u,u] = a(1)[v,v], (C0(s))−1‖v‖2
G ≤ ‖u‖2

G ≤ C0(s)‖v‖2
G,

u ∈ F (s), v = B(s)u,

C0(s) := max{‖s‖L∞ , ‖s−1‖L∞}.(2.9)

2.2. Classes of functions in Ω. Let k ∈ R3 be a parameter. We introduce the
differential operations ∇k, divk, curlk by the following relations:

∇kϕ := ∇ϕ + ikϕ, divk f := div f + ik · f , curlk f := curl f + ik × f .

Suppose that a measurable matrix-valued function s(x) in R3 has real entries, satisfies
conditions (2.1), and is Γ-periodic. In the space H := L2(Ω; C3), we distinguish the
“gradient” subspace

G(s;k) = G(Ω; s;k) = {u = s1/2∇kφ : φ ∈ H̃1(Ω)}
(depending on the parameter k). By definition, the “solenoidal” subspace J(s;k) =
J(Ω; s;k) is the orthogonal complement of G(s;k):

(2.10) H = G(Ω; s;k) ⊕ J(Ω; s;k).

Clearly, J(s;k) consists of vector-valued functions u ∈ H such that divk(s
1
2 ǔ) = 0 (in the

sense of distributions). Let Q(s;k) be the orthogonal projection in H onto the subspace
G(s;k), and let P(s;k) be the orthogonal projection in H onto J(s;k). The projections



HOMOGENIZATION OF A MAXWELL SYSTEM 873

P(s;k) and Q(s;k) act as follows. Let f ∈ H, and let φ = φ(·;k) ∈ H̃1(Ω) be a (weak)
periodic solution of the equation

(2.11) divk s(x)∇kφ = divk(s(x))1/2f .

In other words, we have

(2.12)
∫

Ω

〈s(x)∇kφ,∇kζ〉 dx =
∫

Ω

〈(s(x))1/2f ,∇kζ〉 dx, ζ ∈ H̃1(Ω).

For k �= 0 (mod Γ̃), the left-hand side of (2.12) determines an inner product in H̃1(Ω)
(the corresponding norm is equivalent to the standard one), and the right-hand side is
an antilinear continuous functional over ζ ∈ H̃1(Ω). By the Riesz theorem, there exists
a solution φ; this solution is unique and satisfies the estimate ‖s1/2∇kφ‖H ≤ ‖f‖H. For
k = 0, we look for a solution φ in the class {φ ∈ H̃1(Ω) :

∫
Ω

φ dx = 0}. Then the Riesz
theorem still applies, yielding a unique solution φ satisfying the estimate ‖s1/2∇φ‖H ≤
‖f‖H. We have

(2.13) Q(s;k)f = s1/2∇kφ, P(s;k)f = f − s1/2∇kφ.

Let s̃(x) be yet another matrix satisfying conditions of the same type as s(x).

Lemma 2.7. a) The operator P(s;k)s
1
2 s̃−

1
2 maps J(s̃;k) bijectively onto J(s;k). The

inverse mapping is given by the operator P(s̃;k)s̃
1
2 s−

1
2 . b) The operator Q(s;k)s−

1
2 s̃

1
2

maps G(s̃;k) bijectively onto G(s;k). The inverse mapping is given by the operator
Q(s̃;k)s̃−

1
2 s

1
2 .

Proof. Statement a) follows from the relations

P(s;k)s1/2s̃−1/2P(s̃;k) = P(s;k)s1/2s̃−1/2,(2.14)

P(s̃;k)s̃1/2s−1/2P(s;k) = P(s̃;k)s̃1/2s−1/2.(2.15)

We prove (2.14); interchanging the roles of s and s̃ leads to (2.15).
Let u ∈ H,

(2.16) u = s̃1/2∇kϕ̃ + ũ,

where ũ = P(s̃;k)u, s̃1/2∇kϕ̃ = Q(s̃;k)u, ϕ̃ ∈ H̃1(Ω). Next, we have

(2.17) s1/2s̃−1/2ũ = s1/2∇kϕ + u0,

where
u0 = P(s;k)s1/2s̃−1/2ũ = P(s;k)s1/2s̃−1/2P(s̃;k)u

and
s1/2∇kϕ = Q(s;k)s1/2s̃−1/2ũ, ϕ ∈ H̃1(Ω).

As a result, (2.16) and (2.17) imply that

s1/2s̃−1/2u = s1/2∇k(ϕ̃ + ϕ) + u0.

Here the first term on the right belongs to G(s;k), and the second belongs to J(s;k).
Consequently, u0 = P(s;k)s1/2s̃−1/2u. This proves (2.14).

Statement b) follows from the relations

Q(s;k)s−1/2s̃1/2Q(s̃;k) = Q(s;k)s−1/2s̃1/2,(2.18)

Q(s̃;k)s̃−1/2s1/2Q(s;k) = Q(s̃;k)s̃−1/2s1/2.

It suffices to check (2.18), which is equivalent to the relation Q(s;k)s−1/2s̃1/2P(s̃;k) = 0
or

(2.19) P(s;k)s−1/2s̃1/2P(s̃;k) = s−1/2s̃1/2P(s̃;k).
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Relation (2.19) follows from (2.15) by passage to the adjoint operators in H. �

We introduce the class of vector-valued functions

(2.20) F (s;k) = F (Ω; s;k) = {u ∈ H : divk s1/2ǔ ∈ L2,loc(R3), curlk s−1/2ǔ ∈ Gloc},

where Gloc := L2,loc(R3; C3). The class (2.20) is a complete Hilbert space relative to the
norm

(2.21) ‖u‖F (s;k) :=
(
‖u‖2

H + a(s;k)[u,u]
)1/2

,

where

(2.22) a(s;k)[u,u] = ‖ divk s1/2u‖2
L2(Ω) + ‖ curlk s−1/2u‖2

H.

The set (2.20) itself does not depend on k and may be defined by the formula

(2.23) F (s;k) = {u ∈ H : div s1/2ǔ ∈ L2,loc(R3), curl s−1/2ǔ ∈ Gloc}.

However, the norm (2.21) depends on k.
Note that, for s = 1, we have

(2.24) F (Ω;1;k) = H̃1(Ω; C3)

and

(2.25) ‖u‖2
F (1;k) =

∫
Ω

(|(D + k)u|2 + |u|2) dx.

Indeed, using the Fourier series (1.2) for u, relations (1.3), (1.4), and the definition of
the norm (2.21) with s = 1, we obtain

‖u‖2
F (1;k) =

∑
b∈Γ̃

(|ûb|2 + |(b + k) · ûb|2 + |(b + k) × ûb|2)

=
∑
b∈Γ̃

(|ûb|2 + |b + k|2|ûb|2) =
∫

Ω

(|(D + k)u|2 + |u|2) dx.

By (2.24), (2.25), the embedding of the space F (1;k) in H is compact.

Lemma 2.8. The projections P(s;k), Q(s;k) take the class F (s;k) into itself.

Proof. Let u ∈ F (s;k),

(2.26) u = s1/2∇kϕ + u0,

where u0 = P(s;k)u, s1/2∇kϕ = Q(s;k)u. Then ϕ̌(x) is a (weak) periodic solution of
the equation

(2.27) divk s∇kϕ̌ = divk s1/2ǔ.

The right-hand side of (2.27) belongs to L2,loc(R3) because u ∈ F (s;k). Therefore,
divk s

1
2 (s

1
2∇kϕ̌) ∈ L2,loc(R3). Obviously, curlk s−

1
2 (s

1
2∇kϕ̌) = 0, so that s

1
2∇kϕ ∈

F (s;k). Then (2.26) implies that u0 ∈ F (s;k). �

We put

(2.28) G1(s;k) = G(s;k) ∩ F (s;k), J1(s;k) = J(s;k) ∩ F (s;k).

As a consequence of (2.28) and Lemma 2.8, we obtain the following statement.
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Lemma 2.9. The sets G1(s;k), J1(s;k) are closed with respect to the norm (2.21). The
space F (s;k) admits the decomposition

(2.29) F (s;k) = G1(s;k) ⊕ J1(s;k),

which is orthogonal relative both to the inner product in H and to the inner product in
F (s;k).

Now we refine Lemma 2.7.

Lemma 2.10. a) The operator P(s;k)s
1
2 s̃−

1
2 maps J1(s̃;k) continuously onto J1(s;k).

We have

a(s;k)[u,u] = a(s̃;k)[v,v],(2.30)

‖u‖2
H ≤ ‖s‖L∞‖s̃−1‖L∞‖v‖2

H,(2.31)

where v ∈ J1(s̃;k), u = P(s;k)s1/2s̃−1/2v.
b) The operator Q(s;k)s−1/2s̃1/2 maps G1(s̃;k) continuously onto G1(s;k). We have

a(s;k)[f , f ] = a(s̃;k)[g,g],(2.32)

‖f‖2
H ≤ ‖s−1‖L∞‖s̃‖L∞‖g‖2

H,(2.33)

where g ∈ G1(s̃;k), f = Q(s;k)s−1/2s̃1/2g.

Proof. For definiteness, we prove a). Statement b) can be proved by analogy. Suppose
v ∈ J1(s̃;k). This means that v ∈ H, divk s̃1/2v̌ = 0, curlk s̃−1/2v̌ ∈ Gloc. Let

(2.34) u = P(s;k)s1/2s̃−1/2v,

and let

(2.35) s1/2s̃−1/2v̌ = s1/2∇kϕ̌ + ǔ,

where divk s1/2ǔ = 0. From (2.35) it is seen that curlk s−1/2ǔ = curlk s̃−1/2v̌ ∈ Gloc.
Thus, u ∈ J1(s;k), and (2.30) is fulfilled. From (2.34) it follows that

‖u‖2
H ≤ ‖s1/2s̃−1/2v‖2

H ≤ ‖s‖L∞‖s̃−1‖L∞‖v‖2
H,

which proves (2.31). Relations (2.30) and (2.31) imply that the mapping P(s;k)s
1
2 s̃−

1
2 :

J1(s̃;k) → J1(s;k) is continuous, and Lemma 2.7(a) shows that this mapping is bijective.
�

Lemma 2.11. a) The set F (s;k) is dense in H. b) The set J1(s;k) is dense in J(s;k),
and the set G1(s;k) is dense in G(s;k).

Proof. By (2.10) and (2.29), statements a) and b) are equivalent. For s = 1, statement
a) follows from (2.24) and the fact that H̃1(Ω; C3) is dense in H. Thus, statement b)
is also true for s = 1. Lemmas 2.7 and 2.10 describe isomorphisms via which b) (and,
hence, also a)) is carried over to the case of an arbitrary matrix s(x). �

Lemmas 2.7 and 2.10 readily imply the following statement.

Lemma 2.12. The operator

B(s;k) = P(1;k)s−1/2P(s;k) + Q(1;k)s1/2Q(s;k)

maps F (s;k) continuously onto F (1;k). The inverse mapping is given by the operator

P(s;k)s1/2P(1;k) + Q(s;k)s−1/2Q(1;k).
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We have

(C0(s))−1‖v‖2
H ≤ ‖u‖2

H ≤ C0(s)‖v‖2
H,(2.36)

a(s;k)[u,u] = a(1;k)[v,v],(2.37)

where u ∈ F (s;k), v = B(s;k)u, and the constant C0(s) is defined by (2.9).

Lemma 2.12 and the compactness of the embedding of F (1;k) in H show that the
embedding of the space F (s;k) in H is compact.

2.3. The direct integral decompositions for the projections P(s) and Q(s).
Using the Gelfand transformation V (see (1.5), (1.6)), we can decompose the projections
P(s) and Q(s) into direct integrals.

Lemma 2.13. Let P(s) and Q(s) be the orthogonal projections in G onto the subspaces
J(s) and G(s), respectively, and let P(s;k) and Q(s;k) be the orthogonal projections in
H onto the subspaces J(s;k) and G(s;k), respectively. If V is the Gelfand transformation
defined by (1.5) and (1.6), then

VP(s)V−1 =
∫

Ω̃

⊕P(s;k) dk,(2.38)

VQ(s)V−1 =
∫

Ω̃

⊕Q(s;k) dk.(2.39)

Proof. Obviously, it suffices to check (2.38), i.e., to prove that

(P(s)u)∗(·,k) = P(s;k)u∗(·,k), u ∈ G, for a.e. k ∈ Ω̃,

where u∗ = Vu, (P(s)u)∗ = V(P(s)u). By (2.5), P(s)u = u−s1/2∇ϕ, where ϕ ∈ H1(R3)
satisfies (2.4). Then

(2.40) (P(s)u)∗(x,k) = u∗(x,k) − (s(x))1/2∇kϕ∗(x,k), x ∈ Ω, k ∈ Ω̃.

Thus, (2.4) means that

(2.41)

∫
Ω̃

dk
∫

Ω

〈s(x)∇kϕ∗(x,k),∇kψ∗(x,k)〉 dx

=
∫

Ω̃

dk
∫

Ω

〈(s(x))1/2u∗(x,k),∇kψ∗(x,k)〉 dx, ψ ∈ H1(R3),

and we may assume that ψ ∈ S(R3). As is well known, the Gelfand transformation V
maps the Schwartz class S(R3) onto the set of all infinitely smooth functions ψ∗(x,k) that
are Γ-periodic with respect to x and Γ̃-quasiperiodic with respect to k (the latter means
that the functions ei〈x,k〉ψ∗(x,k) are Γ̃-periodic in k). We put ψ∗(x,k) = ϑ(x)ζ(k),
where ϑ ∈ C̃∞(Ω), ζ ∈ C∞

0 (Ω̃). Then (2.41) implies that, for almost every k ∈ Ω̃, we
have∫

Ω

〈s(x)∇kϕ∗(x,k),∇kϑ(x)〉 dx =
∫

Ω

〈(s(x))1/2u∗(x,k),∇kϑ(x)〉 dx, ϑ ∈ C̃∞(Ω).

This means that ϕ∗(·,k) ∈ H̃1(Ω) is the weak periodic solution of the equation

divk s(x)∇kϕ∗(x,k) = divk(s(x))1/2u∗(x,k) for a.e. k ∈ Ω̃.

Then (cf. (2.11), (2.13)) the right-hand side of (2.40) coincides with P(s;k)u∗(x,k). �
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§3. The operator L

3.1. Definition of the operator L. Suppose that h(x) and s(x) are Γ-periodic mea-
surable (3 × 3)-matrix-valued functions in R3 with real entries and such that

(3.1)
c01 ≤ h(x) ≤ c′01, c01 ≤ s(x) ≤ c′01,

x ∈ R
3, 0 < c0 ≤ c′0 < ∞.

Suppose ν(x) is a real-valued measurable Γ-periodic function in R3 such that

(3.2) 0 < ν0 ≤ ν(x) ≤ ν1 < ∞, x ∈ R
3.

In G = L2(R3; C3), we consider the operator L = L(s, h, ν) given formally by the differ-
ential expression
(3.3)
L = L(s, h, ν) = (s(x))−1/2 curl(h(x))−1 curl(s(x))−1/2 − (s(x))1/2∇ν(x) div(s(x))1/2.

The precise definition of L is given in terms of the quadratic form

l[u,u] =
∫

R3

(
〈(h(x))−1 curl(s(x))−1/2u, curl(s(x))−1/2u〉 + ν(x)| div(s(x))1/2u|2

)
dx,

(3.4)

Dom l = F (R3; s),(3.5)

where the class F (R3; s) is defined by (2.6). Obviously, the form (3.4) is positive. The
results of Subsection 2.1 show that under conditions (3.1) and (3.2) the domain (3.5)
is dense in G, and the form (3.4) is closed. Moreover, in the space F (R3; s) the form
l[u,u] + ‖u‖2

G determines a norm equivalent to the standard one. By definition, the
operator L is the selfadjoint operator in G generated by the form (3.4).

Now, we define an operator X : G → G∗ := L2(R3; C4) by the relation

X =
(
−ih−1/2 curl s−1/2

−iν1/2 div s1/2

)
, DomX = F (R3; s).

Then the form (3.4) can be written as

(3.6) l[u,u] = ‖Xu‖2
G∗ , u ∈ F (R3; s).

The operator X is closed together with the form l. Relation (3.6) means that the operator
L admits a factorization: L = X ∗X .

Obviously, the decomposition (2.2) reduces L. Formally, the part LJ(s) of L acting in
the “solenoidal” subspace J(s) is given by the differential expression s−

1
2 curl h−1curl s−

1
2 ,

and the part LG(s) of L acting in the “gradient” subspace G(s) corresponds to the
expression −s

1
2∇ν div s

1
2 . Mainly, we are interested in the operator LJ(s).

3.2. The operators L(k). We put

(3.7) H = L2(Ω; C3), H∗ = L2(Ω; C4)

and consider the operator X (k) : H → H∗, k ∈ R3, given by the formula

(3.8) X (k) =
(
−ih−1/2 curlk s−1/2

−iν1/2 divk s1/2

)
on the domain

(3.9) DomX (k) = F (Ω; s;k) =: d.
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Here F (Ω; s;k) = F (s;k) is the class introduced in (2.20), (2.23). The results of Sub-
section 2.2 show that the domain (3.9) is dense in H (and independent of k), and the
operator (3.8) is closed. The selfadjoint operator

(3.10) L(k) := X (k)∗X (k) : H → H, k ∈ R
3,

is generated by the closed quadratic form

(3.11) l(k)[u,u] := ‖X (k)u‖2
H∗ , u ∈ F (s;k), k ∈ R

3.

In the space F (s;k), the form l(k)[u,u] + ‖u‖2
H determines a norm equivalent to the

standard one. The spectrum of L(k) is discrete, because the embedding of F (s;k) in
H is compact (see Subsection 2.2). The resolvent of the operator L(k) is compact and
depends on k ∈ R3 continuously (with respect to the operator norm).

The decomposition (2.10) reduces L(k). The part (L(k))J(s;k) of L(k) acting in the
subspace J(s;k) corresponds to the differential expression s−1/2 curlk h−1 curlk s−1/2,
and the part (L(k))G(s;k) of L(k) acting in the subspace G(s;k) corresponds to the
expression −s1/2∇kν divk s1/2. (The boundary conditions are periodic.)

3.3. The band functions. By

(3.12) (0 ≤) E1(k) ≤ E2(k) ≤ · · · ≤ Ej(k) ≤ · · · , k ∈ R
3,

we denote the consecutive eigenvalues of the operator L(k). The band functions Ej(k)
are continuous and Γ̃-periodic. They coincide with the consecutive minima of the ratio

(3.13)
l(k)[u,u]
‖u‖2

H

, u ∈ F (s;k).

Another natural way of enumerating the eigenvalues of L(k) is related to the splitting
of L(k) as in the orthogonal decomposition (2.10). Let Ej,J (k), j ∈ N, be the consecutive
eigenvalues of the operator (L(k))J(s;k), and let Ej,G(k), j ∈ N, be the consecutive
eigenvalues of the operator (L(k))G(s;k). Then the numbers Ej,J(k) coincide with the
consecutive minima of the ratio (3.13) with u ∈ J1(s;k), and the Ej,G(k) coincide with
the consecutive minima of the ratio (3.13) with u ∈ G1(s;k). (Recall that the classes
J1(s;k) and G1(s;k) are introduced in (2.28).) For k ∈ clos Ω̃\{0}, the functions Ej,J(k)
and Ej,G(k) are continuous. As we shall see below, some of these functions may fail to
be continuous at the point k = 0 (see Remark 3.1 below).

Now, we estimate the ratio (3.13). From (2.22), (3.8), (3.11), and conditions (3.1),
(3.2) it is clear that

C−1
1 a(s;k)[u,u] ≤ l(k)[u,u] ≤ C2a(s;k)[u,u], u ∈ F (s;k),(3.14)

C1 := max{‖h‖L∞ , ‖ν−1‖L∞},(3.15)

C2 := max{‖h−1‖L∞ , ‖ν‖L∞}.(3.16)

Next, let v = B(s;k)u, where the operator B(s;k) : F (s;k) → F (1;k) is defined in
Lemma 2.12. By (2.36), (2.37), and (3.14), we have

(3.17) (C1C0(s))−1 a(1;k)[v,v]
‖v‖2

H

≤ l(k)[u,u]
‖u‖2

H

≤ C2C0(s)
a(1;k)[v,v]

‖v‖2
H

, u ∈ F (s;k).

Note that, for u ∈ J1(s;k) or u ∈ G1(s;k), the constants in estimates (3.14), (3.17)
may be refined with the help of Lemma 2.10. We shall not dwell on this.

By Lemmas 2.10 and 2.12, if u runs over J1(s;k), G1(s;k), or F (s;k), then v =
B(s;k)u runs over J1(1;k), G1(1;k), or F (1;k) = H̃1(Ω; C3), respectively. We have
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(see (2.22))

(3.18) a(1;k)[v,v] =
∫

Ω

|(D + k)v|2 dx, v ∈ H̃1(Ω; C3).

The closed positive form (3.18) generates a selfadjoint operator A0(k) in H, which
corresponds to the differential expression (D+k)2 and the periodic boundary conditions.
Let E0

j (k), j ∈ N, be the consecutive eigenvalues of the operator A0(k). They coincide
with the consecutive minima of the ratio

(3.19)
a(1;k)[v,v]

‖v‖2
H

, v ∈ H̃1(Ω; C3).

On the other hand, the operator A0(k) splits in accordance with the orthogonal decom-
position H = G(1;k) ⊕ J(1;k). Let E0

j,J (k), j ∈ N, be the consecutive eigenvalues of
the operator (A0(k))J(1;k), and let E0

j,G(k), j ∈ N, be the consecutive eigenvalues of the
operator (A0(k))G(1;k). The numbers E0

j,J(k) coincide with the consecutive minima of
the ratio (3.19) with v ∈ J1(1;k), and the E0

j,G(k) coincide with the consecutive minima
of (3.19) with v ∈ G1(1;k).

From (3.17) it follows that

(C1C0(s))−1E0
j (k) ≤ Ej(k) ≤ C2C0(s)E0

j (k), j ∈ N,(3.20)

(C1C0(s))−1E0
j,J(k) ≤ Ej,J (k) ≤ C2C0(s)E0

j,J(k), j ∈ N,(3.21)

(C1C0(s))−1E0
j,G(k) ≤ Ej,G(k) ≤ C2C0(s)E0

j,G(k), j ∈ N.(3.22)

By (1.3) and (1.4), relation (3.19) can be rewritten as

(3.23)

∑
b∈Γ̃ |b + k|2|v̂b|2∑

b∈Γ̃ |v̂b|2
, {v̂b} ∈ h1(Γ̃; C3).

Then the E0
j (k) are the consecutive minima of the ratio (3.23); the E0

j,J(k) are the
consecutive minima of (3.23) under the additional condition v̂b ⊥ (b + k), b ∈ Γ̃;
and the E0

j,G(k) are the consecutive minima of (3.23) under the additional condition
v̂b ‖ (b + k), b ∈ Γ̃. It follows that the numbers {E0

j (k)}, {E0
j,J (k)}, {E0

j,G(k)}, j ∈ N,

reduce to the numbers {|b + k|2}, b ∈ Γ̃. Herewith, for E0
j (k), each eigenvalue of the

form |b + k|2 has multiplicity 3. If k ∈ clos Ω̃ and b + k �= 0, then, for E0
j,J (k), each

eigenvalue of the form |b+k|2 has multiplicity 2, and for E0
j,G(k) every such eigenvalue is

simple. The case where b = k = 0 is an exception. The eigenvalue λ = 0 of the operator
A0(0) corresponds to the eigenspace KerA0(0) = {v = C ∈ C3}, which lies entirely in
the solenoidal subspace J(1; 0). Thus, strictly speaking, if k = 0, we have E0

j,J(0) = 0
for j = 1, 2, 3, and E0

1,G(0) > 0.

Remark 3.1. From what has been said it follows that the functions E0
3,J (k) and E0

1,G(k)
have a (removable) discontinuity at the point k = 0. By (3.21) and (3.22), the same is
true for the functions E3,J (k) and E1,G(k). In order to avoid stipulations, we redefine
the functions E0

3,J (k), E0
1,G(k), E3,J (k), and E1,G(k) at the point k = 0 by continuity.

After such redefinition, for the band functions of A0(k) we have the following proper-
ties (cf. [BSu2, §2.2]). Clearly,

(3.24)

⎧⎪⎪⎨⎪⎪⎩
E0

1(k) = E0
2(k) = E0

3(k) = |k|2, k ∈ clos Ω̃;

E0
1,J (k) = E0

2,J (k) = |k|2, k ∈ clos Ω̃;

E0
1,G(k) = |k|2, k ∈ clos Ω̃.



880 T. A. SUSLINA

Recall that r0 is the radius of the ball inscribed in clos Ω̃, and B(r) = {k ∈ R3 : |k| ≤ r}.
Using (1.1), we obtain:

E0
1(k) = E0

1,J (k) = E0
1,G(k) ≥ r2, k ∈ clos Ω̃ \ B(r), 0 < r ≤ r0;(3.25)

E0
4(k) = E0

3,J(k) = E0
2,G(k) ≥ r2

0, k ∈ clos Ω̃;(3.26)

E0
4(0) = E0

3,J (0) = E0
2,G(0) = min

0�=b∈Γ̃
|b|2 = 4r2

0.(3.27)

We put

(3.28) c−1
∗ = C1C0(s) = max{‖h‖L∞ , ‖ν−1‖L∞}max{‖s‖L∞ , ‖s−1‖L∞}

(see (2.9) and (3.15)). By estimates (3.20)–(3.22) and properties (3.24)–(3.27), the band
functions of L(k) satisfy the following relations:

c∗|k|2 ≤ Ej(k) ≤ C2C0(s)|k|2, j = 1, 2, 3, k ∈ clos Ω̃;(3.29)

c∗|k|2 ≤ Ej,J(k) ≤ C2C0(s)|k|2, j = 1, 2, k ∈ clos Ω̃;

c∗|k|2 ≤ E1,G(k) ≤ C2C0(s)|k|2, k ∈ clos Ω̃;

E1(k) ≥ c∗r
2, E1,J (k) ≥ c∗r

2, E1,G(k) ≥ c∗r
2,

k ∈ clos Ω̃ \ B(r), 0 < r ≤ r0;
(3.30)

E4(k) ≥ c∗r
2
0, E3,J (k) ≥ c∗r

2
0, E2,G(k) ≥ c∗r

2
0, k ∈ clos Ω̃;(3.31)

E4(0) ≥ 4c∗r
2
0, E3,J (0) ≥ 4c∗r

2
0, E2,G(0) ≥ 4c∗r

2
0.(3.32)

These properties imply that if C2C0(s)|k|2 < c∗r
2
0, i.e.,

(3.33) |k| < c
1/2
∗ (C2C0(s))−1/2r0 = (C1C2)−1/2(C0(s))−1r0,

then the first three band functions Ej(k), j = 1, 2, 3, coincide piecewise with E1,J (k),
E2,J (k), E1,G(k). Under condition (3.33), the operator L(k) has exactly three eigen-
values lying in the interval [0, c∗r2

0). For k �= 0, two of them correspond to the part
(L(k))J(s;k) of L(k) acting in the subspace J(s;k), and one of them corresponds to the
part (L(k))G(s;k) of L(k) acting in the subspace G(s;k). If k = 0, then the eigenvalue
λ = 0 of multiplicity 3 corresponds to the “solenoidal” part (L(0))J(s;0) of L(0) (see
Remark 3.1).

3.4. The direct integral for the operator L. In order to represent L as a direct
integral, we apply the Gelfand transformation V (see Subsection 1.3).

The operators L(k) allow us to partially diagonalize L in the direct integral K (see
(1.6) with n = 3). If u ∈ Dom l = F (R3; s), then for Vu = u∗ we have

u∗(·,k) ∈ Dom l(k) for a.e. k ∈ Ω̃,(3.34)

l[u,u] =
∫

Ω̃

l(k)[u∗(·,k),u∗(·,k)] dk.(3.35)

Conversely, if (3.34) is satisfied for u∗ ∈ K and the integral in (3.35) is finite, then
u = V−1u∗ ∈ Dom l and (3.35) is true. This means that, in the direct integral K the
operator L turns into the layerwise multiplication by the operator-valued function L(k),
k ∈ Ω̃. All this can be expressed by the formula

(3.36) VLV−1 =
∫

Ω̃

⊕L(k) dk.
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From (3.36) it follows that the spectrum of L is a union of segments (spectral bands)
that are the ranges of the band functions (3.12). By (3.29),

min
k∈clos Ω̃

Ej(k) = Ej(0) = 0, j = 1, 2, 3.

Consequently, the lower edge of the spectrum of L coincides with the point λ = 0 and is
realized as the lower edge of the first three bands. Moreover, (3.31) shows that the lower
edge of the fourth band is separated away from the point λ = 0.

We trace the splitting of operators in the direct integral (3.36). By (2.38), (2.39),
and (3.36), the operators LP(s) = LJ(s) ⊕ 0G(s) and LQ(s) = 0J(s) ⊕ LG(s) can be
decomposed into the direct integrals of the operators L(k)P(s;k) = (L(k))J(s;k)⊕0G(s;k)

and L(k)Q(s;k) = 0J(s;k) ⊕ (L(k))G(s;k), respectively:

VLP(s)V−1 =
∫

Ω̃

⊕L(k)P(s;k) dk,(3.37)

VLQ(s)V−1 =
∫

Ω̃

⊕L(k)Q(s;k) dk.

§4. Application of the general method to the operators L(k)

4.1. We apply the general method of [BSu2, Chapter 1] to the study of the operator
family L(k) defined in Subsection 3.2. In [BSu2, Chapter 1], the operator pencil of the
form A(t) = X(t)∗X(t) with X(t) = X0 + tX1, t ∈ R, was studied.

Now the parameter k is 3-dimensional. We put

k = tθ, t = |k|, θ = |k|−1k ∈ S
2

(cf. [BSu2, Chapter 2]) and view t as the main parameter. Then all objects will depend
on the additional parameter θ. We introduce the notation

L(k) =: L(t; θ), X (k) =: X(t; θ),

where X (k) : H → H∗ is the operator defined in (3.7)–(3.9). By (3.10), the selfadjoint
operator L(t; θ) in H admits a factorization of the type

(4.1) L(t; θ) = X(t; θ)∗X(t; θ)

(required in the general scheme). By (3.8) and (3.9),

X(t; θ) = X0 + tX1(θ),

where X0 = X (0) : H → H∗ is a closed operator given by the expression

(4.2) X0 =
(
−ih−1/2 curl s−1/2

−iν1/2 div s1/2

)
, Dom X0 = d,

and X1(θ) : H → H∗ is a bounded operator of the form

(4.3) X1(θ)u =
(

h−1/2 0
0 ν1/2

) (
θ × (s−1/2u)
θ · (s1/2u)

)
, u ∈ H.

We check that, in our case, the conditions of the general method of [BSu2, Chapter 1]
are satisfied. We denote

N := KerL(0) = KerX0.

Let P denote the orthogonal projection in H onto the kernel N. From (4.2) it follows
that the kernel N is defined by the relations

(4.4) N = {f ∈ H : curl s−1/2f̌ = 0, div s1/2 f̌ = 0}.
The first relation in (4.4) implies that

s(x)−1/2f(x) = C + ∇Φ(x), C ∈ C
3, Φ ∈ H̃1(Ω),
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and the second leads to the following equation for Φ = ΦC ∈ H̃1(Ω):

(4.5) div s(x)(∇ΦC(x) + C) = 0

(this equation is understood in the weak sense). A periodic solution ΦC of equation (4.5)
exists and is defined up to a constant summand; hence, the gradient ∇ΦC is defined
uniquely. Thus,

(4.6) N = {f = s1/2(C + ∇ΦC) : C ∈ C
3}.

Note that N ⊂ J(s; 0) (this was already mentioned at the end of Subsection 3.3, but the
arguments were different). The functions f in the kernel N are naturally parametrized
by vectors C ∈ C

3. Observe that for f = s1/2(C + ∇ΦC) we have
∫
Ω

s−1/2f dx = |Ω|C.
It follows that

(4.7) dim N = 3.

(This agrees with the results of Subsection 3.3, where (4.7) was proved by variational
estimates for the eigenvalues.) Thus, we have checked that Condition 1.1 in [BSu2,
Chapter 1] is satisfied : the point λ = 0 is an isolated point in the spectrum of L(0), and
this point is an eigenvalue of finite multiplicity. Let d0 be the distance from the point
λ = 0 to the rest of the spectrum of L(0). By (3.32), we have

(4.8) d0 ≥ 4c∗r
2
0.

As in [BSu2, §1.1], we fix a number δ ∈ (0, d0/8); it is convenient to assume (cf. (4.8))
that

(4.9) δ < c∗r
2
0/2.

Next, we fix a number t0 such that

t0 ≤ δ1/2 min
θ∈S2

‖X1(θ)‖−1.

Combining (4.3) with (2.9) and (3.16), we obtain

‖X1(θ)‖2 ≤ ‖h−1‖L∞‖s−1‖L∞ + ‖ν‖L∞‖s‖L∞ ≤ 2C2C0(s).

Correspondingly, we put

(4.10) t0 = δ1/2(2C2C0(s))−1/2.

By using (4.9) and also the expressions (2.9), (3.16), and (3.28) for the constants, it is
easy to check that

(4.11) t0 ≤ (C1C2)−1/2(2C0(s))−1r0 ≤ r0/2.

Thus, B(t0) ⊂ B(r0/2) ⊂ Ω̃.
We denote by F(t; θ; κ) the spectral projection of the operator L(t; θ) for the closed

interval [0, κ]. As was shown in [BSu2, Chapter 1, Proposition 1.1], for t ∈ [0, t0] we have

dimF(t; θ; δ)H = dimF(t; θ; 3δ)H = dimN = 3.

Thus, the operator L(t; θ) has exactly three eigenvalues (counted with multiplicities) in
the interval [0, δ], and the interval (δ, 3δ) is free of the spectrum of L(t, θ). This agrees
with what was obtained at the end of Subsection 3.3 on the basis of variational estimates
(cf. (3.33) and (4.11)).

By (4.2), for the kernel N∗ = Ker X∗
0 we have

N∗ = {(v, ϕ) ∈ H∗ : curl(h−1/2v̌) = 0, ∇(ν1/2ϕ̌) = 0}
= {(v, ϕ) : v = h1/2(C + ∇ψ), ϕ = ν−1/2c, C ∈ C

3, c ∈ C, ψ ∈ H̃1(Ω)}.
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Obviously, N∗ is infinite-dimensional. This verifies the second assumption of the general
method (the inequality dimN∗ ≥ dimN).

4.2. The operator of identification of kernels. Let s0 be the constant (3×3)-matrix
defined by the relation

(4.12) s0C = |Ω|−1

∫
Ω

s(x)(C + ∇ΦC) dx, C ∈ C
3,

where ΦC ∈ H̃1(Ω) is the solution of equation (4.5). The matrix s0 has real entries and
is positive definite. This matrix arises in the homogenization problem for the elliptic
operator − div s(x)∇ and is called the effective matrix for s(x) (see, e.g., [ZhKO, BeLP,
BSu2]).

If the coefficient s(x) in L is a constant matrix, then the kernel (4.6) consists of
constant vector-valued functions and can be identified with C3. However, even in this
case, it is convenient to preserve parametrization for the elements of the kernel in terms
of the vector C, as in (4.6).

In the case where s(x) is the effective matrix s0, we denote the kernel (4.6) by N0.
We have

(4.13) N
0 = {f0 = (s0)1/2C : C ∈ C

3}.
Let P0 denote the orthogonal projection in H onto N0.

Now, we introduce the “identification of kernels” operator U : N → N0,

(4.14) U : f = s1/2(C + ∇ΦC) �→ f0 = (s0)1/2C, C ∈ C
3.

Lemma 4.1. Let s0 be the effective matrix for s(x), defined by (4.12). Let N and N0 be
defined by (4.6) and (4.13), and let U be defined by (4.14). Then the operator U : N → N0

is unitary.

Proof. Let f = s1/2(C + ∇ΦC), and let f0 = (s0)1/2C, C ∈ C. Then, by (4.5), we have

‖f‖2
H =

∫
Ω

〈s(x)(C + ∇ΦC), (C + ∇ΦC)〉 dx =
〈∫

Ω

s(x)(C + ∇ΦC) dx,C
〉

.

By (4.12), the right-hand side is equal to |Ω|〈s0C,C〉 = ‖f0‖2
H. �

4.3. The spectral germ. The main notion of the general method of [BSu2, Chapter
1] is the spectral germ of an operator family at t = 0. The germ S(θ) of the operator
family L(t; θ) at t = 0 is a selfadjoint operator acting in the 3-dimensional kernel N.
Among two equivalent definitions of the germ, now we choose the spectral definition (see
[BSu2, Chapter 1, Subsection 1.6]). The operator family L(t; θ) depends on t analytically,
and the point λ = 0 is an isolated eigenvalue of multiplicity 3 for the operator L(t; θ)
with t = 0. Let t0 be the number defined by (4.10). By analytic perturbation theory,
for t ∈ [0, t0] there exist real-analytic (with respect to t) functions λl(t; θ) (branches
of eigenvalues; l = 1, 2, 3) and real-analytic H-valued functions ul(t; θ) (branches of
eigenfunctions; l = 1, 2, 3) such that

L(t; θ)ul(t; θ) = λl(t; θ)ul(t; θ), l = 1, 2, 3, t ∈ [0, t0].

The functions ul(t; θ), l = 1, 2, 3, form an orthonormal basis in the subspace F(t; θ; δ)H.
For sufficiently small t∗(≤ t0), we have the convergent power series expansions

λl(t; θ) = γl(θ)t2 + · · · , γl(θ) ≥ 0, l = 1, 2, 3, t ∈ [0, t∗],(4.15)

ul(t; θ) = f̂l(θ) + · · · , l = 1, 2, 3, t ∈ [0, t∗].(4.16)

The vectors f̂l(θ), l = 1, 2, 3, form an orthonormal basis in the kernel N.
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Now, we give the spectral definition of the germ S(θ): S(θ) is a selfadjoint operator
acting in N and such that the numbers γl(θ) and the vectors f̂l(θ), l = 1, 2, 3, are its
eigenvalues and eigenvectors :

S(θ)f̂l(θ) = γl(θ)f̂l(θ), l = 1, 2, 3.

Clearly, for t ∈ [0, t0], the analytic branches of the eigenvalues λl(t; θ), l = 1, 2, 3,
partially coincide with the band functions Ej(tθ), j = 1, 2, 3. (The band functions are
enumerated in nondecreasing order, which may violate analyticity.) Then (3.29) implies
that

(4.17) λl(t; θ) ≥ c∗t
2, l = 1, 2, 3, t ∈ [0, t0].

It is important that in (4.17) the constant c∗ (see (3.28)) and the number t0 (see (4.10))
do not depend on θ. From (4.15) and (4.17) it follows that

(4.18) γl(θ) ≥ c∗ > 0, l = 1, 2, 3.

This means that the germ S(θ) is nondegenerate uniformly with respect to θ. Inequalities
(4.17) show that, in our case, the last assumption of the general method is satisfied (see
[BSu2, Chapter 1, (5.2)]).

4.4. Calculation of the germ S(θ). We apply the method described in [BSu2] to
calculate the germ S(θ). For the operator families admitting a factorization of the
form (4.1), the germ also admits a factorization of the form S(θ) = R(θ)∗R(θ), where
R(θ) : N → N∗ is the operator defined as follows. For each f ∈ N, we consider a solution
vθ ∈ d of the equation

(4.19) X∗
0 (X0vθ + X1(θ)f) = 0

(understood in the weak sense). Such a solution exists and is defined up to a summand
belonging to the kernel N. Here, the element X0vθ is defined uniquely. Then

(4.20) R(θ)f = X0vθ + X1(θ)f .

Equation (4.19) is equivalent to the identity

(4.21)

∫
Ω

〈h−1(curl s−1/2vθ + iθ × (s−1/2f)), curl s−1/2w〉 dx

+
∫

Ω

ν(div s1/2vθ + iθ · (s1/2f))(div s1/2w)+ dx = 0, w ∈ d.

In accordance with the decomposition (2.10) with k = 0, we write w as w = s1/2∇ϕ+w0,
where div s1/2w̌0 = 0. Now we substitute w0 in place of w in (4.21). Then the second
integral vanishes. Using the identity curl s−1/2w = curl s−1/2w0, we obtain

(4.22)
∫

Ω

〈h−1(curl s−1/2vθ + iθ × (s−1/2f)), curl s−1/2w〉 dx = 0, w ∈ d.

From (4.22) it follows that

(4.23) −i curl s−1/2vθ + θ × (s−1/2f) = h(Ĉ + ∇Ψ)

for some Ĉ ∈ C3 and Ψ ∈ H̃1(Ω).
We multiply both parts of (4.23) by ∇ζ, where ζ ∈ H̃1(Ω), and integrate over Ω. By

(4.6), f = s1/2(C + ∇ΦC). The integral of the left-hand side vanishes:∫
Ω

〈−i curl s−1/2vθ + θ × (C + ∇ΦC),∇ζ〉 dx = 0
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(we have used the identity div(θ ×∇Φ) = 0). Consequently,∫
Ω

〈h(Ĉ + ∇Ψ),∇ζ〉 dx = 0, ζ ∈ H̃1(Ω).

Thus, Ψ = ΨĈ is a weak periodic solution of the equation

div h(x)(Ĉ + ∇ΨĈ) = 0.

As in (4.12), we define the effective matrix h0 for h(x) by the relation

(4.24) h0Ĉ = |Ω|−1

∫
Ω

h(x)(Ĉ + ∇ΨĈ) dx, Ĉ ∈ C
3.

On the other hand, integrating (4.23), we obtain

(4.25)
∫

Ω

h(x)(Ĉ+∇ΨĈ) dx =
∫

Ω

(
−i curl s−1/2vθ + θ × (C + ∇ΦC)

)
dx = |Ω|θ×C.

Comparing (4.24) and (4.25), we see that

(4.26) Ĉ = (h0)−1(θ × C).

Now we return to (4.21). By (4.22), we have∫
Ω

ν
(
div s1/2vθ + iθ · (s1/2f)

)
(div s1/2w)+ dx = 0, w ∈ d.

Therefore,

(4.27) −i div s1/2vθ + θ · s(C + ∇ΦC) = ν−1α

for some constant α ∈ C. Integrating (4.27) and using (4.12), we obtain

α

∫
Ω

ν(x)−1 dx =
∫

Ω

θ · s(C + ∇ΦC) dx = |Ω|θ · s0C,

whence

(4.28) α = νθ · s0C.

Here

(4.29) ν−1 := |Ω|−1

∫
Ω

ν(x)−1 dx.

The number ν is called the effective coefficient for ν(x).
By (4.2), (4.3), and (4.20), the operator R(θ) takes a vector f = s1/2(C + ∇ΦC) ∈ N

to the element

R(θ)f =
(

h−1/2
(
−i curl s−1/2vθ + θ × (C + ∇ΦC)

)
ν1/2

(
−i div s1/2vθ + θ · s(C + ∇ΦC)

) )
.

Now, we calculate the quadratic form of the germ S(θ) = R(θ)∗R(θ). By (4.19) and
(4.20), we have

(S(θ)f , f)H = ‖R(θ)f‖2
H∗ = (X0vθ + X1(θ)f , X1(θ)f)H∗ .

Consequently (see (4.2), (4.3), and (4.6)),

(S(θ)f , f)H =
∫

Ω

〈
h−1

(
− i curl s−1/2vθ + θ × (C + ∇ΦC)

)
, θ × (C + ∇ΦC)

〉
dx

+
∫

Ω

ν
(
−i div s1/2vθ + θ · s(C + ∇ΦC)

)
〈θ, s(C + ∇ΦC)〉 dx.

Combining this with (4.23) and (4.27), we obtain

(4.30) (S(θ)f , f)H =
∫

Ω

(
〈Ĉ + ∇ΨĈ, θ × (C + ∇ΦC)〉 + α〈θ, s(C + ∇ΦC)〉

)
dx.
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Using the periodicity of the functions ΦC and ΨĈ and the identity div(θ ×∇Φ) = 0, we
see that the following terms in (4.30) vanish:∫

Ω

(
〈∇ΨĈ, θ × (C + ∇ΦC)〉 + 〈Ĉ, θ ×∇ΦC〉

)
dx = 0.

Therefore, by (4.12), relation (4.30) takes the form

(S(θ)f , f)H = |Ω|
(
〈Ĉ, θ × C〉 + α〈θ, s0C〉

)
.

Finally, we use (4.26) and (4.28) to obtain

(4.31)
(S(θ)f , f)H = |Ω|

(
〈(h0)−1(θ × C), (θ × C)〉 + ν|〈s0θ,C〉|2

)
,

f = s1/2(C + ∇ΦC), C ∈ C
3.

4.5. Relationship between S(θ) and S0(θ). We shall write S(θ) = S(θ; s, h, ν),
indicating the dependence of the germ on the coefficients of L (see (3.3)). For the operator
L0 with constant effective coefficients s0, h0, ν, the germ S0(θ) := S(θ; s0, h0, ν) acts
in the space N0 (see (4.13)). In this case, applying (4.31) and using the fact that the
constant coefficients themselves play the role of the effective coefficients, we obtain

(4.32)
(S0(θ)f0, f0)H = |Ω|

(
〈(h0)−1(θ × C), (θ × C)〉 + ν|〈s0θ,C〉|2

)
,

f0 = (s0)1/2C, C ∈ C
3.

Comparing (4.31) and (4.32), we arrive at the formula

(S(θ)f , f)H = (S0(θ)f0, f0)H,

where f ∈ N and f0 ∈ N0 are related by the unitary transformation (4.14): f0 = Uf . In
other words,

(4.33) S(θ) = U∗S0(θ)U .

Thus, we have proved the following theorem about the germ in question.

Theorem 4.2. Let s0, h0, ν be the constant effective coefficients defined by (4.12), (4.24),
and (4.29). Let N and N0 be the spaces defined by (4.6) and (4.13). Suppose S(θ) =
S(θ; s, h, ν) : N → N is the spectral germ of the operator family L(t; θ) at t = 0, where
L(t; θ) corresponds to L = L(s, h, ν) (see (3.3)). Let S0(θ) = S(θ; s0, h0, ν) : N0 → N0

be the spectral germ of the operator family L0(t; θ) at t = 0, where L0(t; θ) corresponds
to the operator L0 = L(s0, h0, ν) with constant effective coefficients. Let U : N → N0

be the unitary operator defined by (4.14). Then the germs S(θ) and S0(θ) are unitarily
equivalent: relation (4.33) is fulfilled.

The operator

(4.34) L0 = (s0)−1/2 curl(h0)−1 curl(s0)−1/2 − (s0)1/2∇ν div(s0)1/2

is called the effective operator for L.

Remark 4.3. Suppose that, from the outset, the coefficient s(x) in the operator L is
a constant matrix, i.e., s(x) = s0. Then N = N0 and S(θ; s0, h, ν) = S(θ; s0, h0, ν).
In this case, in the terminology of [BSu2, Chapter 1], the operator families L(t; θ) and
L0(t; θ) are threshold equivalent. This allows us to apply the general results of [BSu2]
to the Maxwell operator in the case where one of two coefficients is constant (cf. [BSu2,
Chapter 7]). If the matrix s(x) is not constant, then the corresponding operator families
are not threshold equivalent (in the same sense). However, the germs corresponding to
the initial operator and to the effective operator are unitarily equivalent.



HOMOGENIZATION OF A MAXWELL SYSTEM 887

Remark 4.4. In what follows, we need estimates for the effective coefficients. It is known
(see, e.g., [ZhKO, BeLP, BSu2]) that the effective matrix s0 satisfies s ≤ s0 ≤ s, where

s := |Ω|−1

∫
Ω

s(x) dx, s−1 := |Ω|−1

∫
Ω

(s(x))−1 dx.

These inequalities directly imply estimates for the matrix norm of the matrices s0 and
(s0)−1:

(4.35) |s0| ≤ ‖s‖L∞ , |(s0)−1| ≤ ‖s−1‖L∞ .

Similar estimates are valid for h0.

4.6. Splitting the germs S(θ) and S0(θ). Since the germs S(θ) and S0(θ) are uni-
tarily equivalent, first we analyze the simpler operator S0(θ). We consider the following
orthogonal decomposition of the 3-dimensional space (4.13), depending on the parameter
θ ∈ S2:

(4.36) N
0 = G0

θ ⊕ J0
θ ,

where

(4.37)
G0

θ = {f0 = βf0
θ , f0

θ = (s0)1/2θ, β ∈ C}, dim G0
θ = 1,

J0
θ = {f0

⊥ = (s0)1/2C⊥ : C⊥ ∈ C
3, 〈s0C⊥, θ〉 = 0}, dimJ0

θ = 2.

Let PG0
θ

and PJ0
θ

denote the orthogonal projections in H onto G0
θ and onto J0

θ , respec-
tively.

Obviously, the decomposition (4.36) reduces the operator S0(θ). By (4.32), for f0 =
βf0

θ ∈ G0
θ we have

(S0(θ)f0, f0)H = |Ω|ν〈s0θ, θ〉2|β|2, ‖f0‖2
H = |Ω|〈s0θ, θ〉|β|2.

Hence, in the subspace G0
θ the germ S0(θ) has one eigenvalue

(4.38) γ3(θ) = ν〈s0θ, θ〉.
The corresponding eigenvector normalized in H is equal (up to a constant factor) to

(4.39) f0
3 (θ) = |Ω|−1/2〈s0θ, θ〉−1/2f0

θ .

For f0
⊥ ∈ J0

θ , we have

(S0(θ)f0
⊥, f0

⊥)H = |Ω|〈(h0)−1(θ × C⊥), (θ × C⊥)〉, ‖f0
⊥‖2

H = |Ω|〈s0C⊥,C⊥〉,
C⊥ ⊥ s0θ.

In the subspace J0
θ , the germ S0(θ) has two eigenvalues γ1(θ) and γ2(θ), which corre-

spond to the algebraic problem dealing with the spectrum of the ratio

(4.40)
〈(h0)−1(θ × C⊥), (θ × C⊥)〉

〈s0C⊥,C⊥〉
, C⊥ ⊥ s0θ.

Let C(l)
⊥ (θ), l = 1, 2, be the corresponding eigenvectors normalized by the condition

|Ω|〈s0C(l)
⊥ (θ),C(l)

⊥ (θ)〉 = 1. Then the normalized eigenvectors f0
1 (θ), f0

2 (θ) of the opera-
tor S0(θ) corresponding to the eigenvalues γ1(θ), γ2(θ) are given by the formulas

(4.41) f0
l (θ) = (s0)1/2C(l)

⊥ (θ), l = 1, 2.

If γ1(θ) �= γ2(θ), then f0
1 (θ), f0

2 (θ) are defined by (4.41) up to phase factors. If γ1(θ) =
γ2(θ), then f0

1 (θ), f0
2 (θ) form an arbitrary orthonormal basis in J0

θ .
Under the unitary transformation U−1 : N0 → N (see (4.14)), the decomposition

(4.36) turns into the following orthogonal decomposition of the space (4.6):

(4.42) N = Gθ ⊕ Jθ,
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where

(4.43)
Gθ = {f = βfθ, fθ := s1/2(θ + ∇Φθ), β ∈ C}, dimGθ = 1,

Jθ = {f⊥ = s1/2(C⊥ + ∇ΦC⊥) : C⊥ ∈ C
3, 〈s0C⊥, θ〉 = 0}, dimJθ = 2.

Let PGθ
and PJθ

denote the orthogonal projections in H onto the subspaces Gθ and Jθ,
respectively. Obviously, the following “intertwining property”is fulfilled:

(4.44) UPGθ
= PG0

θ
UP, UPJθ

= PJ0
θ
UP.

We recall that P denotes the orthogonal projection in H onto N.
The decomposition (4.42) reduces the operator S(θ). In the subspace Gθ, the germ

S(θ) has one eigenvalue γ3(θ) defined by (4.38). The corresponding normalized eigen-
vector (defined up to a phase factor) is equal to

(4.45) f3(θ) = |Ω|−1/2〈s0θ, θ〉−1/2fθ.

In the subspace Jθ, the germ S(θ) has two eigenvalues γ1(θ), γ2(θ), which correspond
to the algebraic problem about the spectrum of the ratio (4.40). The corresponding
normalized eigenvectors f1(θ), f2(θ) of the operator S(θ) are given by the relations

(4.46) fl(θ) = s1/2(C(l)
⊥ (θ) + ∇Φ

C
(l)
⊥ (θ)

), l = 1, 2.

If γ1(θ) �= γ2(θ), then f1(θ), f2(θ) are defined by (4.46) up to phase factors. If γ1(θ) =
γ2(θ), then f1(θ), f2(θ) form an arbitrary orthonormal basis in Jθ.

Thus, we have found the coefficients γl(θ), l = 1, 2, 3, in the decompositions (4.15)
for the eigenvalues λl(t; θ) of L(t; θ). In the case where all eigenvalues γl(θ) of the
germ S(θ) are distinct, formulas (4.45) and (4.46) define the “embryos” f̂l(θ) of the
eigenvectors ul(t; θ) of L(t; θ) (see (4.16)): f̂l(θ) coincides with fl(θ) up to a phase
factor, l = 1, 2, 3.

Remark 4.5. The analytic branches of eigenvalues and eigenvectors of the operator L(t; θ),
t ∈ [0, t0], can always be chosen in such a way that one of the eigenvectors (say, u3(t; θ))
belongs to the “gradient” subspace G(s; tθ) for t �= 0, which implies that the two remain-
ing eigenvectors u1(t; θ), u2(t; θ) belong to the “solenoidal” subspace J(s; tθ). Then,
the coefficient γ3(θ) in decomposition (4.15) for λ3(t; θ) is the eigenvalue of the part of
the germ S(θ) in the subspace Gθ. The “embryo” f̂3(θ) in the decomposition (4.16) for
u3(t; θ) coincides up to a phase factor with the eigenvector f3(θ) of S(θ) in the subspace
Gθ (see (4.45)). The coefficients γ1(θ), γ2(θ) in the decompositions (4.15) for λ1(t; θ),
λ2(t; θ) are the eigenvalues of the part of S(θ) in the subspace Jθ and correspond to the
algebraic problem about the spectrum of the ratio (4.40). The “embryos” f̂1(θ), f̂2(θ) in
the decompositions (4.16) for u1(t; θ), u2(t; θ) belong to Jθ. If γ1(θ) �= γ2(θ), then f̂1(θ),
f̂2(θ) coincide (up to phase factors) with the eigenvectors f1(θ), f2(θ) (defined by (4.46))
of S(θ) in the subspace Jθ. In Remark 3.1 we already mentioned that for t = 0 all three
eigenvectors belong to the “solenoidal” subspace J(s; 0): ul(0; θ) = f̂l(θ) ∈ N ⊂ J(s; 0),
l = 1, 2, 3. Note that if γ1(θ) = γ2(θ), then, in general, the knowledge of S(θ) does
not suffice for finding f̂1(θ), f̂2(θ). Moreover, these “embryos” may fail to be unique.
The facts listed in this remark will not be used in what follows; therefore, we omit the
detailed arguments.

If the analytic branches of eigenvalues are chosen as described in Remark 4.5, then,
clearly, λ1(t; θ) and λ2(t; θ) partially coincide with E1,J (tθ), E2,J (tθ), and λ3(t; θ) coin-
cides with E1,G(tθ).

Remark 4.5 gives a reason to call the operator (S(θ))Gθ
, which acts in the one-dimen-

sional subspace Gθ, the spectral germ of the family (L(t; θ))G(s;tθ) at t = 0. Similarly,
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the operator (S(θ))Jθ
acting in the two-dimensional subspace Jθ is called the spectral

germ of the family (L(t; θ))J(s;tθ) at t = 0. By (4.33) and (4.44), we have

S(θ)PJθ
= U∗S0(θ)PJ0

θ
U ,

S(θ)PGθ
= U∗S0(θ)PG0

θ
U .

This means that the operators (S(θ))Jθ
and (S0(θ))J0

θ
, as well as the operators (S(θ))Gθ

and (S0
θ)G0

θ
, are unitarily equivalent.

§5. Approximation of the projection onto the solenoidal subspace

5.1. In this section, our goal is to prove the following theorem.

Theorem 5.1. Let P(s;k), k = tθ, be the orthogonal projection in H onto the subspace
J(s;k) defined by (2.10). Let P be the orthogonal projection in H onto the 3-dimensional
subspace N defined by (4.6), and let PJθ

be the orthogonal projection in H onto the 2-
dimensional subspace Jθ defined by (4.43). Let r0 be the radius of the ball inscribed in
the Brillouin zone Ω̃. Then

(5.1) ‖P(s; tθ)P − PJθ
‖H→H ≤ C3t, t ∈ (0, r0], θ ∈ S

2.

The constant C3 depends only on ‖s‖L∞ , ‖s−1‖L∞ , and r0.

An explicit expression for C3 is given below in (5.36). Observe that, a fortiori, estimate
(5.1) fails for t = 0: since N ⊂ J(s; 0), the operator P(s; 0)P = P is the projection onto
a 3-dimensional subspace, and PJθ

is the projection onto a 2-dimensional subspace. This
means that the operator P(s;k)P is discontinuous at k = 0, but its limit as |k| → 0 is
equal to PJθ

and depends on the direction θ of the vector k = tθ.

Remark 5.2. By direct calculation, it is easy to show that, in the case of a constant
matrix s = s0, instead of estimate (5.1) we have the precise identity

(5.2) P(s0; tθ)P0 = PJ0
θ
, t > 0.

Here P0 is the orthogonal projection in H onto N0 (see (4.13)), and PJ0
θ

is the orthogonal
projection in H onto J0

θ (see (4.37)).

5.2. Now, we proceed to the proof of Theorem 5.1. Since P(s; tθ)Pw − PJθ
w =

P(s; tθ)u − PJθ
u for all w ∈ H, where u = Pw ∈ N, for the proof of (5.1) it suffices to

establish the estimate

(5.3) ‖P(s; tθ)u− PJθ
u‖H ≤ C3t‖u‖H, u ∈ N, t ∈ (0, r0], θ ∈ S

2.

We start with two elementary statements.

Lemma 5.3. Let u = s1/2(C+∇ΦC) ∈ N, where C ∈ C
3 and ΦC ∈ H̃1(Ω) is a solution

of the equation

(5.4) div s(C + ∇ΦC) = 0.

Then

(5.5) c1|C| ≤ ‖u‖H ≤ c2|C|, c1 = ‖s−1‖−1/2
L∞

|Ω|1/2, c2 = ‖s‖1/2
L∞

|Ω|1/2.

Proof. Equation (5.4) implies that∫
Ω

〈s(C + ∇ΦC),∇Ψ〉 dx = 0, Ψ ∈ H̃1(Ω).

Substituting Ψ = ΦC, we obtain∫
Ω

〈s(C + ∇ΦC),C + ∇ΦC〉 dx =
∫

Ω

〈s(C + ∇ΦC),C〉 dx.
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Consequently,

‖u‖H = ‖s1/2(C + ∇ΦC)‖H ≤ ‖s1/2C‖H ≤ ‖s‖1/2
L∞

|Ω|1/2|C|,
which proves the upper estimate in (5.5).

The periodicity of ΦC implies that we have
∫
Ω

s−1/2u dx = C|Ω|, whence

|C| |Ω| ≤
∫

Ω

|s−1/2u| dx ≤ ‖s−1‖1/2
L∞

|Ω|1/2‖u‖H.

This proves the lower estimate in (5.5). �

Lemma 5.4. Suppose θ ∈ S2 and Φθ ∈ H̃1(Ω) solve the equation

(5.6) div s(θ + ∇Φθ) = 0

and satisfy the condition
∫
Ω

Φθ dx = 0. Then

(5.7) ‖Φθ‖H ≤ c3 = (2r0)−1
(
‖s‖L∞‖s−1‖L∞ |Ω|

)1/2
.

Proof. Equation (5.6) implies that∫
Ω

〈s∇Φθ,∇Φθ〉 dx = −
∫

Ω

〈sθ,∇Φθ〉 dx.

Consequently,
‖s1/2∇Φθ‖H ≤ ‖s1/2θ‖H ≤ ‖s‖1/2

L∞
|Ω|1/2,

whence

(5.8) ‖∇Φθ‖H ≤ ‖s−1‖1/2
L∞

‖s‖1/2
L∞

|Ω|1/2.

We write the Fourier series for Φθ; since the Fourier coefficient with zero index vanishes,
with the help of (1.1) we obtain

(5.9) ‖∇Φθ‖2
H =

∑
b∈Γ̃

|b|2|(Φ̂θ)b|2 ≥
(

min
0�=b∈Γ̃

|b|2
) ∑

b∈Γ̃

|(Φ̂θ)b|2 = 4r2
0‖Φθ‖2

H.

Relations (5.8) and (5.9) imply (5.7). �

5.3. So, let u = s1/2(C + ∇ΦC) ∈ N, and let Φθ be the solution of equation (5.6) fixed
by the condition

∫
Ω

Φθ dx = 0, as in Lemma 5.4. The projection PJθ
acts as follows:

(5.10) PJθ
u = u − βs1/2(θ + ∇Φθ), β = β(θ,C) =

〈s0C, θ〉
〈s0θ, θ〉 .

Combining the obvious estimate |β| ≤ |s0|1/2|(s0)−1|1/2|C| with (4.35), we see that

(5.11) |β| ≤ ‖s‖1/2
L∞

‖s−1‖1/2
L∞

|C|.
In accordance with Subsection 2.2 (see (2.11), (2.13)), the projection P(s;k) acts by the
formula

(5.12) (P(s;k)u)(x) = u(x) − (s(x))1/2∇kφ(x;k),

where φ(·;k) ∈ H̃1(Ω) is the weak solution of the equation

divk s(x)∇kφ = divk(s(x))1/2u.

Plugging u = s1/2(C + ∇ΦC) and using (5.4), we conclude that φ satisfies the equation

(5.13) divk s(x)∇kφ = ik · (s(x)(C + ∇ΦC)).

Then (5.10) and (5.12) imply that

(5.14) P(s;k)u− PJθ
u = βs1/2(θ + ∇Φθ) − s1/2∇kφ.
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The solution φ(x;k) of equation (5.13) will be sought in the form

φ(x;k) = −iβt−1 + βΦθ(x) + tψ(x;k),

where ψ(·;k) ∈ H̃1(Ω) is a new unknown function. Then

(5.15) ∇kφ = β∇Φθ + t∇kψ + itθβ(−it−1 + Φθ) = β(θ + ∇Φθ) + itθβΦθ + t∇kψ.

Substituting (5.15) in (5.14), we obtain

(5.16) P(s;k)u− PJθ
u = −ts1/2(iθβΦθ + ∇kψ).

Relations (5.5), (5.7), and (5.11) yield the estimate

(5.17) ‖s1/2θβΦθ‖H ≤ c4‖u‖H, c4 = (2r0)−1‖s‖3/2
L∞

‖s−1‖3/2
L∞

.

Relations (5.16) and (5.17) show that for the proof of (5.3) it suffices to prove the estimate

(5.18) ‖s1/2∇kψ‖H ≤ C4‖u‖H.

Then inequality (5.3) follows with the constant C3 = c4 + C4.

5.4. In order to deduce an equation for ψ, we substitute (5.15) in (5.13). Then, by (5.6),
the left-hand side of (5.13) takes the form

divk s (β(θ + ∇Φθ) + itθβΦθ + t∇kψ)

= t (iβ〈s(θ + ∇Φθ), θ〉 + iβ divk(sθΦθ) + divk s∇kψ) .

The right-hand side of (5.13) can be written as ti〈s(C + ∇ΦC), θ〉. Consequently, ψ
satisfies the equation

(5.19) divk s∇kψ = i〈s(C̃ + ∇ΦC̃), θ〉 − iβ divk(sθΦθ),

where

(5.20) C̃ := C− βθ.

We seek the solution ψ in the form

(5.21) ψ = ψ0 + tψ1,

where ψ1(·;k) ∈ H̃1(Ω) is a new unknown function, and ψ0(·;k) ∈ H̃1(Ω) satisfies the
equation

(5.22) div s∇ψ0 = i〈s(C̃ + ∇ΦC̃), θ〉 − iβ div(sθΦθ).

The solvability condition for (5.22) is that the right-hand side must be orthogonal in H

to the constants. This condition is satisfied: by (4.12), (5.10), and (5.20), the integral of
the right-hand side vanishes:∫

Ω

i〈s(C̃ + ∇ΦC̃), θ〉 dx = i|Ω|〈s0C̃, θ〉 = i|Ω|(〈s0C, θ〉 − β〈s0θ, θ〉) = 0.

Equation (5.22) is solvable, and its solution ψ0 is determined uniquely up to a constant
summand. We fix ψ0 by the condition

∫
Ω

ψ0 dx = 0.

Lemma 5.5. Suppose ψ0(·;k) ∈ H̃1(Ω) solves equation (5.22) and satisfies the condition∫
Ω

ψ0 dx = 0. Then

(5.23) ‖s1/2∇kψ0‖H ≤ c5‖u‖H, |k| ≤ r0,

where c5 is the constant defined below in (5.30).
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Proof. Equation (5.22) implies the identity∫
Ω

〈s(x)∇ψ0,∇ψ0〉 dx = −i

∫
Ω

(
〈s(x)(C̃ + ∇ΦC̃), θ〉(ψ0)+ + βΦθ〈s(x)θ,∇ψ0〉

)
dx.

It follows that

(5.24) ‖s1/2∇ψ0‖2
H ≤ ‖s(C̃ + ∇ΦC̃)‖H‖ψ0‖H + |β|‖Φθs1/2θ‖H‖s1/2∇ψ0‖H.

By Lemma 5.3,

(5.25) ‖s(C̃ + ∇ΦC̃)‖H ≤ ‖s‖1/2
L∞

‖s1/2(C̃ + ∇ΦC̃)‖H ≤ c2‖s‖1/2
L∞

|C̃|.

Next, from (5.10) and (5.20) it is seen that |(s0)1/2C̃| ≤ |(s0)1/2C|. Hence, by (4.35)
and (5.5) we have

(5.26) |C̃| ≤ |s0|1/2|(s0)−1|1/2|C| ≤ c−1
1 ‖s‖1/2

L∞
‖s−1‖1/2

L∞
‖u‖H.

By analogy with (5.9),

(5.27) ‖ψ0‖H ≤ (2r0)−1‖∇ψ0‖H ≤ (2r0)−1‖s−1‖1/2
L∞

‖s1/2∇ψ0‖H.

As a consequence of (5.17) and (5.24)–(5.27), we obtain

(5.28) ‖s1/2∇ψ0‖H ≤ 2c4‖u‖H.

Finally, (5.27) and (5.28) yield the estimate

(5.29) ‖s1/2kψ0‖H ≤ t‖s‖1/2
L∞

‖ψ0‖H ≤ c4‖s‖1/2
L∞

‖s−1‖1/2
L∞

‖u‖H, t ∈ [0, r0].

Relations (5.28) and (5.29) directly imply (5.23) with the constant

(5.30) c5 =
(
2 + ‖s‖1/2

L∞
‖s−1‖1/2

L∞

)
c4. �

5.5. In order to deduce an equation for ψ1, we substitute (5.21) in (5.19) and use (5.22).
After cancelling out the factor t, we obtain

(5.31) − divk s∇kψ1 = i divk(sθψ0) + i〈s∇ψ0, θ〉 − βΦθ〈sθ, θ〉.
It remains to estimate the term t‖s1/2∇kψ1‖H.

Lemma 5.6. Let ψ1(·;k) ∈ H̃1(Ω) be the solution of (5.31). Then

(5.32) t‖s1/2∇kψ1‖H ≤ c6‖u‖H, |k| ≤ r0,

where c6 is the constant defined below in (5.33), (5.35).

Proof. Equation (5.31) implies that∫
Ω

〈s∇kψ1,∇kψ1〉 dx

=
∫

Ω

(
− iψ0〈sθ,∇kψ1〉 + i〈s∇ψ0, θ〉(ψ1)+ − βΦθ〈sθ, θ〉(ψ1)+

)
dx.

Consequently,

‖s1/2∇kψ1‖2
H

≤ ‖s1/2∇kψ1‖H‖s‖1/2
L∞

‖ψ0‖H +
(
‖s1/2∇ψ0‖H‖s‖1/2

L∞
+ |β|‖Φθ‖H‖s‖L∞

)
‖ψ1‖H.

Applying (5.5), (5.7), (5.11), (5.17), (5.27), and (5.28), we arrive at the estimate

(5.33)
‖s1/2∇kψ1‖H ≤

(
c7 + c8

‖ψ1‖H

‖s1/2∇kψ1‖H

)
‖u‖H,

c7 = (2r2
0)

−1‖s‖2
L∞‖s−1‖2

L∞ , c8 = 3(2r0)−1‖s‖2
L∞‖s−1‖3/2

L∞
.
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Using the Fourier series for ψ1 and assuming that k ∈ clos Ω̃, we obtain

‖∇kψ1‖2
H =

∑
b∈Γ̃

|b + k|2|(ψ̂1)b|2 ≥ |k|2
∑
b∈Γ̃

|(ψ̂1)b|2 = t2‖ψ1‖2
H.

Thus,

(5.34)
‖ψ1‖H

‖s1/2∇kψ1‖H

≤ t−1‖s−1‖1/2
L∞

.

Finally, (5.33) and (5.34) imply that

‖s1/2∇kψ1‖H ≤
(
c7 + t−1c8‖s−1‖1/2

L∞

)
‖u‖H,

whence (5.32) follows with the constant

(5.35) c6 = c7r0 + c8‖s−1‖1/2
L∞

. �

Relations (5.21), (5.23), and (5.32) yield estimate (5.18) with the constant C4 = c5+c6.
This completes the proof of Theorem 5.1. We have proved inequality (5.1) with the
constant

(5.36)
C3 = c4 + C4 = c4 + c5 + c6

= (2r0)−1
(
5‖s‖2

L∞‖s−1‖2
L∞ + 3‖s‖3/2

L∞
‖s−1‖3/2

L∞

)
(we have used expressions (5.17), (5.30), (5.33), and (5.35) for the constants).

§6. Approximations for the resolvent of L(k) and its solenoidal part

6.1. Approximation for the operator (L(t; θ)+ε2I)−1. We are going to apply [BSu2,
Theorem 1.5.5]; this theorem concerns approximation of the resolvent (L(t; θ) + ε2I)−1

for small ε in terms of the germ S(θ). Estimates (4.17) for the eigenvalues λl(t; θ),
l = 1, 2, 3, show that the conditions of this theorem are satisfied. In our case, Theorem
1.5.5 of [BSu2] directly implies the following result.

Theorem 6.1. Let P be the orthogonal projection in H onto the subspace N defined by
(4.6), and let S(θ) be the spectral germ of the family L(t; θ) at t = 0 (see (4.31)). If t0

is the number given by (4.10), then for the resolvent

(6.1) R(t; θ; ε) := (L(t; θ) + ε2I)−1

we have

(6.2) ‖R(t; θ; ε) − (t2S(θ) + ε2IN)−1P‖H→H ≤ C1ε
−1, 0 < ε ≤ 1, t ∈ [0, t0].

The constant C1 depends on c∗, δ, and t0 (see (3.16), (3.28), (4.9), and (4.10)), i.e.,
ultimately, it depends on the radius r0 of the ball inscribed in Ω̃ and on the L∞-norms
of the coefficients s, s−1, h, h−1, ν, ν−1.

Observe that the norm of each of the two terms in (6.2) is of order O(ε−2), while the
norm of the difference is of order of ε−1. Therefore, we may treat relation (6.2) as an
approximation for the resolvent (6.1). In [BSu2, §1.5], the following explicit expression
for the constant C1 was given:

(6.3) C1 = β1c
−1/2
∗ (t0)−1 + β2δc

−3/2
∗ (t0)−3 + (3δ)−1,

where β1 and β2 are absolute constants.
Now we consider the effective operator L0(t; θ) with the coefficients s0, h0, ν. We note

that (cf. (4.35)) the L∞-norms of the effective coefficients s0, (s0)−1, h0, (h0)−1, ν, ν−1

do not exceed the corresponding norms of the initial coefficients s, s−1, h, h−1, ν, ν−1.
It follows that if L(t; θ) is replaced by L0(t; θ), then the constants c∗ and δ (see (3.28),
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(4.9)) may only become larger. The constants t0 and t0δ−1/2 (see (4.10), (3.16), (2.9))
also may only become larger. Therefore, the constant C1 (see (6.3)) may only become
smaller. This allows us to assume that the constants t0 and C1 for L0(t; θ) are the same
as for L(t; θ). Applying Theorem 6.1 to the operator L0(t; θ), for the resolvent

(6.4) R0(t; θ; ε) := (L0(t; θ) + ε2I)−1

we obtain

(6.5) ‖R0(t; θ; ε) − (t2S0(θ) + ε2IN0)−1P0‖H→H ≤ C1ε
−1, 0 < ε ≤ 1, t ∈ [0, t0].

Here P0 is the orthogonal projection in H onto the subspace N0 defined by (4.13), and
S0(θ) is the germ of the family L0(t; θ).

By (4.33),

(6.6)
(t2S(θ) + ε2IN)−1P = (t2U∗S0(θ)U + ε2U∗U)−1P

= U∗(t2S0(θ) + ε2IN0)−1UP = (UP )∗(t2S0(θ) + ε2IN0)−1P0(UP ).

Recall that the unitary “identification of kernels” operator U : N → N0 is defined by
(4.14). From (6.2) and (6.6) we obtain

(6.7)
‖R(t; θ; ε) − (UP )∗(t2S0(θ) + ε2IN0)−1P0(UP )‖H→H ≤ C1ε

−1,

0 < ε ≤ 1, t ∈ [0, t0].

On the other hand, multiplying the operators under the norm in (6.5) by UP from the
right and by (UP )∗ from the left, and using the fact that the norms of these factors do
not exceed unity, we arrive at the inequality

(6.8)
‖(UP )∗R0(t; θ; ε)(UP ) − (UP )∗(t2S0(θ) + ε2IN0)−1P0(UP )‖H→H ≤ C1ε

−1,

0 < ε ≤ 1, t ∈ [0, t0].

Comparing (6.7) and (6.8), we obtain the following result.

Theorem 6.2. Suppose that the conditions of Theorem 6.1 are satisfied. Let L0(t; θ)
be the family corresponding to the effective operator L0 defined by (4.34), and that the
resolvent R0(t; θ; ε) is defined by (6.4). Let U : N → N0 be the unitary operator defined
by (4.14). Then

(6.9)
‖R(t; θ; ε) − (UP )∗R0(t; θ; ε)(UP )‖H→H ≤ 2C1ε

−1,

0 < ε ≤ 1, t ∈ [0, t0].

6.2. Approximation of the solenoidal part of the resolvent. Our next goal is to
approximate the “solenoidal” part of the resolvent (6.1), i.e., the operator

(6.10) RJ (t; θ; ε) := P(s; tθ)R(t; θ; ε) =
(
(L(t; θ))J(s;tθ) + ε2IJ(s;tθ)

)−1 ⊕ 0G(s;tθ).

We multiply the operators under the norm in (6.2) by the projection P(s; tθ) from the
left. Then

(6.11)
‖RJ (t; θ; ε) − P(s; tθ)P (t2S(θ) + ε2IN)−1P‖H→H ≤ C1ε

−1,

0 < ε ≤ 1, t ∈ (0, t0].

Next, using estimates (4.18) for the eigenvalues of the germ S(θ), we obtain

(6.12) ‖(t2S(θ) + ε2IN)−1P‖H→H ≤ (c∗t2 + ε2)−1, ε > 0, t ≥ 0.

From (6.12) and (5.1) it follows that

(6.13)
‖(P(s; tθ)P − PJθ

)(t2S(θ) + ε2IN)−1P‖H→H

≤ C3t(c∗t2 + ε2)−1 ≤ C32−1c
−1/2
∗ ε−1, ε > 0, 0 < t ≤ r0.
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Inequality (6.13) allows us to replace P(s; tθ)P by PJθ
in (6.11):

(6.14)
‖RJ (t; θ; ε) − (t2S(θ) + ε2IN)−1PJθ

‖H→H ≤ C2ε
−1,

0 < ε ≤ 1, 0 < t ≤ t0, C2 = C1 + C32−1c
−1/2
∗ .

By analogy with (6.10), we introduce the notation

(6.15)
R0

J (t; θ; ε) := P(s0; tθ)R0(t; θ; ε)

=
(
(L0(t; θ))J(s0;tθ) + ε2IJ(s0;tθ)

)−1 ⊕ 0G(s0;tθ).

Multiplying the operators under the norm in (6.5) by P(s0; tθ) from the left, and recalling
(5.2), we obtain

(6.16) ‖R0
J (t; θ; ε) − (t2S0(θ) + ε2IN0)−1PJ0

θ
‖H→H ≤ C1ε

−1, 0 < ε ≤ 1, 0 < t ≤ t0.

By (4.33) and (4.44),

(6.17)
(t2S(θ) + ε2IN)−1PJθ

= U∗(t2S0(θ) + ε2IN0)−1UPJθ
= (UP )∗(t2S0(θ) + ε2IN0)−1PJ0

θ
(UP ).

Now, comparing (6.14), (6.16), and (6.17), we arrive at the following important result.

Theorem 6.3. Suppose that the conditions of Theorem 6.2 are satisfied. Let the opera-
tors RJ (t; θ; ε) and R0

J (t; θ; ε) be defined by (6.10) and (6.15). Then

(6.18)
‖RJ (t; θ; ε) − (UP )∗R0

J (t; θ; ε)(UP )‖H→H ≤ C3ε
−1,

0 < ε ≤ 1, 0 < t ≤ t0, C3 = C1 + C2 = 2C1 + C32−1c
−1/2
∗ .

6.3. Estimates of the resolvents for t > t0. Besides (6.9) and (6.18), we need some
elementary estimates of the resolvents for k = tθ ∈ clos Ω̃ ∩ {k ∈ R3 : |k| > t0}. By
(3.30), for the lowest eigenvalue E1(k) of the operator L(k) = L(t; θ) we have

‖R(t; θ; ε)‖H→H ≤ (c∗(t0)2 + ε2)−1 ≤ c−1
∗ (t0)−2, k = tθ ∈ clos Ω̃ ∩ {k : |k| > t0}.

The same estimate is valid for R0(t; θ; ε), and also for the operators (6.10) and (6.15).
Combining this with (6.9) and (6.18), we arrive at the inequalities

‖R(t; θ; ε) − (UP )∗R0(t; θ; ε)(UP )‖H→H ≤ C4ε
−1,

0 < ε ≤ 1, k = tθ ∈ clos Ω̃,
(6.19)

‖RJ (t; θ; ε) − (UP )∗R0
J (t; θ; ε)(UP )‖H→H ≤ C5ε

−1,

0 < ε ≤ 1, k = tθ ∈ clos Ω̃ \ {0},
(6.20)

where

C4 = max{2C1, 2c−1
∗ (t0)−2},(6.21)

C5 = max{C3, 2c−1
∗ (t0)−2} = max{2C1 + C32−1c

−1/2
∗ , 2c−1

∗ (t0)−2}.(6.22)

§7. Approximation for the resolvent of L and its solenoidal part

7.1. Let L = L(s; h; ν) be the operator in G = L2(R3; C3) defined in Subsection 3.1. Let
P(s) be the orthogonal projection in G onto the subspace J(s) (see Subsection 2.1). Let
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L0 = L(s0, h0, ν) be the effective operator (see (4.34)), and let P(s0) be the corresponding
orthogonal projection in G onto J(s0). We put

R(ε) = (L + ε2I)−1,(7.1)

R0(ε) = (L0 + ε2I)−1,(7.2)

RJ (ε) = P(s)R(ε) = (LJ(s) + ε2IJ(s))−1 ⊕ 0G(s),(7.3)

R0
J (ε) = P(s0)R0(ε) = (L0

J(s0) + ε2IJ(s0))−1 ⊕ 0G(s0).(7.4)

Recall that V denotes the (unitary) Gelfand transformation (see Subsection 1.3). The
decompositions (3.36), (3.37) and their analogs for L0 show that the operators (7.1)–(7.4)
can be decomposed into the following direct integrals:

R(ε) = V∗
( ∫

Ω̃

⊕R(t; θ; ε) dk
)
V ,(7.5)

R0(ε) = V∗
( ∫

Ω̃

⊕R0(t; θ; ε) dk
)
V ,(7.6)

RJ (ε) = V∗
( ∫

Ω̃

⊕RJ (t; θ; ε) dk
)
V ,(7.7)

R0
J (ε) = V∗

( ∫
Ω̃

⊕R0
J (t; θ; ε) dk

)
V(7.8)

(we have used (6.1), (6.4), (6.10), and (6.15); recall that t = |k|, k = tθ). The direct
integrals of the operators in (7.5)–(7.8) act in the direct integral K of Hilbert spaces (see
(1.6)).

Now, we define a bounded operator W : G → G by the relation

(7.9) W = V∗
( ∫

Ω̃

⊕(UP ) dk
)
V = V∗[UP ]V .

Here [UP ] is the k-independent operator in K that acts as multiplication by the operator
UP in the fibers H = L2(Ω; C3) of the direct integral K. Relations (7.6), (7.9) imply that

(7.10)
V∗

( ∫
Ω̃

⊕(UP )∗R0(t; θ; ε)(UP ) dk
)
V

= W∗V∗
( ∫

Ω̃

⊕R0(t; θ; ε) dk
)
VW = W∗R0(ε)W

(recall that V is unitary). Similarly, (7.8) and (7.9) yield

(7.11) V∗
( ∫

Ω̃

⊕(UP )∗R0
J (t; θ; ε)(UP ) dk

)
V = W∗R0

J (ε)W .

From (7.5), (7.10) and (7.7), (7.11) we see that

‖R(ε) −W∗R0(ε)W‖G→G = ess supk∈Ω̃ ‖R(t; θ; ε) − (UP )∗R0(t; θ; ε)(UP )‖H→H,

(7.12)

‖RJ(ε) −W∗R0
J (ε)W‖G→G = ess supk∈Ω̃ ‖RJ (t; θ; ε) − (UP )∗R0

J (t; θ; ε)(UP )‖H→H.

(7.13)

Now, combining (7.12) and (7.13) with estimates (6.19) and (6.20), we arrive at the
following results.

Theorem 7.1. In the notation (7.1), (7.2), and (7.9), we have

(7.14) ‖R(ε) −W∗R0(ε)W‖G→G ≤ C4ε
−1, 0 < ε ≤ 1,

where C4 is the constant defined by (6.21).
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Theorem 7.2. In the notation (7.3), (7.4), and (7.9), we have

(7.15) ‖RJ (ε) −W∗R0
J (ε)W‖G→G ≤ C5ε

−1, 0 < ε ≤ 1,

where C5 is the constant defined by (6.22).

Remark 7.3. Ultimately, the constants C4, C5 depend on the L∞-norms of the coefficients
s, s−1, h, h−1, ν, ν−1, and on r0. Note that the operators RJ (ε) and R0

J (ε) do not depend
on the coefficient ν (because the part of L(s, h, ν) in the subspace J(s) is one and the
same for all ν). Consequently, estimate (7.15) is valid with the constant C5 corresponding
to the operator L(s, h, ν) with arbitrary ν(x), in particular, with ν(x) = 1. In this case,
C5 only depends on the L∞-norms of the coefficients s, s−1, h, h−1, and on r0.

7.2. The bordering operators. Now, we study the operators W , W∗ (see (7.9)) that
border the resolvents R0(ε) or R0

J(ε) in the approximations (7.14), (7.15). It suffices to
consider the operator

(7.16) W∗ = V∗[(UP )∗]V = V∗[U∗P0]V .

Here we have used the obvious identity

(UP )∗ = (P0UP )∗ = PU∗P0 = U∗P0.

Proposition 7.4. For any function u ∈ G we have

(7.17) ([P0]Vu)(k) = |Ω|−1/2(Fu)(k), k ∈ Ω̃,

where F is the Fourier transformation in R3.

Proof. It suffices to check (7.17) for the functions u in the Schwartz class S(R3; C3).
Then u∗(x,k) = (Vu)(x,k) is defined in accordance with (1.5). Now, to the function
u∗(·,k) ∈ H we apply the projection P0 onto the subspace N0 ⊂ H of constant vector-
valued functions

(P0u∗)(k) = |Ω|−1

∫
Ω

u∗(x,k) dx = |Ω|−1|Ω̃|−1/2

∫
Ω

∑
a∈Γ

e−i〈k,x+a〉u(x + a) dx

= |Ω|−1/2(2π)−3/2
∑
a∈Γ

∫
Ω+a

e−i〈k,y〉u(y) dy

= |Ω|−1/2(2π)−3/2

∫
R3

e−i〈k,y〉u(y) dy = |Ω|−1/2(Fu)(k)

(we have used the relation |Ω||Ω̃| = (2π)3). �

By (4.14), the operator U∗ = U−1 : N0 → N takes the vector f0 = (s0)1/2C ∈ N0 to
f = s1/2(C +∇ΦC) ∈ N. Let ej , j = 1, 2, 3, be the standard unit vectors in C3. We put

(7.18) Cj := (s0)−1/2ej , Φj := ΦCj
, j = 1, 2, 3.

Obviously, the vectors ej = (s0)1/2Cj , j = 1, 2, 3, form an orthogonal basis in N0:
(ej , el)H = |Ω|δjl. Then, since U is unitary, the functions

(7.19) gj = U∗ej = s1/2(Cj + ∇Φj), j = 1, 2, 3,

form an orthogonal basis in N. The operator U∗ takes the constant vector-valued function
f0 ∈ N0 to the function

(U∗f0)(x) =
3∑

j=1

〈f0, ej〉gj(x).
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In other words, if C3-valued functions are represented as columns of their coordinates
in the standard basis e1, e2, e3, then the operator U∗ reduces to multiplication by the
(3 × 3)-matrix W ∗(x), the columns of which are the coordinates of the vectors gj(x):

(7.20) (U∗f0)(x) = W ∗(x)f0.

From (7.17) and (7.20) it follows that

(7.21) ([U∗P0]Vu)(x,k) = |Ω|−1/2W ∗(x)(Fu)(k), x ∈ Ω, k ∈ Ω̃.

Finally, in order to calculate the operator W∗ (see (7.16)), we consider its sesquilinear
form, assuming that u,v ∈ S(R3; C3). Using (7.21), (1.5), and the periodicity of the
matrix-valued function W ∗(x), we obtain
(7.22)

(W∗u,v)G = ([U∗P0]Vu,Vv)K

= |Ω|−1/2|Ω̃|−1/2

∫
Ω

dx
∫

Ω̃

dk
∑
a∈Γ

exp(i〈k,x + a〉)〈W ∗(x)(Fu)(k),v(x + a)〉

= (2π)−3/2
∑
a∈Γ

∫
Ω+a

dy
∫

Ω̃

dk exp(i〈k,y〉)〈W ∗(y)(Fu)(k),v(y)〉

= (2π)−3/2

∫
R3

dy
∫

Ω̃

dk exp(i〈k,y〉)〈W ∗(y)(Fu)(k),v(y)〉.

We introduce the pseudodifferential operator Π that acts in G and the symbol of which
is the indicator χΩ̃(k) of the set Ω̃:

(7.23) (Πu)(y) = (2π)−3/2

∫
Ω̃

ei〈k,y〉(Fu)(k) dk.

Then (7.22) can be rewritten as

(W∗u,v)G =
∫

R3
〈W ∗(y)(Πu)(y),v(y)〉 dy, u,v ∈ S(R3; C3).

This implies the following statement.

Proposition 7.5. Let Π be the pseudodifferential operator defined by (7.23). Let W ∗(x)
be the matrix-valued function with the columns gj(x), j = 1, 2, 3, defined by (7.19). Then
the operator (7.16) can be represented as W∗ = W ∗Π.

Thus, the operator W∗ is the composition of the pseudodifferential operator Π and
the operator of multiplication by the periodic matrix-valued function W ∗(x). The matrix
W ∗(x) is expressed in terms of the gradients of the periodic solutions Φj(x) of the elliptic
equations div s(x)(Cj +∇Φj) = 0 (see (7.18)). Hence, in general, for an arbitrary matrix
s(x) satisfying condition (3.1) only, the matrix W ∗(x) is not bounded. Nevertheless, the
composition W ∗Π is a bounded operator in G, which is clear from (7.16). Also, this fact
can easily be verified directly. We shall not dwell on this direct verification. As is seen
from (7.9), (7.16), we have

(7.24) ‖W‖G→G = ‖W∗‖G→G ≤ 1.

§8. Other approximations for the operators R(ε) and RJ (ε)

8.1. The properties of the solutions ΦC.1 In Theorems 7.1 and 7.2, we obtained
approximations for R(ε) and RJ (ε) in terms of the “sandwiched” operators R0(ε) and
R0

J (ε). The role of the bordering operators was played by W∗ and W . In Proposition

1The author thanks A. A. Arkhipova for consultation and help in clarifying the properties of the
solutions ΦC.
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7.5, the operator W∗ was represented as W ∗Π. Our goal in this section is to show that
these approximations remain valid if the bordering operators W∗ and W are replaced
by the operators of multiplication by the periodic matrix-valued functions W ∗(x) and
W (x), respectively. In other words, the pseudodifferential operator Π can be replaced
by the identity operator I.

For this, we need some properties of the periodic solutions ΦC of equation (4.5). The
following statement is a consequence of [LU, Chapter III, Theorem 13.1].

Proposition 8.1. Suppose that a measurable periodic matrix s(x) with real entries sat-
isfies condition (3.1). Let C ∈ C3, and let ΦC(x) be the (weak) periodic solution of (4.5)
satisfying the additional condition

∫
Ω

ΦC(x) dx = 0. Then ΦC ∈ L∞(R3) and

(8.1) ‖ΦC‖L∞ ≤ Ĉ|C|,

where the constant Ĉ only depends on ‖s‖L∞ , ‖s−1‖L∞ , and on Ω.

Now, we prove the following statement.

Proposition 8.2. Suppose that the conditions of Proposition 8.1 are satisfied. Let f =
s1/2(C+∇ΦC). Then the operator [f ] of multiplication by the column f(x) is a continuous
operator from H1(R3) to G = L2(R3; C3), and

(8.2) ‖[f ]‖H1(R3)→G ≤ Ĉ1|C|, Ĉ1 = (2‖s‖L∞)1/2 max{2Ĉ, 1}.

Proof. For a periodic solution ΦC ∈ H1
loc(R

3) of equation (4.5), we have

(8.3)
∫

R3
〈s(x)(C + ∇ΦC),∇Ψ〉 dx = 0

for any function Ψ ∈ H1(R3) with compact support. Let v ∈ C∞
0 (R3). Then in (8.3) we

can put Ψ(x) = ΦC(x)|v(x)|2:∫
R3
〈s(x)(C + ∇ΦC),∇ΦC〉|v|2 dx +

∫
R3
〈s(x)(C + ∇ΦC),∇|v|2〉Φ+

C dx = 0.

Consequently,∫
R3

|f |2|v|2 dx =
∫

R3
〈s(x)(C + ∇ΦC),C + ∇ΦC〉|v|2 dx

=
∫

R3
〈s(x)(C + ∇ΦC),C〉|v|2 dx −

∫
R3
〈s(x)(C + ∇ΦC),∇|v|2〉Φ+

C dx

≤ ‖s‖1/2
L∞

|C|
∫

R3
|f ||v|2 dx + 2‖s‖1/2

L∞
‖ΦC‖L∞

∫
R3

|f ||v||∇v| dx

≤ 1
2

∫
R3

|f |2|v|2 dx + ‖s‖L∞ |C|2
∫

R3
|v|2 dx + 4‖s‖L∞‖ΦC‖2

L∞

∫
R3

|∇v|2 dx.

As a result, by (8.1), we obtain

1
2

∫
R3

|f |2|v|2 dx ≤ ‖s‖L∞ |C|2
(∫

R3
|v|2 dx + 4Ĉ2

∫
R3

|∇v|2 dx
)

, v ∈ C∞
0 (R3),

which implies (8.2). �

Proposition 8.2 elementarily implies the following statement, in which we use the
notation Gl := H l(R3; C3), l ∈ R.
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Corollary 8.3. 1◦. The operator [∇ΦC] of multiplication by the column ∇ΦC(x) acts
continuously from H1(R3) to G; the adjoint operator [∇ΦC]∗ of multiplication by the row
(∇ΦC(x))∗ acts continuously from G to H−1(R3). We have

‖[∇ΦC]‖H1(R3)→G ≤ Ĉ2|C|, Ĉ2 = Ĉ1‖s−1‖1/2
L∞

+ 1,

‖[∇ΦC]∗‖G→H−1(R3) ≤ Ĉ2|C|.

2◦. Let gj , j = 1, 2, 3, be defined by (7.18), (7.19). Then

‖[gj ]‖H1(R3)→G ≤ Ĉ1|(s0)−1/2| ≤ Ĉ1‖s−1‖1/2
L∞

, j = 1, 2, 3.

3◦. The operator of multiplication by the matrix W ∗(x) acts continuously from G1 to
G, and

(8.4) ‖[W ∗]‖G1→G ≤ Ĉ3 :=
√

3Ĉ1‖s−1‖1/2
L∞

.

4◦. The operator of multiplication by the matrix W (x) acts continuously from G to
G−1, and

‖[W ]‖G→G−1 ≤ Ĉ3.

8.2. Analysis of the sandwiched resolvent. We put (see Proposition 7.5)

(8.5) Y(ε)∗ := W∗(R0(ε))1/2 = W ∗Π(R0(ε))1/2.

Then

W∗R0(ε)W = Y(ε)∗Y(ε),(8.6)

W∗R0
J (ε)W = Y(ε)∗P(s0)Y(ε).(8.7)

We denote

(8.8) Ỹ(ε)∗ = W ∗(I − Π)(R0(ε))1/2.

Our goal is to show that the operator (8.8) is bounded in G, and its norm is estimated by
a constant independent of ε. This will allow us to replace the approximating operators
(8.6) and (8.7) in the approximations (7.14) and (7.15) by W ∗R0(ε)W and W ∗R0

J(ε)W .

Proposition 8.4. The operator (I − Π)(R0(ε))1/2 : G → G1 is continuous, and

(8.9) ‖(I − Π)(R0(ε))1/2‖G→G1 ≤ c
−1/2
∗ (1 + r−2

0 )1/2.

The constant c∗ is defined by (3.28), and r0 is the radius of the ball inscribed in Ω̃.

Proof. In the Fourier representation, the operator L0 (see (4.34)) acts on a function
u(x) as the multiplication of its Fourier image (Fu)(ξ) by the symbol l0(ξ), ξ ∈ R

3. The
symbol l0(ξ) is the (3 × 3)-matrix corresponding to the quadratic form

(8.10)
〈l0(ξ)z, z〉 = 〈(h0)−1(ξ × ((s0)−1/2z)), ξ × ((s0)−1/2z)〉 + ν|〈(s0)1/2z, ξ〉|2,

ξ ∈ R
3, z ∈ C

3.

It follows that the matrix-valued function l0(ξ) is a second-order homogeneous function
of ξ:

(8.11) l0(ξ) = |ξ|2l0(θ), θ = |ξ|−1ξ ∈ S
2.

Combining (8.10) and (4.32), we see that

〈l0(θ)z, z〉
|z|2 =

(S0(θ)z, z)H

‖z‖2
H

, z ∈ C
3 \ {0}.
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Recalling estimates (4.18) for the eigenvalues of the germ S0(θ), we arrive at a lower
estimate for the symbol (8.11):

(8.12) l0(ξ) ≥ c∗|ξ|21, ξ ∈ R
3.

In the Fourier representation, the resolvent R0(ε) (see (7.2)) corresponds to the symbol
(l0(ξ) + ε21)−1, while the operator (I − Π)(R0(ε))1/2 (see (7.23)) corresponds to the
symbol (1 − χΩ̃(ξ))(l0(ξ) + ε21)−1/2. Let u ∈ G and v := (I − Π)(R0(ε))1/2u. Then

(8.13) (Fv)(ξ) = (1 − χΩ̃(ξ))(l0(ξ) + ε21)−1/2(Fu)(ξ).

By (8.12) and (8.13), and by the estimate |ξ| ≥ r0 for ξ ∈ R3 \ Ω̃, we have

‖v‖2
G1 =

∫
R3

(|ξ|2 + 1)|(Fv)(ξ)|2 dξ ≤
∫

R3\Ω̃
(|ξ|2 + 1)(c∗|ξ|2 + ε2)−1|(Fu)(ξ)|2 dξ

≤ c−1
∗ (1 + r−2

0 )
∫

R3\Ω̃
|(Fu)(ξ)|2 dξ ≤ c−1

∗ (1 + r−2
0 )‖u‖2

G.

This proves (8.9). �

Now, (8.4) and (8.9) directly imply the following statement.

Proposition 8.5. The operators Ỹ(ε)∗ (see (8.8)) and Ỹ(ε) are bounded in G. We have

(8.14) ‖Ỹ(ε)∗‖G→G = ‖Ỹ(ε)‖G→G ≤ Ĉ4 := c
−1/2
∗ (1 + r−2

0 )1/2Ĉ3.

Obviously, (7.2) implies that ‖(R0(ε))1/2‖G→G ≤ ε−1, ε > 0. Combining this with
(7.24), we obtain an estimate for the norm of Y(ε)∗ (see (8.5)), and then also for the
norm of Y(ε):

(8.15) ‖Y(ε)∗‖G→G = ‖Y(ε)‖G→G ≤ ε−1, ε > 0.

By (8.5), (8.6), and (8.8), we have

W ∗R0(ε)W −W∗R0(ε)W = (Y(ε)∗ + Ỹ(ε)∗)(Y(ε) + Ỹ(ε)) − Y(ε)∗Y(ε)

= Ỹ(ε)∗Y(ε) + Y(ε)∗Ỹ(ε) + Ỹ(ε)∗Ỹ(ε).

Then (8.14) and (8.15) yield the estimate

(8.16)
‖W ∗R0(ε)W −W∗R0(ε)W‖G→G

≤ 2‖Ỹ(ε)‖G→G‖Y(ε)‖G→G + ‖Ỹ(ε)‖2
G→G ≤ 2Ĉ4ε

−1 + Ĉ2
4 , ε > 0.

Similarly, we use (8.7) to obtain

(8.17) ‖W ∗R0
J (ε)W −W∗R0

J (ε)W‖G→G ≤ 2Ĉ4ε
−1 + Ĉ2

4 , ε > 0.

8.3. Approximation for R(ε) and RJ (ε). Combining (7.14), (7.15) and (8.16), (8.17),
we arrive at the following results.

Theorem 8.6. Let R(ε), R0(ε) be the operators defined by (7.1), (7.2). Let W ∗(x) be
the matrix with the columns gj(x), j = 1, 2, 3, defined by (7.18), (7.19). Then

(8.18) ‖R(ε) − W ∗R0(ε)W‖G→G ≤ C6ε
−1, 0 < ε ≤ 1, C6 = C4 + 2Ĉ4 + Ĉ2

4 ,

where C4 is defined by (6.21), and Ĉ4 is defined by (8.14).

Theorem 8.7. Let RJ (ε), R0
J (ε) be the operators defined by (7.3), (7.4). Let W ∗(x) be

the same matrix as in Theorem 8.6. Then

(8.19) ‖RJ(ε) − W ∗R0
J (ε)W‖G→G ≤ C7ε

−1, 0 < ε ≤ 1, C7 = C5 + 2Ĉ4 + Ĉ2
4 ,

where C5 is defined by (6.22), and Ĉ4 is defined by (8.14).



902 T. A. SUSLINA

Remark 8.8. Ultimately, the constants C6, C7 in estimates (8.18), (8.19) depend on the
L∞-norms of the coefficients s, s−1, h, h−1, ν, ν−1 and on the parameters of the lattice
Γ. As in Remark 7.3, we may assume that the constant C7 corresponds to the operator
L(s, h, 1) with ν(x) = 1; therefore, it only depends on the L∞-norms of the coefficients
s, s−1, h, h−1 and on the parameters of the lattice Γ.

Now we look at how the approximating operators W ∗R0(ε)W and W ∗R0
J (ε)W =

W ∗P(s0)R0(ε)W act. By Corollary 8.3(4◦), the operator [W ] continuously maps G into
G−1. The resolvent R0(ε), viewed as a pseudodifferential operator of order −2 with the
symbol (l0(ξ) + ε21)−1, continuously maps G−1 into G1. By Corollary 8.3(3◦), [W ∗] is
a continuous operator from G1 to G. As a result, the operator W ∗R0(ε)W is continuous
in G. In order to check that the operator W ∗R0

J (ε)W is also continuous in G, we must
use the fact that the projection P(s0) is a continuous operator in G1. Indeed, P(s0) acts
as a zeroth-order pseudodifferential operator. The symbol p(ξ) of the operator P(s0) is
a (3 × 3)-matrix-valued function homogeneous in ξ ∈ R3 of order zero. We have

(8.20) p(ξ)z = z − 〈s0ξ, ξ〉−1〈(s0)1/2z, ξ〉(s0)1/2ξ, ξ ∈ R
3 \ 0, z ∈ C

3.

Therefore, P(s0) continuously maps G1 into G1.

§9. Homogenization problem for the operator L

Below, if ϕ(x) is a measurable Γ-periodic function in R3, we systematically use the
notation ϕε(x) := ϕ(ε−1x), ε > 0. For the operator L = L(s, h, ν) defined in Subsection
3.1, we consider the following family of (εΓ)-periodic operators:

(9.1) Lε := L(sε, hε, νε), ε > 0.

The coefficients of the operator (9.1) are rapidly oscillating as ε → 0. The problem is to
study the behavior as ε → 0 of the resolvent (Lε + I)−1, and also of its “solenoidal” part
(Lε + I)−1P(sε).

9.1. Approximation of the resolvent (Lε+I)−1. The operator (9.1) is the selfadjoint
operator in G generated by the quadratic form

(9.2)
lε[u,u] =

∫
R3
〈(hε(x))−1 curl(sε(x))−1/2u, curl(sε(x))−1/2u〉 dx

+
∫

R3
νε(x)| div(sε(x))1/2u|2 dx, Dom lε = F (R3; sε)

(the class F (R3; sε) is defined by (2.6)). Let Tε denote the unitary scale transformation
in G: (Tεu)(y) = ε3/2u(εy), ε > 0. Relation (9.2) implies that

Lε = ε−2T ∗
ε LTε, ε > 0,

whence

(9.3) (Lε + I)−1 = ε2T ∗
ε (L + ε2I)−1Tε = ε2T ∗

ε R(ε)Tε.

Here we have used the notation (7.1). For the operator L0 (see (4.34)) with constant
coefficients, identity (9.3) turns into the even simpler relation

(9.4) (L0 + I)−1 = ε2T ∗
ε (L0 + ε2I)−1Tε = ε2T ∗

ε R0(ε)Tε

(we have used (7.2)).
Let W (x) be a periodic matrix-valued function occurring in Theorems 8.6 and 8.7.

Obviously, T ∗
ε [W ]Tε = [W ε], i.e., under the scale transformation the operator of multi-

plication by the periodic function W (x) turns into the operator of multiplication by the
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rapidly oscillating function W ε(x) = W (ε−1x). Since Tε is unitary, by (9.4) we have

(9.5) ε2T ∗
ε W ∗R0(ε)WTε = ε2(W ε)∗T ∗

ε R0(ε)TεW
ε = (W ε)∗(L0 + I)−1W ε.

Subtracting (9.5) from (9.3) and using Theorem 8.6, we arrive at the following theorem.

Theorem 9.1. Let Lε be the operator defined by (9.1). Let L0 be the effective operator
defined by (4.34). Let W ∗(x) be a periodic matrix-valued function with the columns gj(x),
j = 1, 2, 3, defined by (7.18), (7.19), and let W ε(x) = W (ε−1x). Then

(9.6) ‖(Lε + I)−1 − (W ε)∗(L0 + I)−1W ε‖G→G ≤ C6ε, 0 < ε ≤ 1.

The constant C6 depends on the L∞-norms of the coefficients s, s−1, h, h−1, ν, ν−1 and
on the parameters of the lattice Γ.

We emphasize that the approximating operator (W ε)∗(L0 + I)−1W ε in (9.6) involves
the resolvent of the effective operator L0 with constant coefficients. At the same time, the
approximating operator still depends on ε via the explicitly described rapidly oscillating
factors W ε, (W ε)∗. This dependence can be eliminated only by passing to the weak
operator limit (see Subsection 9.3 below), i.e., by essential deterioration of the quality of
convergence.

9.2. Approximation of the solenoidal part of the resolvent of Lε. By applying
the explicit description of the projection P(s) (see Subsection 2.1), it is easy to show
that

(9.7) T ∗
ε P(s)Tε = P(sε).

We multiply both parts of (9.3) by the projection P(sε) and use (7.3) and (9.7), obtaining

(9.8) P(sε)(Lε + I)−1 = ε2T ∗
ε P(s)R(ε)Tε = ε2T ∗

ε RJ(ε)Tε.

Similarly, multiplying (9.4) by P(s0) and using (7.4) and (9.7), we get

(9.9) P(s0)(L0 + I)−1 = ε2T ∗
ε R0

J (ε)Tε.

Note that the operators on the left-hand sides of (9.8) and (9.9) can also be written as

P(sε)(Lε + I)−1 = ((Lε)J(sε) + IJ(sε))−1 ⊕ 0G(sε),

P(s0)(L0 + I)−1 = ((L0)J(s0) + IJ(s0))−1 ⊕ 0G(s0).

By analogy with (9.5), we can use (9.9) to obtain

(9.10) ε2T ∗
ε W ∗R0

J (ε)WTε = ε2(W ε)∗T ∗
ε R0

J(ε)TεW
ε = (W ε)∗P(s0)(L0 + I)−1W ε.

Subtracting (9.10) from (9.8) and applying Theorem 8.7 (and also Remark 8.8), we arrive
at the following result.

Theorem 9.2. Suppose that the conditions of Theorem 9.1 are satisfied. Let P(sε) and
P(s0) be the orthogonal projections in G onto the subspaces J(sε) and J(s0) (see (2.2)),
respectively. Then

(9.11) ‖P(sε)(Lε + I)−1 − (W ε)∗P(s0)(L0 + I)−1W ε‖G→G ≤ C7ε, 0 < ε ≤ 1.

The constant C7 depends on the L∞-norms of the coefficients s, s−1, h, h−1 and on the
parameters of the lattice Γ.
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9.3. On the weak limit of the resolvent. Under the conditions of Theorems 9.1 and
9.2, the weak operator limits in G can be calculated for the resolvent (Lε + I)−1 and for
its solenoidal part. For this, we need the following elementary fact known as the “mean
value property” (see, e.g., [ZhKO]).

Proposition 9.3. 1◦. Let ψ(x) be a Γ-periodic function of class L2,loc(R3). We put

ψ := |Ω|−1

∫
Ω

ψ(x) dx.

Then, as ε → 0, the functions ψε(x) = ψ(ε−1x) weakly tend to ψ in L2,loc(R3).
2◦. Let ϕ ∈ L∞(R3) be a Γ-periodic function, and let u ∈ L2(R3). Then, as ε → 0,

the functions ϕε(x)u(x) weakly tend to ϕu(x) in L2(R3).

Now, we prove the following statement.

Theorem 9.4. Under the conditions of Theorem 9.1, the resolvent (Lε + I)−1 has a
weak operator limit:

(9.12) (w, G → G)- lim
ε→0

(Lε + I)−1 = W
∗
(L0 + I)−1W.

Proof. By (9.6), it suffices to find the weak limit of the operator

(9.13) (W ε)∗(L0 + I)−1W ε.

First, we show that the norm of this operator in G is bounded uniformly with respect to
ε.

As was shown in Corollary 8.3(3◦), the operator [W ∗] acts continuously from G1 to
G, and estimate (8.4) is valid. Then the same is true for the operator [(W ε)∗], and its
(G1 → G)-norm is bounded uniformly in ε:

(9.14) ‖[(W ε)∗]‖G1→G ≤ Ĉ3, 0 < ε ≤ 1.

Indeed, estimate (8.4) means that

(9.15)
∫

R3
|W ∗(x)v(x)|2 dx ≤ Ĉ2

3

∫
R3

(|∇xv(x)|2 + |v(x)|2) dx, v ∈ G
1.

Substituting y = εx and u(y) = v(x), we rewrite (9.15) as∫
R3

|W ∗(ε−1y)u(y)|2 dy ≤ Ĉ2
3

∫
R3

(ε2|∇yu(y)|2 + |u(y)|2) dy, u ∈ G
1.

This proves (9.14). By duality, (9.14) implies that the operator [W ε] acts continuously
from G to G−1, and

(9.16) ‖[W ε]‖G→G−1 ≤ Ĉ3, 0 < ε ≤ 1.

The resolvent (L0 + I)−1, viewed as a pseudodifferential operator of order −2 with the
symbol (l0(ξ) + 1)−1, continuously maps G−1 into G1, and we have

(9.17) ‖(L0 + I)−1‖G−1→G1 ≤ max{c−1
∗ , 1}

by (8.12). From (9.14), (9.16), and (9.17) it follows that the norm of the operator (9.13)
is uniformly bounded:

(9.18) ‖(W ε)∗(L0 + I)−1W ε‖G→G ≤ Ĉ2
3 max{c−1

∗ , 1}, 0 < ε ≤ 1.

By (9.18), it suffices to find the limit

(9.19) lim
ε→0

((W ε)∗(L0 + I)−1W εF,G)G, F,G ∈ C∞
0 (R3; C3).

By the mean value property (Proposition 9.3), we have

(w, G)- lim
ε→0

W εF = WF, (w, G)- lim
ε→0

W εG = WG.
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Let ζ ∈ C∞
0 (R3) be such that ζ(x) = 1 for x ∈ suppF. Then the operator (L0 + I)−1 in

(9.19) can be replaced by the compact operator (L0 + I)−1[ζ]. Hence, (L0 + I)−1W εF
strongly converges in G to (L0 + I)−1WF. Now, it is clear that the limit in (9.19)
coincides with ((L0 + I)−1WF, WG)G. This proves (9.12). �

The following theorem can be proved by analogy.

Theorem 9.5. Under the conditions of Theorem 9.2, there exists a weak operator limit
for the operator P(sε)(Lε + I)−1:

(w, G → G)- lim
ε→0

P(sε)(Lε + I)−1 = W
∗P(s0)(L0 + I)−1W.

§10. Adaptation of the results of §9 to applications

to the Maxwell operator

10.1. For further application to the homogenization problem for the Maxwell operator,
we need to reformulate the results of §9 in terms natural for the following problem:

(10.1) curl(hε)−1 curl(sε)−1ψε + ψε = F, div ψε = 0,

where F ∈ J(1), i.e., F ∈ G and div F = 0. We are also interested in the behavior of the
function φε = (sε)−1ψε, which is the solution of the problem

(10.2) curl(hε)−1 curl φε + sεφε = F, div sεφε = 0.

Introducing gε = (sε)−1/2ψε, we see that

(sε)−1/2 curl(hε)−1 curl(sε)−1/2gε + gε = (sε)−1/2F, div(sε)1/2gε = 0,

which can be rewritten as

Lεgε + gε = (sε)−1/2F, gε ∈ J(sε).

For the right-hand side, we automatically have (sε)−1/2F ∈ J(sε). Then

gε = P(sε)(Lε + I)−1(sε)−1/2F,(10.3)

ψε = (sε)1/2gε, φε = (sε)−1/2gε.(10.4)

By (9.11), the following functions play the role of approximations for the functions (10.4):

ψ̃ε = (sε)1/2(W ε)∗(L0 + I)−1P(s0)W ε(sε)−1/2F,(10.5)

φ̃ε = (sε)−1ψ̃ε.(10.6)

Moreover, from (9.11) and (10.3)–(10.6) it follows that

‖ψε − ψ̃ε‖G ≤ C8ε‖F‖G, 0 < ε ≤ 1, C8 = C7‖s‖1/2
L∞

‖s−1‖1/2
L∞

,(10.7)

‖φε − φ̃ε‖G ≤ C9ε‖F‖G, 0 < ε ≤ 1, C9 = C7‖s−1‖L∞ .(10.8)

10.2. Now, we transform expressions (10.5) and (10.6). Since (see (7.18) and (7.19))
the matrix W ∗(x) has columns gj(x) = s(x)1/2(Cj + ∇Φj(x)), j = 1, 2, 3, the matrix
W̃ ∗(x) := s(x)−1/2W ∗(x) has columns Cj + ∇Φj(x), j = 1, 2, 3. Relations (10.5) and
(10.6) can be rewritten as

(10.9) ψ̃ε = sε(W̃ ε)∗ωε, φ̃ε = (W̃ ε)∗ωε,

where ωε = (L0 + I)−1P(s0)W̃ εF. We denote

(10.10) ψ0
ε := (s0)1/2ωε, φ0

ε := (s0)−1ψ0
ε = (s0)−1/2ωε.

Then ψ0
ε is the solution of the problem

(10.11) curl(h0)−1 curl(s0)−1ψ0
ε + ψ0

ε = (s0)1/2P(s0)W̃ εF, div ψ0
ε = 0.
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Let G((s0)−1) = L2(R3; C3; (s0)−1) denote the L2-space with the weight (s0)−1. The
inner product in this space is given by (u,v)G((s0)−1) = ((s0)−1u,v)G. The set J(1) =
{u ∈ G : div u = 0} is a closed subspace in G((s0)−1). Let P̃(s0) be the orthogonal
projection in G((s0)−1) onto J(1). It is easily seen that (s0)1/2P(s0) = P̃(s0)(s0)1/2.

Then the right-hand side in (10.11) coincides with P̃(s0)(s0)1/2W̃ εF. By V ∗(x) we
denote the matrix with the columns ej + ∇Φej

(x), j = 1, 2, 3. It is elementary to check
that W̃ ∗(x) = V ∗(x)(s0)−1/2, whence (s0)1/2W̃ (x) = V (x). Therefore, the right-hand
side in (10.11) coincides with P̃(s0)V εF. As a result, (10.11) can be rewritten as

(10.12) curl(h0)−1 curl(s0)−1ψ0
ε + ψ0

ε = P̃(s0)V εF, div ψ0
ε = 0.

Note that the right-hand side in (10.12) belongs to the class J−1(1) := {v ∈ G−1, div v =
0}. Indeed, by Corollary 8.3(1◦), the operator [V ] acts continuously from G to G−1. The
same is true for [V ε]. Then V εF ∈ G−1. The projection P̃(s0) acts as a zeroth-order
pseudodifferential operator, and, by continuity, extends to a continuous operator in G−1.
The image P̃(s0)G−1 coincides with J−1(1). Thus, for the solution of problem (10.12),
we have ψ0

ε ∈ G1. Also, φ0
ε ∈ G1 by (10.10).

Now, (10.9) and (10.10) imply that

(10.13) ψ̃ε = sε(V ε)∗(s0)−1ψ0
ε, φ̃ε = (V ε)∗φ0

ε.

10.3. The matrix V ∗(x) can be represented as V ∗(x) = 1 + Ṽ ∗(x), where Ṽ ∗(x) is the
matrix with the columns ∇Φej

(x), j = 1, 2, 3. Obviously, Ṽ ∗(x) has zero mean value:∫
Ω

Ṽ ∗(x) dx = 0. Then the right-hand side of (10.12) can be written as P̃(s0)V εF =
F + P̃(s0)Ṽ εF. Naturally, the solution ψ0

ε of problem (10.12) can be represented as

(10.14) ψ0
ε = ψ0 + ψ̂ε,

where ψ0 does not depend on ε and satisfies the “homogenized” problem

(10.15) curl(h0)−1 curl(s0)−1ψ0 + ψ0 = F, div ψ0 = 0,

and ψ̂ε is the solution of the “correction” problem

(10.16) curl(h0)−1 curl(s0)−1ψ̂ε + ψ̂ε = P̃(s0)Ṽ εF, div ψ̂ε = 0.

Since the right-hand side of (10.16) belongs to J−1(1), we have ψ̂ε ∈ G1. Note that
ψ̂ε weakly tends to zero in G. This can easily be checked by analogy with the proof of
Theorem 9.4. One should use the presence of the factor Ṽ ε on the right-hand side of
(10.16) and the fact that Ṽ ε weakly tends to zero in L2,loc (by the mean value property).

We put

(10.17) φ0 := (s0)−1ψ0, φ̂ε := (s0)−1ψ̂ε.

Then, by (10.10) and (10.14),

(10.18) φ0
ε = φ0 + φ̂ε.

Note that φ̂ε ∈ G1, φ̂ε weakly tends to zero in G, and φ0 is the solution of the “homog-
enized” problem

(10.19) curl(h0)−1 curl φ0 + s0φ0 = F, div s0φ0 = 0.

Next, the mean value of the matrix s(x)V ∗(x) with the columns s(x)(ej +∇Φej
(x)),

j = 1, 2, 3, is equal to s0 (see (4.12)). We put

(10.20) G(x) := s(x)V ∗(x)(s0)−1 − 1.
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Then the matrix G(x) has zero mean value. Now, using (10.14), (10.18), (10.20), we can
rewrite (10.13) as

ψ̃ε = (1 + Gε)(ψ0 + ψ̂ε),(10.21)

φ̃ε = (1 + (Ṽ ε)∗)(φ0 + φ̂ε).(10.22)

Once again, from (10.21) and (10.22) we see directly that ψ̃ε, φ̃ε ∈ G. Indeed, the
functions ψ0 + ψ̂ε and φ0 + φ̂ε belong to G1, and the operators of multiplication by Gε

and by (Ṽ ε)∗ act continuously from G1 to G by Corollary 8.3(1◦).
In (10.21) and (10.22), after opening the parentheses, we distinguish the terms ψ0 and

φ0, which are independent of ε and play the role of the weak limits for ψε, φε:

(w, G)- lim
ε→0

ψε = ψ0, (w, G)- lim
ε→0

φε = φ0.

Indeed, all other summands in (10.21) and (10.22), namely, ψ̂ε, φ̂ε, Gε(ψ0 + ψ̂ε), and
(Ṽ ε)∗(φ0 + φ̂ε) weakly tend to zero in G. This can be proved by analogy with the proof
of Theorem 9.4. One should use the fact that, by the mean value property, the functions
Ṽ ε and Gε weakly tend to zero in L2,loc.

10.4. We summarize. Combining estimates (10.7) and (10.8) with the representations
(10.21) and (10.22), we deduce the following theorem.

Theorem 10.1. Let ψε be the solution of problem (10.1), where F ∈ J(1), and let
φε = (sε)−1ψε. Let Ṽ ∗(x) be the matrix with the columns ∇Φej

(x), j = 1, 2, 3, and
let G(x) be the matrix defined by (10.20). Let P̃(s0) be the orthogonal projection in the
weighted space G((s0)−1) onto the solenoidal subspace J(1). If ψ0 is the solution of the
“homogenized” problem (10.15), ψ̂ε is the solution of the “correction” problem (10.16),
and φ0 and φ̂ε are defined by (10.17), then the functions ψ̃ε and φ̃ε defined by (10.21)
and (10.22) play the role of approximations for ψε and φε. We have

‖ψε − ψ̃ε‖G ≤ C8ε‖F‖G, 0 < ε ≤ 1,

‖φε − φ̃ε‖G ≤ C9ε‖F‖G, 0 < ε ≤ 1.

The constants C8 and C9 depend on the L∞-norms of the coefficients s, s−1, h, h−1 and
on the parameters of the lattice Γ. The solutions ψε and φε weakly tend in G to ψ0 and
φ0, respectively.

§11. Weak convergence of solutions and flows

11.1. Consider problem (10.2). As was shown in Theorem 10.1, the solutions φε weakly
tend to the solution φ0 of the “homogenized” problem (10.19). In this section we
show that, moreover, the functions curlφε converge weakly to curl φ0, and the “flows”
(hε)−1 curl φε converge weakly to the “homogenized flow” (h0)−1 curl φ0. The results
of such type are traditional for homogenization theory. Close results (though there are
differences) can be found, e.g., in [BeLP].

Our goal in this section is the proof of the following theorem.

Theorem 11.1. Let φε be the (weak) solution of the problem

(11.1) curl(hε)−1 curl φε + sεφε = F, div sεφε = 0,

where F ∈ J(1). Let φ0 be the solution of the “homogenized” problem

(11.2) curl(h0)−1 curl φ0 + s0φ0 = F, div s0φ0 = 0.
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Then, as ε → 0, we have the following:
1◦. the solutions φε weakly tend in G to φ0;
2◦. the functions ψε := sεφε weakly tend in G to ψ0 := s0φ0;
3◦. the functions curl φε weakly tend in G to curl φ0;
4◦. the flows pε := (hε)−1 curl φε weakly tend in G to p0 := (h0)−1 curl φ0.

Though statements 1◦ and 2◦ of Theorem 11.1 are contained in Theorem 10.1, here
we present a simple proof of these statements, which does not depend on the preceding
material. This emphasizes the fact that the last statement of Theorem 10.1 is much
simpler than the statements concerning approximations of solutions in the G-norm.

11.2. We proceed to the proof of Theorem 11.1. Equation (11.1) means that φε ∈ G,
curl φε ∈ G, and

(11.3) ((hε)−1 curl φε, curlg)G + (sεφε,g)G = (F,g)G

for any vector-valued function g ∈ G such that curlg ∈ G.
We put g = φε in (11.3). Then

(11.4) ‖(hε)−1/2 curl φε‖2
G + ‖(sε)1/2φε‖2

G ≤ ‖F‖G‖φε‖G.

From (11.4) it follows that

‖φε‖G ≤ ‖s−1‖L∞‖F‖G,(11.5)

‖ curlφε‖G ≤ ‖h‖1/2
L∞

‖s−1‖1/2
L∞

‖F‖G,(11.6)

whence

‖ψε‖G ≤ ‖s‖L∞‖s−1‖L∞‖F‖G,(11.7)

‖pε‖G ≤ ‖h−1‖L∞‖h‖1/2
L∞

‖s−1‖1/2
L∞

‖F‖G.(11.8)

By the uniform boundedness properties (11.5)–(11.8), for some subsequence εj → 0 the
following limits exist:

(w, G)- lim
εj→0

φεj
= φ ∈ G,(11.9)

(w, G)- lim
εj→0

ψεj
= ψ ∈ G,(11.10)

(w, G)- lim
εj→0

curl φεj
= curl φ ∈ G,(11.11)

(w, G)- lim
εj→0

pεj
= p ∈ G.(11.12)

Our goal is to show that φ = φ0, ψ = ψ0, p = p0. Then relations (11.9)–(11.12) will
imply all the statements of the theorem.

We pass to the limit as εj → 0 in identity (11.3). By (11.10) and (11.12), we have

(11.13) (p, curlg)G + (ψ,g)G = (F,g)G, g ∈ G, curlg ∈ G.

Consequently,

(11.14) curlp = F − ψ ∈ G.

Next, passing to the limit in the relation div ψε = 0 (see (11.1)), we obtain

(11.15) div ψ = 0.
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11.3. We recall the representation (4.24) for the effective matrix h0:

(11.16) h0C = |Ω|−1

∫
Ω

h(x)(C + ∇ΨC(x)) dx, C ∈ C
3,

where ΨC ∈ H̃1(Ω) is a solution of the equation div h(x)(C + ∇ΨC) = 0. We fix the
solution ΨC by the condition

∫
Ω

ΨC(x) dx = 0. We put ρ(x) = C+∇ΨC(x), and extend
ρ(x) up to a Γ-periodic function ρ ∈ Gloc = L2,loc(R3; C3). The mean value property
(see Proposition 9.3) and identity (11.16) show that

(11.17) (w, Gloc)- lim
ε→0

hερε = h0C.

Lemma 11.2. Let ζ ∈ C∞
0 (R3). Then

(11.18) lim
εj→0

(ζρε, curl φε)G = (ζC, curlφ)G.

Proof. The expression under the limit sign can be represented as the sum

(11.19) (ζC, curlφε)G + (ζ(∇ΨC)ε, curl φε)G.

By (11.11), the limit of the first term (with respect to the subsequence εj → 0) coincides
with the right-hand side of (11.18). Thus, it suffices to show that the second term in
(11.19) tends to zero. We have

Θ1(ε) := (ζ(∇ΨC)ε, curl φε)G = ε(ζ∇(Ψε
C), curlφε)G

= ε(∇(ζΨε
C) − Ψε

C∇ζ, curl φε)G = −ε(Ψε
C∇ζ, curl φε)G,

whence

(11.20) |Θ1(ε)| ≤ ε‖ curl φε‖G‖Ψε
C∇ζ‖G.

By (11.6), the norms ‖ curlφε‖G are uniformly bounded. Next, by the mean value
property, the functions Ψε

C weakly tend to zero in L2,loc(R3) as ε → 0. Since ζ ∈ C∞
0 (R3),

it follows that the functions Ψε
C∇ζ weakly tend to zero in G. Hence, the norms ‖Ψε

C∇ζ‖G

are uniformly bounded. Now, relation (11.20) implies that limε→0 Θ1(ε) = 0. �
11.4. The obvious identity

(ζρε, curl φε)G = (ζhερε, (hε)−1 curl φε)G = (ζhερε,pε)G

allows us to use a different method to calculate the limit in (11.18). Namely,

(ζρε, curl φε)G = (ζhερε,p)G + Θ2(ε),(11.21)

Θ2(ε) := (ζhερε,pε − p)G.(11.22)

By (11.17),

(11.23) lim
ε→0

(ζhερε,p)G = (ζh0C,p)G.

Lemma 11.3. For the term Θ2(ε) defined by (11.22), we have

(11.24) lim
εj→0

Θ2(ε) = 0.

Proof. Since div h(x)ρ(x) = 0, where h(x)ρ(x) is a Γ-periodic vector-valued function of
class Gloc with the mean value h0C (see (11.16)), there exists a Γ-periodic vector-valued
potential A(x) such that

(11.25) h(x)ρ(x) = h0C + curlA(x), div A(x) = 0,

∫
Ω

A(x) dx = 0,

and A ∈ H1
loc(R

3; C3). We have

hερε = h0C + (curlA)ε = h0C + ε curl(Aε).
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Then (11.22) implies that

(11.26) Θ2(ε) = (ζh0C,pε − p)G + ε(ζ curl(Aε),pε − p)G =: Θ′
2(ε) + Θ′′

2(ε).

By (11.12),

(11.27) lim
εj→0

Θ′
2(ε) = 0.

We transform Θ′′
2(ε):

(11.28) Θ′′
2(ε) = ε(curl(ζAε),pε − p)G − ε((∇ζ) × Aε,pε − p)G =: Θ̃′′

2(ε) + Θ̂′′
2(ε).

For the second term in (11.28), we have

|Θ̂′′
2(ε)| ≤ ε‖(∇ζ) × Aε‖G‖pε − p‖G.

By (11.8), the norms ‖pε − p‖G are uniformly bounded. The norms ‖(∇ζ) × Aε‖G are
bounded due to the weak convergence of Aε (to zero) in Gloc. Consequently,

(11.29) lim
ε→0

Θ̂′′
2(ε) = 0.

Using identities (11.3) and (11.13) with g = ζAε, we obtain

(11.30)
Θ̃′′

2(ε) = ε(curl(ζAε), (hε)−1 curl φε)G − ε(curl(ζAε),p)G

= ε(ζAε,F − ψε)G − ε(ζAε,F − ψ)G = ε(ζAε, ψ − ψε)G.

By (11.7), the norms ‖ψ − ψε‖G are uniformly bounded. The norms ‖ζAε‖G are uni-
formly bounded due to the weak convergence of Aε in Gloc. Hence, (11.30) implies that
limε→0 Θ̃′′

2(ε) = 0. Combining this with (11.26)–(11.29), we arrive at (11.24). �

Relations (11.21), (11.23), and (11.24) show that

(11.31) lim
εj→0

(ζρε, curl φε)G = (ζh0C,p)G.

Comparing (11.18) and (11.31), we obtain

(ζC, curlφ)G = (ζh0C,p)G, C ∈ C
3, ζ ∈ C∞

0 (R3).

Thus,

(11.32) p = (h0)−1 curl φ.

11.5. We recall the representation (4.12) for the effective matrix s0:

(11.33) s0C = |Ω|−1

∫
Ω

s(x)(C + ∇ΦC(x)) dx, C ∈ C
3,

where ΦC ∈ H̃1(Ω) is a solution of the equation div s(x)(C + ∇ΦC) = 0. We fix the
solution ΦC by the condition

∫
Ω

ΦC(x) dx = 0. We put τ (x) = C+∇ΦC(x), and extend
τ (x) up to a Γ-periodic function τ ∈ Gloc. The mean value property and (11.33) show
that

(11.34) (w, Gloc)- lim
ε→0

sετ ε = s0C.

Lemma 11.4. Let ζ ∈ C∞
0 (R3). Then

(11.35) lim
εj→0

(ζτ ε, sεφε)G = (ζC, ψ)G.
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Proof. We have

(11.36) (ζτ ε, sεφε)G = (ζC, ψε)G + Θ3(ε), Θ3(ε) := (ζ(∇ΦC)ε, ψε)G.

By (11.10),

(11.37) lim
εj→0

(ζC, ψε)G = (ζC, ψ)G.

We show that

(11.38) lim
ε→0

Θ3(ε) = 0.

From (11.36) it follows that

(11.39) Θ3(ε) = ε(ζ∇(Φε
C), ψε)G = ε(∇(ζΦε

C), ψε)G − ε(Φε
C(∇ζ), ψε)G.

Since div ψε = 0 (see (11.1)), the first term on the right-hand side of (11.39) is equal to
zero. Hence, (11.39) implies the estimate

(11.40) |Θ3(ε)| ≤ ε‖Φε
C(∇ζ)‖G‖ψε‖G.

By (11.7), the norms ‖ψε‖G are uniformly bounded. The norms ‖Φε
C(∇ζ)‖G are uni-

formly bounded due to the weak convergence of Φε
C in L2,loc. Therefore, (11.40) implies

(11.38). Comparing (11.36)–(11.38), we arrive at (11.35). �

Now, we calculate the limit in (11.35) in a different way. We have

(ζτ ε, sεφε)G = (ζsετ ε, φ)G + Θ4(ε),(11.41)

Θ4(ε) := (ζsετ ε, φε − φ)G.(11.42)

By (11.34), we obtain

(11.43) lim
ε→0

(ζsετ ε, φ)G = (ζs0C, φ)G.

Lemma 11.5. For the term Θ4(ε) defined by (11.42), we have

(11.44) lim
εj→0

Θ4(ε) = 0.

Proof. Since div s(x)τ (x) = 0, and s(x)τ (x) is a Γ-periodic vector-valued function of
class Gloc with the mean value s0C, there exists a Γ-periodic vector-valued potential
Ã(x) such that

s(x)τ (x) = s0C + curl Ã(x), div Ã(x) = 0,

∫
Ω

Ã(x) dx = 0.

Moreover, Ã ∈ H1
loc(R

3; C3). We have sετ ε = s0C + ε curl(Ãε). Then (11.42) implies
that

Θ4(ε) = (ζs0C, φε − φ)G + ε(ζ curl(Ãε), φε − φ)G =: Θ′
4(ε) + Θ′′

4(ε).

By (11.9), Θ′
4(ε) → 0 as εj → 0. Next,

Θ′′
4(ε) = ε(Ãε, curl ζ(φε − φ))G = ε(Ãε, ζ curl(φε − φ))G + ε(Ãε, (∇ζ) × (φε − φ))G.

Hence,

|Θ′′
4(ε)| ≤ ε‖ζÃε‖G‖ curlφε − curlφ‖G + ε‖φε − φ‖G‖Ãε ×∇ζ‖G.

By (11.5) and (11.6), the norms ‖φε−φ‖G and ‖ curl(φε−φ)‖G are uniformly bounded,
and, by the weak convergence of Ãε in Gloc, the norms ‖ζÃε‖G and ‖Ãε × ∇ζ‖G are
also uniformly bounded. Consequently, Θ′′

4(ε) → 0 as ε → 0. �
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From (11.41), (11.43), and (11.44) it follows that

(11.45) lim
εj→0

(ζτ ε, sεφε)G = (ζs0C, φ)G.

Comparing (11.35) and (11.45), and using the arbitrariness of C ∈ C3 and ζ ∈ C∞
0 (R3),

we conclude that

(11.46) ψ = s0φ.

11.6. Now, relations (11.14), (11.32), and (11.46) imply that φ satisfies the equation

curl(h0)−1 curl φ + s0φ = F.

This equation is the same as the first equation in (11.2) for φ0. Moreover, from (11.15)
and (11.46) it is clear that div s0φ = 0. Consequently, φ is the solution of problem (11.2),
whence φ = φ0 by uniqueness. Then (11.32) implies that p = (h0)−1 curl φ0 = p0, and
(11.46) yields ψ = s0φ0 = ψ0. As has already been mentioned, this implies all the
statements of Theorem 11.1.

§12. Homogenization for the periodic Maxwell system

12.1. Setting of the problem. Suppose that the dielectric permittivity η(x) and the
magnetic permeability µ(x) are Γ-periodic measurable (3×3)-matrix-valued functions in
R3 with real entries, and

(12.1)
c01 ≤ η(x) ≤ c′01, c01 ≤ µ(x) ≤ c′01,

x ∈ R
3, 0 < c0 ≤ c′0 < ∞.

Recalling the notation G = L2(R3; C3), Gl = H l(R3; C3), l ∈ R, we put J l = J l(1) :=
{f ∈ Gl : div f = 0}, J = J0. Let G(η−1) = L2(R3; C3; η−1) denote the “weighted” space
with inner product (u,v)G(η−1) = (η−1u,v)G. The space G(µ−1) is defined similarly.
The set J is a closed subspace in G and in both weighted spaces G(η−1) and G(µ−1).

Below u,v stand for the strengths of the electric and magnetic fields, w = ηu is the
electric displacement vector, and z = µv is the magnetic displacement vector.

As in [BSu2, Chapter 7], we write the Maxwell operator M = M(η, µ) in terms of the
displacement vectors, assuming that these vectors are solenoidal. Then the operator M
acts in the space J ⊕ J (⊂ G ⊕ G), which does not depend on the coefficients η and µ;
M is given by the formula

(12.2) M = M(η, µ) =
(

0 i curl µ−1

−i curl η−1 0

)
on the domain

(12.3) DomM(η, µ) = {(w, z) : w ∈ J, z ∈ J, curl η−1w ∈ G, curlµ−1z ∈ G}.
The operator M is closed but not selfadjoint in J ⊕ J (relative to the standard inner
product in G⊕G). However, the operator M is selfadjoint in the space J ⊕ J viewed as
a subspace in G(η−1) ⊕ G(µ−1).

Let ε > 0 be a parameter. Recall the definition ϕε(x) := ϕ(ε−1x) for a measurable
Γ-periodic function ϕ(x). We introduce the family of operators

Mε = M(ηε, µε), ε > 0,

acting in J ⊕ J . Here DomMε (see (12.3)) depends on ε.
Our goal is to study the behavior of the resolvent (Mε − iI)−1 as ε → 0. Consider the

equation

(12.4) (Mε − iI)
(
wε

zε

)
=

(
q
r

)
, q, r ∈ J.
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The corresponding strengths are given by the relations uε = (ηε)−1wε, vε = (µε)−1zε.
In detail, (12.4) can be written as

(12.5)

⎧⎪⎨⎪⎩
i curl(µε)−1zε − iwε = q,

−i curl(ηε)−1wε − izε = r,

div wε = 0, div zε = 0.

It is useful (cf. [BSu2]) to represent the solutions as sums:

wε = w(q)
ε + w(r)

ε , zε = z(q)
ε + z(r)

ε ,

where the pair of vectors w(q)
ε , z(q)

ε is the solution of system (12.5) with r = 0, and the
pair of vectors w(r)

ε , z(r)
ε is the solution of system (12.5) with q = 0. Correspondingly,

the fields uε and vε are also represented as sums.

12.2. The case where q = 0. If q = 0, system (12.5) takes the form

(12.6)

⎧⎪⎪⎨⎪⎪⎩
w(r)

ε = curl(µε)−1z(r)
ε ,

curl(ηε)−1w(r)
ε + z(r)

ε = ir,

div w(r)
ε = 0, div z(r)

ε = 0.

The corresponding strengths are given by

(12.7) u(r)
ε = (ηε)−1w(r)

ε , v(r)
ε = (µε)−1z(r)

ε .

From (12.6) it is clear that z(r)
ε is the solution of the problem

(12.8) curl(ηε)−1 curl(µε)−1z(r)
ε + z(r)

ε = ir, div z(r)
ε = 0, r ∈ J,

and v(r)
ε is the solution of the problem

(12.9) curl(ηε)−1 curlv(r)
ε + µεv(r)

ε = ir, div µεv(r)
ε = 0, r ∈ J.

By (12.6) and (12.7), w(r)
ε and u(r)

ε can be expressed in terms of v(r)
ε :

(12.10) w(r)
ε = curlv(r)

ε , u(r)
ε = (ηε)−1 curlv(r)

ε .

Problem (12.8) is of the form (10.1), and problem (12.9) is of the form (11.1) with the
coefficients h = η, s = µ and with the right-hand side F = ir. Applying Theorem 10.1,
we can find approximations ṽ(r)

ε , z̃(r)
ε for v(r)

ε and z(r)
ε (with respect to the norm in G).

Applying Theorem 11.1, we obtain results about the weak convergence of v(r)
ε , z(r)

ε , and
also of w(r)

ε = curlv(r)
ε and u(r)

ε (the latter plays the role of the “flow” for v(r)
ε ; see

(12.10)).
We formulate the results. Let µ0 be the effective matrix for µ(x). Recall the expression

for µ0. Let e1, e2, e3 be the standard unit vectors in C3, and let Φej
∈ H1

loc(R
3) be the

(weak) Γ-periodic solution of the equation

div µ(x)(ej + ∇Φej
(x)) = 0, j = 1, 2, 3.

If µ̃(x) denotes the matrix with the columns µ(x)(ej + ∇Φej
(x)), j = 1, 2, 3, then

µ0 = |Ω|−1

∫
Ω

µ̃(x) dx.

The matrix with columns ∇Φej
(x) is denoted by Y (x). We put G(x) := µ̃(x)(µ0)−1−1.

The effective matrix η0 for η(x) is defined similarly. Namely, let Ψej
∈ H1

loc(R
3) be

the (weak) Γ-periodic solution of the equation

div η(x)(ej + ∇Ψej
(x)) = 0, j = 1, 2, 3.
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We denote by η̃(x) the matrix with the columns η(x)(ej + ∇Ψej
(x)), j = 1, 2, 3. Then

η0 = |Ω|−1

∫
Ω

η̃(x) dx.

The matrix with columns ∇Ψej
(x) is denoted by Z(x). We put K(x) := η̃(x)(η0)−1−1.

Let M0 = M(η0, µ0) be the Maxwell operator (12.2) with η = η0 and µ = µ0. Let
(w(r)

0 , z(r)
0 ) be the solution of the “homogenized” system

(M0 − iI)

(
w(r)

0

z(r)
0

)
=

(
0
r

)
,

or, in detail,

(12.11)

⎧⎪⎪⎨⎪⎪⎩
w(r)

0 = curl(µ0)−1z(r)
0 ,

curl(η0)−1w(r)
0 + z(r)

0 = ir,

div w(r)
0 = 0, div z(r)

0 = 0.

Let

(12.12) u(r)
0 = (η0)−1w(r)

0 , v(r)
0 = (µ0)−1z(r)

0 .

Obviously, the fields w(r)
0 , z(r)

0 , u(r)
0 , v(r)

0 belong to the class G1. From (12.11) it follows
that z(r)

0 is the solution of the problem of the form (10.15), and v(r)
0 is the solution of the

problem of the form (11.2) with h0 = η0, s0 = µ0, and F = ir. Herewith, w(r)
0 = curlv(r)

0

and u(r)
0 = (η0)−1 curlv(r)

0 .
Let P̃(µ0) denote the orthogonal projection in the weighted space G((µ0)−1) onto the

subspace J . The projection P̃(η0) is defined similarly. We put

(12.13) rε := P̃(µ0)(Y ε)∗r.

Note (see Corollary 8.3(1◦)) that the operator of multiplication by the matrix-valued
function (Y ε(x))∗ continuously maps G into G−1. Next, the projection P̃(µ0) acts as a
zeroth-order pseudodifferential operator; therefore, this projection is continuous in G−1.
The image P̃(µ0)G−1 coincides with J−1. Thus, rε ∈ J−1. Let (ŵ(r)

ε , ẑ(r)
ε ) be the

solution of the “correction” system

(12.14) (M0 − iI)

(
ŵ(r)

ε

ẑ(r)
ε

)
=

(
0
rε

)
.

Here we keep in mind that the operator M0 (with constant coefficients) extends up to a
continuous operator from J ⊕ J to J−1 ⊕ J−1. In detail, (12.14) takes the form

(12.15)

⎧⎪⎪⎨⎪⎪⎩
ŵ(r)

ε = curl(µ0)−1ẑ(r)
ε ,

curl(η0)−1ŵ(r)
ε + ẑ(r)

ε = irε,

div ŵ(r)
ε = 0, div ẑ(r)

ε = 0.

We put

(12.16) v̂(r)
ε = (µ0)−1ẑ(r)

ε .

From (12.15) it follows that ẑ(r)
ε is the solution of the problem

(12.17) curl(η0)−1 curl(µ0)−1ẑ(r)
ε + ẑ(r)

ε = irε, div ẑ(r)
ε = 0,

which is of the form (10.16). If rε ∈ J−1, then for the solution of (12.17) we have
ẑ(r)

ε ∈ G1. Then (see (12.16)) v̂(r)
ε ∈ G1, and ŵ(r)

ε = curl v̂(r)
ε ∈ G.
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Applying Theorems 10.1 and 11.1 to systems (12.8) and (12.9), we arrive at the fol-
lowing theorem.

Theorem 12.1. Suppose that the Γ-periodic measurable matrix-valued functions η and µ

with real entries satisfy conditions (12.1). Let (w(r)
ε , z(r)

ε ) be the solution of system (12.6)
with r ∈ J , and let u(r)

ε , v(r)
ε be defined by (12.7). Let (w(r)

0 , z(r)
0 ) be the solution of the

“homogenized” system (12.11), and let u(r)
0 ,v(r)

0 be defined by (12.12). Let (ŵ(r)
ε , ẑ(r)

ε )
be the solution of the “correction” system (12.15), and let v̂(r)

ε be defined by (12.16).
Let Y ε(x) be the matrix with the columns (∇Φej

)(ε−1x), j = 1, 2, 3, and let Gε(x) :=
µ̃ε(x)(µ0)−1 − 1. We put

ṽ(r)
ε = (1 + Y ε)(v(r)

0 + v̂(r)
ε ),(12.18)

z̃(r)
ε = (1 + Gε)(z(r)

0 + ẑ(r)
ε ).(12.19)

Then the following is true.
1◦. For the strength of the magnetic field v(r)

ε , we have the following approximation
in the G-norm:

(12.20) ‖v(r)
ε − ṽ(r)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.

2◦. As ε → 0, v(r)
ε weakly tends in G to v(r)

0 , and curlv(r)
ε weakly tends in G to

curlv(r)
0 .

3◦. For the magnetic displacement vector z(r)
ε , we have the following approximation

in the G-norm:

(12.21) ‖z(r)
ε − z̃(r)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.

4◦. As ε → 0, z(r)
ε weakly tends in G to z(r)

0 .
5◦. As ε → 0, the strength of the electric field u(r)

ε weakly tends in G to u(r)
0 . For

curlu(r)
ε = ir− z(r)

ε , we have the following approximation:

(12.22) ‖ curlu(r)
ε − ir + z̃(r)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.

6◦. As ε → 0, the electric displacement vector w(r)
ε weakly tends in G to w(r)

0 .
The constants in estimates (12.20)–(12.22) only depend on the L∞-norms of the

matrix-valued functions η, η−1, µ, µ−1 and on the parameters of the lattice Γ.

Note that, a fortiori, the functions (12.18) and (12.19) belong to G, since (v(r)
0 + v̂(r)

ε )
∈ G1, (z(r)

0 + ẑ(r)
ε ) ∈ G1, and the operators of multiplication by Y ε and Gε continuously

map G1 into G.
In the approximations (12.18) and (12.19) (after opening the parentheses), we distin-

guish the terms v(r)
0 , z(r)

0 , which do not depend on ε and are equal to the weak limits for
v(r)

ε , z(r)
ε . The other summands weakly tend to zero in G.

12.3. The case where r = 0 is treated in a similar way. In this case, system (12.5)
takes the form

(12.23)

⎧⎪⎪⎨⎪⎪⎩
curl(µε)−1z(q)

ε − w(q)
ε = −iq,

z(q)
ε = − curl(ηε)−1w(q)

ε ,

div w(q)
ε = 0, div z(q)

ε = 0.

For the strengths of the electric and magnetic fields, we have

(12.24) u(q)
ε = (ηε)−1w(q)

ε , v(q)
ε = (µε)−1z(q)

ε .
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From (12.23) it is clear that w(q)
ε is the solution of the problem

(12.25) curl(µε)−1 curl(ηε)−1w(q)
ε + w(q)

ε = iq, div w(q)
ε = 0, q ∈ J,

and u(q)
ε is the solution of the problem

(12.26) curl(µε)−1 curlu(q)
ε + ηεu(q)

ε = iq, div ηεu(q)
ε = 0, q ∈ J.

The fields v(q)
ε and z(q)

ε can be expressed in terms of u(q)
ε :

(12.27) z(q)
ε = − curlu(q)

ε , v(q)
ε = −(µε)−1 curlu(q)

ε .

Problem (12.25) is of the form (10.1), and problem (12.26) is of the form (11.1) with
h = µ, s = η, and F = iq. Theorems 10.1 and 11.1 are applicable.

We formulate the results. Let (w(q)
0 , z(q)

0 ) be the solution of the “homogenized” system

(M0 − iI)

(
w(q)

0

z(q)
0

)
=

(
q
0

)
,

or, in detail,

(12.28)

⎧⎪⎪⎨⎪⎪⎩
curl(µ0)−1z(q)

0 − w(q)
0 = −iq,

z(q)
0 = − curl(η0)−1w(q)

0 ,

div w(q)
0 = 0, div z(q)

0 = 0.

We put

(12.29) u(q)
0 = (η0)−1w(q)

0 , v(q)
0 = (µ0)−1z(q)

0 .

Let (ŵ(q)
ε , ẑ(q)

ε ) be the solution of the “correction” system

(12.30) (M0 − iI)

(
ŵ(q)

ε

ẑ(q)
ε

)
=

(
qε

0

)
,

where qε := P̃(η0)(Zε)∗q. In detail, (12.30) has the form

(12.31)

⎧⎪⎪⎨⎪⎪⎩
curl(µ0)−1ẑ(q)

ε − ŵ(q)
ε = −iqε,

ẑ(q)
ε = − curl(η0)−1ŵ(q)

ε ,

div ŵ(q)
ε = 0, div ẑ(q)

ε = 0.

We put

(12.32) û(q)
ε = (η0)−1ŵ(q)

ε .

Applied to systems (12.25) and (12.26), Theorems 10.1 and 11.1 yield the following
theorem.

Theorem 12.2. Suppose that the Γ-periodic measurable matrix-valued functions η and
µ with real entries satisfy conditions (12.1). Let (w(q)

ε , z(q)
ε ) be the solution of system

(12.23) with q ∈ J , and let u(q)
ε , v(q)

ε be defined by (12.24). Let (w(q)
0 , z(q)

0 ) be the
solution of the “homogenized” system (12.28), and let u(q)

0 ,v(q)
0 be defined by (12.29).

Let (ŵ(q)
ε , ẑ(q)

ε ) be the solution of the “correction” system (12.31), and let û(q)
ε be defined

by (12.32). Let Zε(x) be the matrix with the columns (∇Ψej
)(ε−1x), j = 1, 2, 3. We put

Kε(x) := η̃ε(x)(η0)−1 − 1 and

ũ(q)
ε = (1 + Zε)(u(q)

0 + û(q)
ε ),(12.33)

w̃(q)
ε = (1 + Kε)(w(q)

0 + ŵ(q)
ε ).(12.34)
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Then the following is true:
1◦. For the strength of the electric field u(q)

ε , we have the following approximation in
the G-norm:

(12.35) ‖u(q)
ε − ũ(q)

ε ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1.

2◦. As ε → 0, u(q)
ε weakly tends in G to u(q)

0 , and curlu(q)
ε weakly tends in G to

curlu(q)
0 .

3◦. For the electric displacement vector w(q)
ε , we have the following approximation in

the G-norm:

(12.36) ‖w(q)
ε − w̃(q)

ε ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1.

4◦. As ε → 0, w(q)
ε weakly tends in G to w(q)

0 .
5◦. As ε → 0, the strength of the magnetic field v(q)

ε weakly tends in G to v(q)
0 . For

curlv(q)
ε = w(q)

ε − iq, we have the following approximation:

(12.37) ‖ curlv(q)
ε + iq − w̃(q)

ε ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1.

6◦. As ε → 0, the magnetic displacement vector z(q)
ε weakly tends in G to z(q)

0 .
The constants in estimates (12.35)–(12.37) only depend on the L∞-norms of the

matrix-valued functions η, η−1, µ, µ−1 and on the parameters of the lattice Γ.

In (12.33) and (12.34) (after opening the parentheses), we distinguish the terms u(q)
0 ,

w(q)
0 , which do not depend on ε and are equal to the weak limits for u(q)

ε , w(q)
ε . The

other summands weakly tend to zero in G.

12.4. Discussion of the results. Obviously, Theorems 12.1 and 12.2 contain the
known results about weak convergence of the (total) electric and magnetic fields to the
corresponding fields in a medium with homogenized coefficients η0, µ0. The “elliptic”
rule of finding the effective characteristics for the Maxwell operator is well known (see,
e.g., [BeLP, ZhKO, Sa]). However, the sharp order estimates (12.20), (12.21), (12.35),
(12.36), pertaining to the fields v(r)

ε , z(r)
ε and u(q)

ε , w(q)
ε , are much more informative than

the results about weak convergence (which follow from these estimates). The approxi-
mations (12.18), (12.19), and (12.33), (12.34) are expressed in terms of the solutions of
the “homogenized” Maxwell systems (12.11) and (12.28) with constant “effective” co-
efficients η0, µ0 and with right-hand sides independent of ε, and also in terms of the
solutions of the “correction” systems (12.15) and (12.31), also with the constant coeffi-
cients η0, µ0, but with right-hand sides depending on ε. The approximations (and the
right-hand sides of systems (12.15) and (12.31)) involve the rapidly oscillating factors
Y ε, Gε, and Zε, Kε. These factors cannot be eliminated without deterioration of the
quality of convergence.

For the fields u(r)
ε , w(r)

ε and v(q)
ε , z(q)

ε , we have not succeeded in finding appropriate
approximations in the G-norm and obtained only the weak convergence. The reason (in
the framework of the technique applied) is that these fields play the role of the flows or
the curls (see (12.10) and (12.27)) for the solutions v(r)

ε and u(q)
ε of the corresponding

second-order equations (see (12.9) and (12.26)). While for the solutions v(r)
ε and u(q)

ε

themselves we obtain uniform approximations in the G-norm, for the flows and curls one
can hardly expect more than weak convergence (cf. [BSu2]).

Once again (see the discussion in §0), let us have a look at the crucial steps of our
method, which allowed us to obtain the approximations described in Theorems 12.1 and
12.2. They are: taking into account the divergence free conditions; representation of the
Maxwell system in terms of the displacement vectors with fixed solenoidal right-hand
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sides q, r (see (12.4)); representation of each field as a sum of two terms; passage to
the second-order operator; extension of this operator by removing the divergence free
conditions. All these steps were also used in [BSu2, Chapter 7] in the study of the
case where µ = 1. However, for µ = 1 the situation is principally simpler, because in
that case the germ of the initial second-order operator coincides with the germ of the
effective operator: S(θ) = S0(θ) (see Remark 4.3). In the general case these germs do
not coincide, which causes a lot of (new) difficulties.

12.5. The case where µ = µ0 or η = η0. Now, we distinguish the case where one of
two characteristics of the medium is constant. We start with the case of µ = µ0. Then
Φej

(x) = 0, whence Y (x) = 0, µ̃(x) = µ0, G(x) = 0. Next, the right-hand side of the
“correction” system (see (12.13)) also vanishes: rε = 0, so that the solutions of system
(12.14) are trivial. As a result, the approximations (12.18) and (12.19) coincide with the
solutions of the “homogenized” system, ṽ(r)

ε = v(r)
0 , z̃(r)

ε = z(r)
0 , and estimates (12.20),

(12.21) turn into the simpler relations

(12.38)
‖v(r)

ε − v(r)
0 ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1, µ = µ0,

‖z(r)
ε − z(r)

0 ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1, µ = µ0.

In the case where µ = 1, this repeats the result of Theorem 3.1(1◦) in [BSu2, Chapter 7].
At the same time, the approximations (12.35), (12.36) for the fields u(q)

ε , w(q)
ε essentially

refine the results of [BSu2] for the case of µ = 1. The method used in [BSu2] gave only
weak convergence for u(q)

ε , w(q)
ε .

If µ = µ0 and r ∈ J−1, then the G1-norm of the solution v(r)
ε of problem (12.9), as

well as the G1-norm of the solution v(r)
0 of the similar “homogenized” problem, satisfies

the standard estimates in terms of C‖r‖G−1 (with constant C independent of ε). Thus,

(12.39) ‖v(r)
ε − v(r)

0 ‖G1 ≤ C‖r‖G−1 , r ∈ J−1, µ = µ0.

Interpolating between (12.38) and (12.39), we obtain

(12.40)
‖v(r)

ε − v(r)
0 ‖Gl ≤ Clε

1−l‖r‖G−l ,

µ = µ0, r ∈ J−l, 0 < ε ≤ 1, 0 ≤ l < 1.

Similarly,

(12.41)
‖z(r)

ε − z(r)
0 ‖Gl ≤ Clε

1−l‖r‖G−l ,

µ = µ0, r ∈ J−l, 0 < ε ≤ 1, 0 ≤ l < 1.

For µ = 1, estimates (12.40) and (12.41) repeat the result of Theorem 3.1(2◦) in [BSu2,
Chapter 7].

In the case where η = η0, we obtain the following simple approximations for the fields
u(q)

ε , w(q)
ε :

‖u(q)
ε − u(q)

0 ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1, η = η0,

‖w(q)
ε − w(q)

0 ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1, η = η0,

which can be supplemented by the interpolational estimates

‖u(q)
ε − u(q)

0 ‖Gl ≤ Clε
1−l‖q‖G−l ,

‖w(q)
ε − w(q)

0 ‖Gl ≤ Clε
1−l‖q‖G−l ,

η = η0, q ∈ J−l, 0 < ε ≤ 1, 0 ≤ l < 1.

Now the fields v(r)
ε , z(r)

ε satisfy relations (12.20) and (12.21).
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In the general case of variable periodic coefficients η(x) and µ(x), interpolation is less
natural, because, instead of the G1-norm of the solutions, we can estimate only the norm
in some function class depending on ε.

12.6. The “dual” problem. Let q ∈ J . We put

Rε := curl(ηε)−1q (∈ J−1).

It is directly seen that if (w(q)
ε , z(q)

ε ) is the solution of (12.23), i.e.,

(12.42) (Mε − iI)

(
w(q)

ε

z(q)
ε

)
=

(
q
0

)
,

then the pair of vectors

(12.43) w(R)
ε = iq − w(q)

ε , z(R)
ε = −z(q)

ε

is the solution of the problem

(12.44) (Mε − iI)

(
w(R)

ε

z(R)
ε

)
=

(
0

Rε

)
.

Problem (12.44) is called the dual problem with respect to (12.42). We put

u(R)
ε = (ηε)−1w(R)

ε = i(ηε)−1q− u(q)
ε ,(12.45)

v(R)
ε = (µε)−1z(R)

ε = −v(q)
ε .

Applying Theorem 12.2, we immediately obtain results on the behavior of the solutions
of the dual problem (12.44). By (12.35), (12.36), (12.43), and (12.45), w(R)

ε and u(R)
ε

can be approximated by the fields

w̃(R)
ε = iq − w̃(q)

ε ,(12.46)

ũ(R)
ε = i(ηε)−1q − ũ(q)

ε ,(12.47)

where ũ(q)
ε and w̃(q)

ε are defined by (12.33) and (12.34). We have

‖w(R)
ε − w̃(R)

ε ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1,(12.48)

‖u(R)
ε − ũ(R)

ε ‖G ≤ Cε‖q‖G, 0 < ε ≤ 1.(12.49)

Next, if (w(q)
0 , z(q)

0 ) is the solution of the “homogenized” system (12.28), then the pair
of vectors

w(R)
0 = iq − w(q)

0 , z(R)
0 = −z(q)

0

is the solution of the dual “homogenized” system

(12.50) (M0 − iI)

(
w(R)

0

z(R)
0

)
=

(
0
R

)
, R := curl(η0)−1q.

We put

u(R)
0 = (η0)−1w(R)

0 = i(η0)−1q − u(q)
0 ,(12.51)

v(R)
0 = (µ0)−1z(R)

0 = −v(q)
0 .

Then Theorem 12.2 implies results about weak convergence of all four fields u(R)
ε , w(R)

ε ,
v(R)

ε , z(R)
ε . Here, the last three fields tend to the corresponding fields w(R)

0 , v(R)
0 , and

z(R)
0 , while, in general, the weak limit for u(R)

ε does not coincide with u(R)
0 . Indeed, by
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the mean value property (see Proposition 9.3, 2◦), (ηε)−1q weakly tends in G to η−1q,
where

η−1 := |Ω|−1

∫
Ω

η(x)−1 dx.

Hence, (12.45) and (12.51) imply that

(w, G)- lim
ε→0

u(R)
ε = iη−1q− u(q)

0 = i(η−1 − (η0)−1)q + u(R)
0 .

As a result, we arrive at the following theorem.

Theorem 12.3. Let q ∈ J , and let Rε = curl(ηε)−1q. Let (w(R)
ε , z(R)

ε ) be the solution
of problem (12.44), and let u(R)

ε = (ηε)−1w(R)
ε , v(R)

ε = (µε)−1z(R)
ε . Let (w(R)

0 , z(R)
0 ) be

the solution of the “homogenized” problem (12.50), and let u(R)
0 = (η0)−1w(R)

0 , v(R)
0 =

(µ0)−1z(R)
0 . Let w̃(R)

ε , ũ(R)
ε be defined by (12.46), (12.47). Then the following is true.

1◦. The strength of the electric field u(R)
ε admits an approximation in the G-norm

with estimate (12.49).
2◦. As ε → 0, u(R)

ε weakly tends in G to u(R)
0 + i(η−1 − (η0)−1)q.

3◦. The electric displacement vector w(R)
ε admits an approximation in the G-norm

with estimate (12.48).
4◦. As ε → 0, w(R)

ε weakly tends in G to w(R)
0 .

5◦. As ε → 0, the strength of the magnetic field v(R)
ε weakly tends in G to v(R)

0 . For
curlv(R)

ε = w(R)
ε we have approximation in the G-norm (see (12.48)).

6◦. As ε → 0, the magnetic displacement vector z(R)
ε weakly tends in G to z(R)

0 .

The problem dual to (12.6) is considered by analogy. Let

r ∈ J, Qε := curl(µε)−1r.

If (w(r)
ε , z(r)

ε ) is the solution of system (12.6), i.e.,

(12.52) (Mε − iI)

(
w(r)

ε

z(r)
ε

)
=

(
0
r

)
,

then the pair of vectors

(12.53) w(Q)
ε = w(r)

ε , z(Q)
ε = −ir + z(r)

ε

is the solution of the problem

(12.54) (Mε − iI)

(
w(Q)

ε

z(Q)
ε

)
=

(
Qε

0

)
.

Problem (12.54) is called the dual problem with respect to (12.52). We put

u(Q)
ε = (ηε)−1w(Q)

ε = u(r)
ε ,(12.55)

v(Q)
ε = (µε)−1z(Q)

ε = −i(µε)−1r + v(r)
ε .(12.56)

Applying Theorem 12.1, we immediately obtain results on the behavior of the solutions
of the dual problem (12.54). The fields v(Q)

ε and z(Q)
ε can be approximated by the fields

ṽ(Q)
ε = −i(µε)−1r + ṽ(r)

ε ,(12.57)

z̃(Q)
ε = −ir + z̃(r)

ε ,(12.58)
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where ṽ(r)
ε , z̃(r)

ε are defined by (12.18), (12.19). We have

‖v(Q)
ε − ṽ(Q)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1,(12.59)

‖z(Q)
ε − z̃(Q)

ε ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1.(12.60)

Next, if (w(r)
0 , z(r)

0 ) is the solution of the “homogenized” system (12.11), then the pair
of vectors

(12.61) w(Q)
0 = w(r)

0 , z(Q)
0 = −ir + z(r)

0

is the solution of the dual “homogenized” system

(12.62) (M0 − iI)

(
w(Q)

0

z(Q)
0

)
=

(
Q
0

)
, Q := curl(µ0)−1r.

We put

u(Q)
0 = (η0)−1w(Q)

0 = u(r)
0 ,(12.63)

v(Q)
0 = (µ0)−1z(Q)

0 = −i(µ0)−1r + v(r)
0 .(12.64)

Applying Theorem 12.1 and using relations (12.53), (12.55), (12.56), (12.61), (12.63),
(12.64), we arrive at the following result.

Theorem 12.4. Let r ∈ J , and let Qε = curl(µε)−1r. Let (w(Q)
ε ,z(Q)

ε ) be the solution
of problem (12.54), and let u(Q)

ε = (ηε)−1w(Q)
ε , v(Q)

ε = (µε)−1z(Q)
ε . Let (w(Q)

0 , z(Q)
0 ) be

the solution of the “homogenized” problem (12.62), and let u(Q)
0 = (η0)−1w(Q)

0 , v(Q)
0 =

(µ0)−1z(Q)
0 . Let ṽ(Q)

ε , z̃(Q)
ε be defined by (12.57), (12.58). Then the following is true.

1◦. The strength of the magnetic field v(Q)
ε admits an approximation in the G-norm

with estimate (12.59).
2◦. As ε → 0, v(Q)

ε weakly tends in G to v(Q)
0 − i(µ−1 − (µ0)−1)r.

3◦. The magnetic displacement vector z(Q)
ε admits an approximation in the G-norm

with estimate (12.60).
4◦. As ε → 0, z(Q)

ε weakly tends in G to z(Q)
0 .

5◦. As ε → 0, the strength of the electric field u(Q)
ε weakly tends in G to u(Q)

0 . For
curlu(Q)

ε = −z(Q)
ε we have an approximation in the G-norm (see (12.60)).

6◦. As ε → 0, the electric displacement vector w(Q)
ε weakly tends in G to w(Q)

0 .

Note that it is not quite clear if the dual problem admits a natural physical interpre-
tation.

It is possible to combine the results of Theorems 12.1 and 12.4. Let r, r̃ ∈ J , and let
Q̃ε = curl(µε)−1r̃. Then, for the system

(Mε − iI)
(
wε

zε

)
=

(
Q̃ε

r

)
,

“nice” approximations for the (total) magnetic fields vε, zε can be obtained.
Similarly, we can combine the results of Theorems 12.2 and 12.3. Let q, q̃ ∈ J , and

let R̃ε = curl(ηε)−1q̃. Then, for the system

(Mε − iI)
(
wε

zε

)
=

(
q
R̃ε

)
,

“nice” approximations for the (total) electric fields uε, wε can be obtained.
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