Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Functional integration and the two-point correlation function of the one-dimensional Bose gas in a harmonic potential
HTML articles powered by AMS MathViewer

by N. M. Bogoliubov and C. Malyshev
Translated by: the authors
St. Petersburg Math. J. 17 (2006), 63-84
DOI: https://doi.org/10.1090/S1061-0022-06-00893-4
Published electronically: January 19, 2006

Abstract:

A quantum field-theoretical model which describes a spatially nonhomogeneous one-dimensional nonrelativistic repulsive Bose gas in an external harmonic potential is considered. The two-point thermal correlation function of the Bose gas is calculated in the framework of the functional integration approach. The calculations are done in the coordinate representation. The method of successive integration first over the “high-energy” functional variables and then over the “low-energy” ones is used. The effective action functional for the low-energy variables is calculated in one-loop approximation. The functional integral representation for the correlation function is obtained in terms of the low-energy variables and is estimated with the help of stationary phase approximation. The asymptotics of the correlation function is studied in the limit when the temperature tends to zero while the volume occupied by the nonhomogeneous Bose gas increases infinitely. It is demonstrated that the behavior of the thermal correlation function in this limit is power-like and is governed by the critical exponent that depends on the spatial and thermal arguments.
References
  • M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Bose–Einstein condensation in a tightly confining \rom{dc} magnetic trap, Phys. Rev. Lett. 77 (1996), 416–419.
  • D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Collective excitations of a Bose–Einstein condensate in a dilute gas, Phys. Rev. Lett. 77 (1996), 420–423.
  • A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Realization of Bose–Einstein condensates in lower dimensions, Phys. Rev. Lett. 87 (2001), 130402.
  • H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, Exciting collective oscillations in a trapped \rom{1D} gas, Phys. Rev. Lett. 91 (2003), 250402.
  • C. J. Pethic and H. Smith, Bose–Einstein condensation in dilute gases, Cambridge Univ. Press, Cambridge, 2002.
  • N. N. Bogoljubov, Izbrannye trudy v trekh tomakh. Tom pervyĭ, Izdat. “Naukova Dumka”, Kiev, 1969 (Russian). MR 0239922
  • V. N. Popov and L. D. Faddeev, An approach to the theory of the low-temperature Bose gas, Soviet Physics JETP 20 (1965), 890–893. MR 0187837
  • V. N. Popov, On the theory of superfluidity of the two-dimensional and one-dimensional Bose systems, Teoret. Mat. Fiz. 11 (1972), no. 3, 354–365. (Russian)
  • E. K. Sklyanin and L. D. Faddeev, Quantum-mechanical approach to completely integrable field theory models, Dokl. Akad. Nauk SSSR 243 (1978), no. 6, 1430–1433; English transl., Soviet Phys. Dokl. 23 (1978), 902–904.
  • L. D. Faddeev, 40 years in mathematical physics, World Scientific Series in 20th Century Mathematics, vol. 2, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1372058, DOI 10.1142/2690
  • N. M. Bogolyubov, A. G. Izergin, and V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyĭ metod obratnoĭ zadachi, “Nauka”, Moscow, 1992 (Russian, with Russian summary). MR 1225798
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993. MR 1245942, DOI 10.1017/CBO9780511628832
  • Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason, One-dimensional behavior of dilute, trapped Bose gases, Comm. Math. Phys. 244 (2004), no. 2, 347–393. MR 2031035, DOI 10.1007/s00220-003-0993-3
  • M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81 (1998), 938–941.
  • M. D. Girardeau, Hieu Nguyen, and M. Olshanii, Effective interactions, Fermi–Bose duality, and ground states of ultracold atomic vapors in tight de Broglie waveguides, arXiv:cond-mat/0403721
  • N. M. Bogoliubov, C. Malyshev, R. K. Bullough, V. S. Kapitonov, and J. Timonen, Asymptotic behaviour of correlation functions in the trapped Bose gas, Fiz. Èlementar. Chastits i Atom. Yadra 31 (2000), vyp. 7B, 115–121.
  • N. M. Bogolyubov, Multiparticle correlation functions for a trapped Bose gas, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000), no. Vopr. Kvant. Teor. Polya i Stat. Fiz. 16, 125–135, 367 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 115 (2003), no. 1, 1954–1959. MR 1805855, DOI 10.1023/A:1022639510669
  • N. M. Bogoliubov, R. K Bullough, V. S. Kapitonov, C. Malyshev, and J. Timonen, Finite-temperature correlations in the trapped Bose–Einstein gas, Europhys. Lett. 55 (2001), 755–761.
  • R. K. Bullou, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, Ĭ. Timonen, A. V. Rybin, G. G. Varzugin, and M. Lindberg, Quantum integrable and nonintegrable models based on the nonlinear Schrödinger equation for a realizable Bose-Einstein condensation in the dimension $d+1\ (d=1,2,3)$, Teoret. Mat. Fiz. 134 (2003), no. 1, 55–73 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 134 (2003), no. 1, 47–61. MR 2021730, DOI 10.1023/A:1021815606105
  • N. M. Bogoliubov, C. Malyshev, R. K. Bullough, and J. Timonen, Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases, Phys. Rev. A 69 (2004), 023619.
  • V. N. Popov, Kontinual′nye integraly v kvantovoĭ teorii polya i statisticheskoĭ fizike, “Atomizdat”, Moscow, 1976 (Russian). MR 0522832
  • A. A. Slavnov and L. L. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh poleĭ, “Nauka”, Moscow, 1978 (Russian). MR 542118
  • A. N. Vasiliev, Functional methods in quantum field theory and statistical physics, Gordon and Breach Science Publishers, Amsterdam, 1998. Translated from the 1976 Russian original and with a foreword by Patricia A. Millard. MR 1740059
  • V. N. Popov, Functional integrals and collective excitations, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987. MR 929257
  • V. N. Popov, The possibility of violating the similarity law in the phase transition of a Bose system into a superfluid state, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 150 (1986), no. Voprosy Kvant. Teor. Polya i Statist. Fiz. 6, 87–103, 221 (Russian, with English summary); English transl., J. Soviet Math. 46 (1989), no. 1, 1619–1630. MR 861264, DOI 10.1007/BF01099194
  • Claude Itzykson and Jean Bernard Zuber, Quantum field theory, International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York, 1980. MR 585517
  • Pierre Ramond, Field theory: a modern primer, Frontiers in Physics, vol. 51, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. With a foreword by David Pines. MR 602697
  • F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463–512.
  • M. Naraschewski and D. M. Stamper-Kurn, Analytical description of a trapped semi-ideal Bose gas at finite temperature, Phys. Rev. A 58 (1998), 2423–2426.
  • S. Stringari, Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett. 77 (1996), 2360–2363.
  • —, Dynamics of Bose-Einstein condensed gases in highly deformed traps, Phys. Rev. A 58 (1998), 2385–2388.
  • E. W. Hobson, The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, Cambridge, 1931.
  • D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of quantum degeneracy in trapped \rom{1D} gases, Phys. Rev. Lett. 85 (2000), 3745–3749.
  • D. L. Luxat and A. Griffin, Dynamic correlation functions in one-dimensional quasicondensates, Phys. Rev. A 67 (2003), 043603.
  • Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968
  • Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 81S40, 42C10
  • Retrieve articles in all journals with MSC (2000): 81S40, 42C10
Bibliographic Information
  • N. M. Bogoliubov
  • Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
  • Email: bogoliub@pdmi.ras.ru
  • C. Malyshev
  • Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
  • Email: malyshev@pdmi.ras.ru
  • Received by editor(s): August 13, 2004
  • Published electronically: January 19, 2006
  • Additional Notes: Supported in part by RFBR (grant no. 04–01–00825) and by the Russian Academy of Sciences program “Mathematical Methods in Non-Linear Dynamics”.

  • Dedicated: Dedicated to Ludwig Dmitrievich Faddeev
  • © Copyright 2006 American Mathematical Society
  • Journal: St. Petersburg Math. J. 17 (2006), 63-84
  • MSC (2000): Primary 81S40; Secondary 42C10
  • DOI: https://doi.org/10.1090/S1061-0022-06-00893-4
  • MathSciNet review: 2140675