Grothendieck's dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations
Author:
A. V. Kitaev
Original publication:
Algebra i Analiz, tom 17 (2005), nomer 1.
Journal:
St. Petersburg Math. J. 17 (2006), 169-206
MSC (2000):
Primary 34M55, 33E17, 33E30
DOI:
https://doi.org/10.1090/S1061-0022-06-00899-5
Published electronically:
January 23, 2006
MathSciNet review:
2140681
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Grothendieck's dessins d'enfants are applied to the theory of the sixth Painlevé and Gauss hypergeometric functions, two classical special functions of iso- monodromy type. It is shown that higher-order transformations and the Schwarz table for the Gauss hypergeometric function are closely related to some particular Belyi functions. Moreover, deformations of the dessins d'enfants are introduced, and it is shown that one-dimensional deformations are a useful tool for construction of algebraic sixth Painlevé functions.
- 1. F. V. Andreev and A. V. Kitaev, Some examples of 𝑅𝑆²₃(3)-transformations of ranks 5 and 6 as the higher order transformations for the hypergeometric function, Ramanujan J. 7 (2003), no. 4, 455–476. MR 2040984, https://doi.org/10.1023/B:RAMA.0000012428.77217.bc
- 2. F. V. Andreev and A. V. Kitaev, Transformations 𝑅𝑆²₄(3) of the ranks ≤4 and algebraic solutions of the sixth Painlevé equation, Comm. Math. Phys. 228 (2002), no. 1, 151–176. MR 1911252, https://doi.org/10.1007/s002200200653
- 3. G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276, 479 (Russian). MR 534593
- 4. P. Boalch, The Klein solution to Painlevé's sixth equation, e-preprint (http://xyz.lanl.gov) math.AG/0308221, 1-38, 2003.
- 5. Charles F. Doran, Algebraic and geometric isomonodromic deformations, J. Differential Geom. 59 (2001), no. 1, 33–85. MR 1909248
- 6. B. Dubrovin and M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), no. 1, 55–147. MR 1767271, https://doi.org/10.1007/PL00005790
- 7. Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5–48 (French, with French summary). With an English translation on pp. 243–283. MR 1483107
- 8. Andrew Granville and Thomas J. Tucker, It’s as easy as 𝑎𝑏𝑐, Notices Amer. Math. Soc. 49 (2002), no. 10, 1224–1231. MR 1930670
- 9. Michio Jimbo, Tetsuji Miwa, and Kimio Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and 𝜏-function, Phys. D 2 (1981), no. 2, 306–352. MR 630674, https://doi.org/10.1016/0167-2789(81)90013-0
- 10. A. V. Kitaev, Special functions of the isomonodromy type, Acta Appl. Math. 64 (2000), no. 1, 1–32. MR 1828555, https://doi.org/10.1023/A:1006390032014
- 11. A. V. Kitaev, Special functions of isomonodromy type, rational transformations of the spectral parameter, and algebraic solutions of the sixth Painlevé equation, Algebra i Analiz 14 (2002), no. 3, 121–139 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 3, 453–465. MR 1921990
- 12. A. V. Kitaev, On similarity reductions of the three-wave resonant system to the Painlevé equations, J. Phys. A 23 (1990), no. 15, 3543–3553. MR 1068241
- 13. A. V. Kitaev, Quadratic transformations for the sixth Painlevé equation, Lett. Math. Phys. 21 (1991), no. 2, 105–111. MR 1093520, https://doi.org/10.1007/BF00401643
- 14. A. V. Kitaev and D. A. Korotkin, On solutions of the Schlesinger equations in terms of Θ-functions, Internat. Math. Res. Notices 17 (1998), 877–905. MR 1646648, https://doi.org/10.1155/S1073792898000543
- 15. Nicolas Magot and Alexander Zvonkin, Belyi functions for Archimedean solids, Discrete Math. 217 (2000), no. 1-3, 249–271 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766270, https://doi.org/10.1016/S0012-365X(99)00266-6
- 16. Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of 𝐏², Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 186, Amer. Math. Soc., Providence, RI, 1998, pp. 131–151. MR 1732409, https://doi.org/10.1090/trans2/186/04
- 17. Masatoshi Noumi, Kyoichi Takano, and Yasuhiko Yamada, Bäcklund transformations and the manifolds of Painlevé systems, Funkcial. Ekvac. 45 (2002), no. 2, 237–258. MR 1948601
- 18. Kazuo Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation 𝑃_{𝑉𝐼}, Ann. Mat. Pura Appl. (4) 146 (1987), 337–381. MR 916698, https://doi.org/10.1007/BF01762370
- 19. H. A. Schwarz, Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, J. Reine Angew. Math. 75 (1873), 292-335.
- 20. David Singerman, Riemann surfaces, Belyi functions and hypermaps, Topics on Riemann surfaces and Fuchsian groups (Madrid, 1998) London Math. Soc. Lecture Note Ser., vol. 287, Cambridge Univ. Press, Cambridge, 2001, pp. 43–68. MR 1842766, https://doi.org/10.1017/CBO9780511569272.005
Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34M55, 33E17, 33E30
Retrieve articles in all journals with MSC (2000): 34M55, 33E17, 33E30
Additional Information
A. V. Kitaev
Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia, and School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
Email:
kitaev@pdmi.ras.ru, kitaev@maths.usyd.edu.au
DOI:
https://doi.org/10.1090/S1061-0022-06-00899-5
Keywords:
Algebraic function,
dessin d'enfant,
hypergeometric function,
isomonodromy deformation,
Schlesinger deformations,
the sixth Painlev\'e equation
Received by editor(s):
September 25, 2003
Published electronically:
January 23, 2006
Dedicated:
Dedicated to Ludwig Dmitrievich Faddeev on the occasion of his 70th birthday
Article copyright:
© Copyright 2006
American Mathematical Society