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A MINIMAL AREA PROBLEM FOR NONVANISHING FUNCTIONS

R. W. BARNARD, C. RICHARDSON, AND A. YU. SOLYNIN

Abstract. The minimal area covered by the image of the unit disk is found for non-
vanishing univalent functions normalized by the conditions f(0) = 1, f ′(0) = α. Two
different approaches are discussed, each of which contributes to the complete solution
of the problem. The first approach reduces the problem, via symmetrization, to the
class of typically real functions, where the well-known integral representation can be
employed to obtain the solution upon a priori knowledge of the extremal function.
The second approach, requiring smoothness assumptions, leads, via some variational
formulas, to a boundary value problem for analytic functions, which admits an ex-
plicit solution.

§1. Introduction

The class of nonvanishing analytic functions, with the exponential ez as a typical
example, is one of the standard classes studied in complex analysis. The nonlinearity of
this class causes difficulties when working with extremal problems. To give an example,
we mention that Krzyz’s coefficient conjecture |an| ≤ 2/e for zero-free analytic functions
bounded by 1 in the unit disk D = {z : |z| < 1} has remained open for more than 30
years. The present work was motivated by a recent paper [1], where the authors studied
a general extremal problem involving minimal area related to nonvanishing functions.

For α > 0, let Nα denote the set of analytic functions

f(z) = 1 + a1(f)z + a2(f)z2 + · · ·
normalized by the condition a1(f) = α that are univalent and zero-free in D. For
univalent functions, the Dirichlet integral

(1.1) D(f) =
∫

D

|f ′|2 dσ = π

∞∑
n=1

n |an(f)|2

measures the area of the image f(D). From (1.1), it is immediate that

D(f) ≥ πα2,

with the sign of equality only for the linear polynomial pα(z) = 1+αz, which is in Nα for
0 < α ≤ 1. Thus if 0 < α ≤ 1, the minimal area problem for Nα is trivial. In addition,
the Koebe 1/4-theorem implies that the class Nα is empty for α > 4 and is trivial for
α = 4. Thus, we are left with the so-called nontrivial range 1 < α < 4.

For this range, the minimal area problem for Nα is solved by the following

Theorem 1. For 1 < α < 4, let f ∈ Nα. Then

(1.2) D(f) ≥ παa2(a +
√

a2 − 1)2(αa2 − 2
√

a2 − 1(a +
√

a2 − 1)),
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Figure 1. The graph of A(α).

where a = a(α) is the solution to the equation

(1.3) α−1 = a2

(
1 −

√
a2 − 1(a +

√
a2 − 1)3 log

(a +
√

a2 − 1)4

16a2(a2 − 1)

)
,

which is unique in the interval 1 < a < ∞.
Equality occurs in (1.2) if and only if f = fα, where fα is a univalent function defined

by

(1.4) fα(z) =
∫ z

−1

gα(ζ)
dz

z

with

(1.5) ζ =
ia

2
1 − z√

z

and

(1.6) gα(ζ) = −β

√
ζ2 − a2

(ζ +
√

ζ2 − 1)2(a
√

ζ2 − 1 + ζ
√

a2 − 1)
with the principal branches of the radicals and

(1.7) β = αa2(a +
√

a2 − 1).

For 0 < α < 4, let
A(α) = min

f∈Nα

D(f)

denote the minimal area covered by the images of functions of class Nα. Thus A(α) = πα2

if 0 < α ≤ 1 and A(α) is given by the right-hand side of (1.2) if 1 < α < 4. The graph
of A(α) displayed in Figure 1 suggests that A(α) is strictly increasing and convex on
0 < α < 4. These properties can be derived from the explicit form of A(α) given by
formulas (1.2) and (1.3). Alternatively, in Section 3 we derive some of these properties
using geometric and variational arguments. An advantage of the latter method is that
it does not require explicit formulas and can be used when such formulas are not known
or when they are complicated.
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Figure 2. Extremal domains for some typical values of α.

Figure 2 demonstrates the extremal shapes Dα = fα(D) for some typical values of α.
The boundary ∂Dα consists of the so-called free boundary Lfr, the closure of which is
a closed Jordan curve, and the nonfree boundary Lnf , which is a straight line segment
on the negative real axis. The precise definitions will be postponed until §3. Here we
want to mention one important property of the free boundary Lfr: if fα is an extremal
function in Nα and fα(eiθ) ∈ Lfr, then |f ′

α(eiθ)| = β, where the constant β = β(α) is
defined by (1.7).

Our main goal in this paper is to demonstrate and compare two different approaches
developed in [3] and [5], respectively, each of which upon using the other gives a complete
solution to the minimal area problem on Nα.

First in §2, we consider the minimal area problem on the class Tα of typically real
nonvanishing functions (which are not necessarily univalent). In this new setting we
can use the linear structure of Tα. The latter immediately implies uniqueness of the
extremal function and leads to a simple sufficient condition for the extremality of the
corresponding linearized functional. Theorem 2 in §2 gives a complete solution to the
minimal area problem on Tα. The final step of its proof is to verify that the conjectured
extremal function, again given by formulas (1.4)–(1.7), satisfies the mentioned sufficient
condition. The method explained above was developed in [3]. It can be applied in
extremal problems on Tα if we a priori know the explicit form of the extremal function.
What is missing here is that the method gives no clues as to how to construct the extremal
function.

At this step another approach developed in [5] turns out to be useful. This method,
employed in §§3 and 4, is based on a local variation. Assuming a sufficient smoothness
of the free boundary of an extremal domain, we can apply a variant of Julia’s variation,
which leads to certain boundary conditions for the extremal analytic function. For the
problem studied in this paper and in many other problems this knowledge of the boundary
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is sufficient to recover the extremal function itself. In particular, we use this approach
in §4 to find the extremal function of Theorem 1.

A disadvantage of this variational method (and of any other method based on the
Julia variation) is that it requires some a priori smoothness of the boundary of the
extremal configuration. In this paper, we achieve the desired smoothness by exploiting
the geometrical content of the main parameter α = a1(f). Namely, since α is equal to
the conformal radius of f(D) at w = 1, we can apply suitable symmetrizations to obtain
the desired boundary characteristics while keeping control of a1(f). This approach is
not as successful by itself when working with other constraints, for instance, in problems
with a fixed nth coefficient with n ≥ 2.

Nevertheless, by combining both approaches we can overcome the disadvantages of
each of them as follows:

• Assuming regularity of the boundary, we apply the variational method to find an
explicit form of the extremal function. At this step we obtain a “conditional” solution of
the extremal problem in question. Upon justifying the required boundary smoothness,
the conditional proof becomes a true proof.

• Next, to finish the proof, we verify that the function recovered at the first step sat-
isfies the sufficient condition of extremality, which also leads then to a complete solution
of the problem.

§2. Typically real nonvanishing functions

The standard class T of typically real functions consists of functions f analytic in D,
normalized by the conditions f(0) = 0, f ′(0) = 1, and satisfying an additional constraint

(2.1) Im z · Im f(z) ≥ 0 for all z ∈ D;

see [7].
In this section we consider typically real functions with a different normalization. For

α > 0, let Tα be the class of functions f analytic and nonvanishing in D, normalized by the
conditions f(0) = 1, f ′(0) = α, and also satisfying (2.1). Since f ∈ Tα is nonvanishing,
it easily follows that (−∞, 0] ⊂ C \ f(D). Therefore, 0 < α ≤ 4 by the subordination
principle; cf. [7].

If f, f0 ∈ Tα, then fε = (1− ε)f0 + εf is in Tα for all 0 ≤ ε ≤ 1. Thus, Tα is a convex
compact subset of the set of analytic functions. The latter easily implies that for every
α there is exactly one function fα minimizing the Dirichlet integral over Tα. Indeed, let
f1 and f2 be two minimizers. Then

D((f1 + f2)/2) =
1
4

∫
D

|f ′
1 + f ′

2|2 dσ

≤ 1
2

( ∫
D

|f ′
1|2 dσ +

∫
D

|f ′
2|2 dσ

)
= (1/2)(D(f1) + D(f2)),

with the sign of equality if and only if f ′
1(z) ≡ f ′

2(z), which implies the uniqueness of
the minimizer. Now an elementary variational argument used in [3] implies the following
lemma.

Lemma 1 (cf. [3, Lemma 1]). The function fα ∈ Tα such that f ′
α is continuous on D

minimizes the Dirichlet integral D(f) on the class Tα if and only if fα minimizes on Tα

the linear functional

(2.2) L(f) := Re
∫

D

f ′
α(z)f ′(z) dσ.
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As is well known, the class T of typically real functions has an integral representation
(see [7, Theorem 2.20]). Adapting this representation to our situation, we see that
f ∈ Tα if and only if there is a probability measure µf on T = {z : |z| = 1} such that
dµf (−t) = dµf (t) and the following two conditions are satisfied:

(2.3) f(z) = 1 +
αz

1 − z2

∫ π

−π

eit + z

eit − z
dµf (t) = 1 + 2α

∫ π

0

z

1 − 2z cos t + z2
dµf (t)

and

(2.4)
∫ π

0

sec2(t/2) dµf (t) ≤ 2α−1.

Inequality (2.4), which is equivalent to the inequality f(−1) ≥ 0, guarantees that f is
nonvanishing.

Since we can differentiate (2.3) with respect to z, we obtain

(2.5) f ′(z) = 2α

∫ π

0

1 − z2

(1 − 2z cos t + z2)2
dµf (t).

The following lemma is a modification of Lemma 8 in [3].

Lemma 2. If f ′
α(z) is continuous on D, then the linear functional (2.2) can be repre-

sented as

(2.6) L(f) =
∫ π

0

Kα(t) dµf (t)

with the kernel

(2.7) Kα(t) =
2πα

sin t
Im

(
eitf ′

α(eit)
)
.

Proof. Using (2.5), we can represent (2.2) as

L(f) = 2α lim
r→1−

Re
∫

Dr

f̄ ′
α(z)

(∫ π

0

1 − z2

(1 − 2z cos t + z2)2
dµf (t)

)
dσ

= 2α lim
r→1−

Re
∫ π

0

(∫
Dr

f̄ ′
α(z)

1 − z2

(1 − 2z cos t + z2)2
dσ

)
dµf (t).

(2.8)

Applying Green’s formula to the second area integral in (2.8), we obtain

(2.9) L(f) = α lim
r→1−

∫ π

0

(
Im

∫
|z|=r

f̄α(z)
1 − z2

(1 − 2z cos t + z2)2
dz

)
dµf (t).

Let J1(r) denote the inner integral in (2.9). Then

Im J1(r) = Im
∫
|z|=r

f̄α(z)
1 − z2

(1 − 2z cos t + z2)2
dz

= − Im
∫
|z|=r

fα(z)
1 − z̄2

(1 − 2z̄ cos t + z̄2)2
dz̄

= r2 Im
∫
|z|=r

fα(z)
z2 − r4

(z2 − 2r2z cos t + r4)2
dz.

(2.10)

Let H(z) denote the integrand of the last integral in (2.10). Then H has second order
poles at the points z = r2eit and z = r2e−it. Computing the residues of H at the poles,
we obtain

Res[H, r2eit] = − ieit

2 sin t
f ′

α(r2eit), Res[H, r2e−it] =
ie−it

2 sin t
f ′

α(r2e−it).
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Now applying the residue theorem, we find

(2.11) Im J1(r) =
2πr2

sin t
Im

(
eitf ′

α(r2eit)
)
.

Substituting (2.11) into (2.9) and taking the limit inside the integral, we obtain (2.6)
and (2.7). �

The following theorem shows that for all 0 < α < 4 the minimal area problems for Tα

and for Nα share the same extremal function (cf. [3, Theorem 3]).

Theorem 2. For 1 < α < 4, let f ∈ Tα. Then inequality (1.2) of Theorem 1 holds true
with the same cases of equality.

Proof. Let fα be the extremal function in Tα, and let Dα = fα(D). First let us show
that (0, 1] ⊂ Dα for every 1 < α < 4. If not, then, for all τ < 1 sufficiently close to 1,
the function

(2.12) f̃(z) = 1 − τ−1 + τ−1fα(τz)

is in Tα. We also have

D(f̃) = π

(
α2 +

∞∑
k=2

k|ak(f̃)|2
)

= π

(
α2 +

∞∑
k=2

kτ2k−1|ak(fα)|2
)

≤ π

(
α2 +

∞∑
k=2

k|ak(fα)|2
)

= D(fα)

(2.13)

with the sign of equality if and only if fα(z) = 1 + αz. Since for α > 1 the polynomial
pα(z) = 1 + αz is not in Tα, we conclude that (0, 1] ⊂ Dα. Since fα is typically real and
zero-free, it follows that fα(−1) = 0.

The latter observation when combined with Lemmas 1 and 2 implies that fα minimizes
the Dirichlet integral on Tα if and only if fα minimizes on Tα the linear functional (2.6)
under the following linear constraints:

2
∫ π

0

dµf (t) = 1 and
∫ π

0

sec2(t/2) dµf (t) = 2α−1.

The above consideration allows us to use well-known results about extremal problems
for linear functionals with linear restrictions, which say that fα is extremal if and only
if the kernel (2.7) satisfies the conditions

(2.14) Kα(t) = λ0 + λ1 sec2(t/2) for all t ∈ Support(µfα
)

and

(2.15) Kα(t) ≥ λ0 + λ1 sec2(t/2) for all t �∈ Support(µfα
),

where λ0 and λ1 are real constants and µfα
is the probability measure representing fα

by (2.3); cf. Lemmas 3 and 4 in [3].
It follows from the first integral representation in (2.3) that the function

(2.16) hα(z) =
1 − z2

αz
(fα(z) − 1)

has positive real part on D. Therefore, the corresponding probability measure µfα
is

given by the following formula; see [7]:

(2.17) dµfα(t) =
1

2απ
Re

(
1 − z2

z
fα(z)

)
dt, z = eit.

For 1 < α < 4, let θα = 2 arcsin(1/a), where a = a(α) is defined by equation (1.3), and
let lα = {eiθ : θα < θ < 2π−θα}. Using formulas (1.4)–(1.7), one can show that fα takes
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negative real values on lα \ {0}; see §4 for the details of such a computation. The latter
property together with (2.17) implies that

(2.18) dµα(t) = 0 for all θα < t < 2π − θα.

Since hα defined by (2.16) has positive real part on D, we have

(2.19) dµα(t) ≥ 0 for all 0 ≤ t ≤ π.

The latter inequality follows also from formulas (1.4)–(1.7) and (2.17) after direct com-
putation.

Now to finish the proof we must show that the kernel Kα(t) constructed for fα by
formula (2.7) satisfies conditions (2.14) and (2.15).

Differentiating (1.4) and taking into account (1.6), we obtain

(2.20) zf ′
α(z) = −β

√
ζ2 − a2

(ζ +
√

ζ2 − 1)2(a
√

ζ2 − 1 + ζ
√

a2 − 1)
,

where ζ and β are given by (1.5) and (1.7).
From (2.7) and (2.20) we find

(2.21) Kα(t) = −2παβ

sin t
Im

√
ζ2 − a2

(ζ +
√

ζ2 − 1)2(a
√

ζ2 − 1 + ζ
√

a2 − 1)
.

Now we consider two cases. First, let 0 < t < θα. Then ζ(eit) = a sin(t/2) by (1.5),
and therefore√

ζ2 − a2 = ia cos(t/2) and
√

ζ2 − 1 = i

√
1 − a2 sin2(t/2).

Substituting this into (2.21), after some algebra we obtain

(2.22) Kα(t) = λ0 + λ1 sec2(t/2)

with

(2.23) λ0 = 2πβ2 and λ1 = παβ(2a +
√

a2 − 1 − 2a2
√

a2 − 1 − 2a3).

Now we consider the case where θα < t < π. Computing Kα(t) as above, we obtain

Kα(t) = λ0 + λ1 sec2(t/2) + Φ(t),

where λ0 and λ1 are given by (2.23) and

Φ(t) =
2παβ

sin t cos(t/2)

√
a2 sin2(t/2) − 1

(
2a(a +

√
a2 − 1) sin2(t/2) − 1

)
.

We recall that a−1 ≤ sin(t/2) ≤ 1 in the case under consideration, which easily implies
that

2a(a +
√

a2 − 1) sin2(t/2) − 1 ≥ 0.

Thus, Φ(t) ≥ 0. Therefore,

(2.24) Kα(t) ≥ λ0 + λ1 sec2(t/2)

for every t, θα ≤ t ≤ π.
Equations (2.18), (2.19), (2.22), and (2.24) show that the kernel Kα(t) satisfies con-

ditions (2.14) and (2.15). This implies that the function fα defined by (1.4)–(1.7) is
extremal for the minimal area problem for typically real nonvanishing functions.

To complete the proof of Theorem 2, we need to compute the minimal area A(α) =
area(fα(D)) and show that equation (1.3) has a unique solution in the interval 1 < a < ∞.
These computations will be postponed until §4. �
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§3. Extremal domains

In this section, we prove symmetry properties of our domains extremal for the minimal
area problem on Nα and then derive some implications.

Let Cr(z0) = {z : |z − z0| = r} with 0 ≤ r ≤ ∞. Let γθ(z0) = {z = z0 + teiθ, 0 ≤
t < ∞}. By circular symmetrization of a domain D ⊂ C with respect to γθ(z0) we mean
the domain D∗ such that Cr(z0) ⊂ D∗ whenever Cr(z0) ⊂ D and if Cr(z0) �⊂ D for
0 < r < ∞, then D∗ ∩ Cr(z0) is a proper single arc of Cr(z0) centered at z0 + reiθ and
such that meas(D∗ ∩ Cr(z0)) = meas(D ∩ Cr(z0)).

A domain D is said to be starlike with respect to z0 ∈ D if D contains the segment
[z0, z] for any point z in D. A domain D∗ starlike with respect to z0 is called the
radial symmetrization of D with respect to z0 if for some ε > 0 such that the disk
Dε(z0) := {z : |z − z0| < ε} is in D and for all θ ∈ R we have λ((D∗ \Dε(z0))∩ γθ(z0)) =
λ((D\Dε(z0))∩γθ(z0)), where for any E ⊂ γθ(z0), λ(E) denotes the logarithmic measure
of E:

λ(E) =
∫

E

|z − z0|−1 |dz|.

Now we define the polarization of a domain D ⊂ C with respect to the directed line
lθ(z0) := {z = z0 + teiθ : −∞ < t < ∞} (see [6]). Let H+ and H− be the left and right
half-planes with respect to lθ(z0), and let D∗ denote the reflection of D in lθ(z0). Then
the polarization of D with respect to lθ(z0) is defined by

Dp = ((D ∪ D∗) ∩ H
+
) ∪ ((D ∩ D∗) ∩ H−).

Note that Dp is open but might be disconnected and contain multiply connected com-
ponents even if D is a simply connected domain.

It is necessary to emphasize that circular symmetrization and polarization preserve
the area, while radial symmetrization diminishes it. All of these transformations increase
the inner radius of a domain evaluated at appropriate points; see [6, 8]. We recall that
the inner radius R(D, z0) of a domain D ⊂ C having Green’s function g(z, z0) with
singularity at z0 ∈ D is defined by

log R(D, z0) = lim
z→z0

(g(z, z0) + log |z − z0|)

(see [6]). For simply connected domains the inner radius coincides with the conformal
radius.

Lemma 3. For every 1 < α < 4, there is at least one function fα ∈ Nα minimizing
D(f) over Nα.

If f ∈ Nα is extremal, then the image f(D) is a bounded domain starlike with respect
to w = 1 and possessing circular symmetry with respect to the rays lτ = {z = x + iy :
y = 0, x ≥ τ} for all 0 ≤ τ ≤ 1.

In addition, the minimal area A(α) := D(fα) strictly increases in the interval 1 <
α < 4.

Proof. Since this lemma is standard (cf. [2], [5], [4]), we only outline its proof.
For a given 1 < α < 4, the class Nα is compact with respect to the uniform convergence

on compact subsets of D. Since the Dirichlet integral D(f) is lower semicontinuous, the
latter implies the existence of an extremal function fα, at least one for each α.

Let α1 < α2 and suppose that fα2 is extremal for Nα2 . Then f̂(z) = fα2((α1/α2)z) is
in Nα1 and therefore A(α1) ≤ D(f̂) < D(fα2), which implies the strict monotonicity of
A(α).

To establish the circular symmetry, we assume that Dα = fα(D) is not circularly
symmetric with respect to a ray lτ for some 0 ≤ τ ≤ 1. Then let D∗

α be the circular
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Figure 3. Boundedness of Dα via polarization.

symmetrization of Dα with respect to lτ , and let f̃ map D conformally onto D∗
α in such

a way that f̃(0) = 1, f̃ ′(0) = β > 0. Then area(D∗
α) = area(Dα), and β > α by the

principle of symmetrization (see [6]). Since 0 �∈ D∗
α, we have f̃ ∈ Nβ , contradicting the

monotonicity property of A(α).
Now, assuming circular symmetry, the same symmetrization argument works for radial

symmetrization with respect to w = 1 (see [6]). The latter yields the starlike property
of Dα.

Finally, to show that Dα is bounded we may use the polarization as in the proof of
Lemma 2.2 in [5]. Namely, assuming that Dα is not bounded, we must have l1 ⊂ Dα

since Dα is circularly symmetric with respect to l1. Since area(Dα) < ∞, for a given
ε > 0, there is u0 > 1 such that | Im w| < ε for all w = u + iv ∈ ∂Dα such that
u ≥ u0. For u1 > u0, let H− be the right half-plane with respect to the line lπ/4(u1).
If u1 is large enough, the set Dα ∩ H− lies in the horizontal strip between l0(−iε) and
l0(iε), and therefore the polarization Dp of Dα with respect to lπ/4(u1) lies in the half-
plane {w : Rew < u1 + ε}. Let D∗ be the circular symmetrization of Dp with respect
to l1. Note that D∗ is simply connected and 0 �∈ D∗ if u0 is sufficiently large. Let
F (z) = 1 + βz + a2z

2 + . . ., where β > 0, map D conformally onto D∗. Note that
area D∗ = area Dα and β > α by the principles of symmetrization and polarization (see
[6]). Since 0 �∈ D∗, we have F ∈ Nβ , contradicting the monotonicity property of A(α).
Figure 3 shows how polarization and symmetrization affect the domain Dα. �

Combining the results of Lemma 3 and Theorem 2, we can prove inequality (1.2) of
Theorem 1 as follows. For 1 < α < 4, let fα ∈ Nα be an extremal function, which exists
by Lemma 3. The same lemma shows that fα maps D onto a domain Dα symmetric with
respect to the real axis. The latter implies that fα is typically real, and therefore fα is
in the class Tα.

Now the conclusion of Theorem 1 follows from Theorem 2.
The symmetries established by Lemma 1 show that for every extremal domain Dα

the boundary ∂Dα may contain a “nonfree” part Lnf , which, if it exists, must be a
closed segment (possibly degenerate) lying on the ray {w : Re w ≤ 1}. The rest of the
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boundary, Lfr = ∂Dα\Lnf is usually called a “free” boundary. Accordingly, the preimages
lnf = {eiθ : fα(eiθ) ∈ Lnf} and lfr = {eiθ : fα(eiθ) ∈ Lfr} will be called a nonfree arc and
a free arc, respectively. The following lemma describes some useful properties of these
arcs.

Lemma 4. (1) For 1 < α < 4 and every extremal domain Dα = fα(D), the free boundary
Lfr is a Jordan rectifiable arc symmetric with respect to the real axis, which begins and
ends at some point cα ≤ 0.

In addition, Lfr satisfies the following Lavrent′ev condition:

length(J(w1, w2)) ≤ C|w1 − w2| for w1, w2 ∈ Lfr,

where C is a constant independent of w1, w2, and J(w1, w2) denotes the arc of Lfr between
w1 and w2.

(2) Suppose that cα < 0. Then lnf = {eiθ : θα ≤ θ ≤ 2π − θα} for some 0 < θα < π,
and |f ′

α(eiθ)| strictly decreases from some β > 0 to 0 as θ runs from θα to π.

Proof. Part (1), except for the inequality cα ≤ 0, easily follows from the symmetry
properties of Dα; see [2, Lemma 8] or [4, Lemma 2.2].

Let us show that cα ≤ 0. If not, then the elementary variation f̃ defined by (2.12)
is in Nα. By inequality (2.13), we have D(f̃) ≤ D(fα) with the sign of equality if and
only if fα(z) = 1 + αz. Since for α > 1, the polynomial pα(z) = 1 + αz is not in Nα, we
conclude that (0, 1] ⊂ Dα and therefore cα ≤ 0.

To prove part (2), we note that Dα, being circularly symmetric with respect to l0,
possesses the polarization property with respect to the vertical lines vu := {w = u + it :
−∞ < t < ∞} for all cα ≤ u ≤ 0. The latter means that (Du−)∗ ⊂ Du+ for all
cα ≤ u ≤ 0, where Du− = Dα ∩ {w : Re w < u}, Du+ = Dα ∩ {w : Rew > u}, and
(Du−)∗ denotes the reflection of Du− with respect to vu. Now the strict monotonicity
of |f ′(eiθ)| for θα < θ < π follows from Lemma 2.4 in [5]. In addition, since the domain
Dα has an inner angle 2π at w = cα, it follows that f ′(−1) = 0. �

§4. Boundary variation and extremal functions

In this section, we show how the function fα, extremal for the minimal area problem
on Nα, can be recovered from its boundary values, which in turn reflect some variational
properties of the extremal domains.

Lemma 5. For 1 < α < 4, let f be an extremal function for the minimal area problem
for Nα, and let lfr = {eiθ : |θ| < θ0(α)}, with 0 < θ0(α) < π, be the corresponding free
arc. Then f ′(z) is continuous on D and |f ′(z)| = β for some β > α for all z ∈ lfr.

Proof. First we show that |f ′(z)| is constant a.e. on lfr. Since Lfr is Jordan rectifiable by
Lemma 4, it follows that the nonzero finite limit

(4.1) f ′(ζ) = lim
z→ζ,z∈Ū

f(z) − f(ζ)
z − ζ

�= 0,∞

exists a.e. on lfr (see [10, Theorem 6.8, Exercise 6.4.5]). Assume that

(4.2) 0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 < ∞

for eiθ1 , eiθ2 ∈ lfr. Note that (4.1) and (4.2) allow us to apply the two-point variational
formulas of [5, Lemma 10]. Namely, for fixed positive k1, k2 such that 0 < k1 < 1 < k2

and k1β
−1
1 > k2β

−1
2 and fixed ϕ > 0 small enough, we consider the two-point variation

D̃ of D centered at w1 = f(eiθ1) and w2 = f(eiθ2) with inclinations ϕ and radii ε1 = k1ε,
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ε2 = k2ε, respectively (see [5, Section 3]). Computing the change in the area by [5,
formula (3.32)], we find

(4.3) Area D̃ − AreaD =
2πϕ − sin 2πϕ

2 sin2 πϕ
ε2(k2

1 − k2
2) + o(ε2) < 0

for all ε > 0 small enough. Similarly, applying [5, formula (3.31)], we get

(4.4) log
R(D̃, 0)
R(D, 0)

=
[

ϕ(2 + ϕ)
6(1 + ϕ)2

k2
1

β2
1

− ϕ(2 − ϕ)
6(1 − ϕ)2

k2
2

β2
2

]
ε2 + o(ε2) > 0

for all ε > 0 small enough and ϕ chosen so that the expression in the brackets is positive.
Inequalities (4.3) and (4.4) lead to a contradiction to the extremality of f for A(α),

via a standard subordination argument. Thus, |f ′(eiθ)| = β a.e. on lfr with some β > 0.
To prove that |f ′(eiθ)| < β for all eiθ ∈ lnf , we assume that β = |f ′(eiθ1)| < |f ′(eiθ2)| =

β2 with eiθ1 ∈ lfr and some eiθ2 ∈ lnf . Then applying the two-point variation as above,
we get inequalities (4.3) and (4.4), contradicting the extremality of f , again via a subor-
dination argument. Hence, |f ′(eiθ)| ≤ β for all eiθ ∈ lnf , which, when combined with the
strict monotonicity property of |f ′| established in Lemma 4, leads to the strict inequality
|f ′(eiθ)| < β for eiθ ∈ lnf .

To prove that |f ′| = β everywhere on lfr, we consider the function g = f1/2 with the
principal branch of the radical. Lemma 4 implies that Dg = g(D) has a Jordan rectifiable
boundary. Moreover, since Lfr satisfies the Lavrent′ev condition, it follows that Dg is a
Lavrent′ev domain and hence a Smirnov domain (see [10, Subsections 7.3, 7.4]). Thus,
log |g′| can be represented by the Poisson integral

(4.5) log |f ′(z)/(2f1/2(z))| = log |g′(z)| =
1
2π

∫ 2π

0

P (r, θ − t) log |g′(eit)| dt

with boundary values defined a.e. on T (see [10, p. 155]). Formula (4.5) easily implies
that |g′(eiθ)| = β/(2|f(eiθ)|1/2), and therefore |f ′(eiθ)| = β for all eiθ ∈ lfr. In addition,
(4.5) implies that log f ′ is bounded on D outside any neighborhood of the point z = −1.

To show that f ′ is continuous at e±iθ0 , we note that, by the reflection principle, f can
be continued analytically through l+nf = {z ∈ lnf : Im z > 0} and f ′ can be continued
analytically through lfr. This implies that f can be considered as a function analytic in
a slit disk {z : |z − eiθ0 | < ε} \ [eiθ0 , (1 + ε)eiθ0 ] with ε > 0 small enough.

Using the Julia–Wolff lemma (see [10, Proposition 4.13]), the boundedness of log f ′,
and the well-known properties of the angular derivatives (see [10, Propositions 4.7, 4.9]),
one can prove that f ′ has a finite limit f ′(eiθ0), |f ′(eiθ0)| = β, along any path in D ending
at eiθ0 . The details of this proof are similar to the arguments in [5, Lemma 13].

Since |f ′| takes its maximal values on T, it follows that |f ′(z)| < β for all z ∈ D. In
particular, α = |f ′(0)| < β. The proof is complete. �

Summing up the results of this section we can prove Lemma 6 below, which allows us
to find a closed form for the extremal functions.

For real τ and s such that τ < s, let Π(τ, s) denote a simply connected domain
obtained from the half-strip

H(s) = {w = u + iv : u < s, |v| < 3π/2}

by deleting two rays l+(τ ) = {w = u + iπ : u ≤ τ} and l−(τ ) = {w = u − iπ : u ≤ τ}.

Lemma 6. Let f be an extremal function for the minimal area problem on Nα, 1 <
α < 4. Then ϕ(z) = log(zf ′(z)) maps the slit disk D

′ = D \ (−1, 0] conformally and
univalently onto the domain Π(τ, s) with some τ < s and s = log β, where β = |f ′(1)|.
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Proof. Let lfr = {eiθ : |θ| < θ0}, 0 < θ0 < π, and lnf = T \ lfr be the free arc and the
nonfree arc corresponding to the extremal function f . To show that ϕ maps D+ = {z ∈
D : Im z > 0} univalently onto Π+(τ, s) = {ζ ∈ Π(τ, s) : Im ζ > 0}, we will consider the
boundary values of ϕ on ∂D

+.
First we notice that ϕ maps the arc l+fr = {z ∈ lfr : Im z ≥ 0} one-to-one onto the

vertical segment Is = [s, s + (3/2)πi]. Indeed, since |f ′| < β in D and |f ′| = β on lfr,
it follows that f ′′(eiθ) �= 0 on lfr. Thus, f ′ is locally univalent on lfr, and therefore
arg f ′(eiθ) is monotone on lfr. Since ϕ(1) = log β > 0 and ϕ(eiθ0) = log(eiθ0f ′(eiθ0)) =
log β + (3/2)πi it follows that ϕ maps l+fr one-to-one onto Is.

Next, it follows from the monotonicity property of Lemma 4(2) that ϕ maps the arc
l+nf = {z ∈ lnf : Im z > 0} one-to-one onto the ray {w = u + (3/2)πi : u ≤ log β}.

Considering the values of ϕ on the negative radius I = [−1, 0], we first notice that
Im(ϕ(z)) = π for all z ∈ I and that ϕ(z) approaches −∞ + πi as z approaches −1 or 0
along I. Then, by Lemma 4(2) and Lemma 5, Re ϕ(eiθ) decreases on 0 < θ < π. Thus
∂
∂θ Re ϕ(z) ≤ 0 on T+. Because ϕ is symmetric with respect to the real axis, it follows
that

∂

∂θ
Re ϕ(reiθ)

∣∣∣∣
θ=0

=
∂

∂θ
Re ϕ(reiθ)

∣∣∣∣
θ=π

= 0.

Since ∂
∂θ Reϕ(reiθ) is harmonic on D+, the maximum principle implies that ∂

∂θ Reϕ(reiθ)
≤ 0 whenever reiθ ∈ D+.

Since ϕ is symmetric with respect to the real axis, the latter inequality shows that
the function − log |zf ′(z)| takes its maximal value on the circle {z : |z| = r} at the point
z = −r. Thus,

M(r) := max
0≤θ<2π

(− log |rf ′(reiθ)|) = − log(r|f ′(−r)|).

Since − log |zf ′(z)| is harmonic on the punctured disk 0 < |z| < 1, the maximum
M(r) is a strictly convex function of log r on 0 < r < 1 (see [9, Theorem 2.13]). Since
M(r) → +∞ as r → 0 or r → 1, the latter implies that there is r0, 0 < r0 < 1, such
that Re ϕ(t) strictly increases from −∞ to some value τ < log β as t runs from −1 to
−r0 and Reϕ(t) strictly decreases from τ to −∞ as t runs from −r0 to 0.

Finally, we consider the values of ϕ on the positive radius [0, 1]. Our consideration
above shows that |f ′(reiθ)| takes its maximal values on the circle {z : |z| = r} at the
point z = r. Then [9, Theorem 2.13] implies that log |rf ′(r)| strictly increases from −∞
to log β as r runs from 0 to 1.

In conclusion, since ϕ is analytic on D
+ and maps its boundary ∂D

+ one-to-one onto
the boundary of H+(τ, s), the principle of boundary correspondence implies that ϕ maps
D+ conformally and univalently onto H+(τ, s). Finally, applying the Schwarz reflection
principle we finish the proof of the lemma. �

Now we are ready to find the extremal function explicitly. Let w = ϕτ,s(z) be a
univalent function that maps the slit disk D′ conformally onto Π(τ, s) and satisfies

ϕτ,s(0) = −∞ + i0,

ϕτ,s(−1 + i0) = −∞ + (3/2)πi,

ϕτ,s(−1 − i0) = −∞− (3/2)πi

in the sense of the boundary correspondence. The configuration Π(τ, s) depends on
two parameters τ and s. Accordingly, we introduce two related parameters θ0 and r0,
which characterize the preimage of this configuration in the z-plane. Namely, we put
eiθ0 = ϕ−1

τ,s(s + 3πi/2) and r0 = −ϕ−1
τ,s(τ + πi). Then

0 < θ0 < π, 0 < r0 < 1.
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By symmetry, we also have e−iθ0 = ϕ−1
τ,s(s − 3πi/2) and r0 = −ϕ−1

τ,s(τ − πi).
We represent ϕτ,s as a composition of two functions: ϕτ,s = ϕ2 ◦ ϕ1. Here

(4.6) ϕ1(z) =
i

2 sin(θ0/2)
1 − z√

z

with the principal branch of the radical. The function ϕ1 maps D′ conformally onto the
upper half-plane H+ = {w : Im w > 0} so that

ϕ1(0) = ∞, ϕ1(1) = 0, ϕ1(e±iθ0) = ±1.

Then the function ϕ2 is given by the Schwarz–Christoffel integral:

(4.7) ϕ2(ζ) = Ci

∫ ζ

0

t2 − b2

(t2 − a2)
√

1 − t2
dt + s

with the principal branch of the radical and with parameters a, b, and C defined as
follows:

a = csc(θ0/2), b = (a/2)(r1/2
0 + r

−1/2
0 ),

and

(4.8) C =
3π

2

(∫ 1

0

t2 − b2

(t2 − a2)
√

1 − t2
dt

)−1

.

Integrating (4.7) and (4.8), we find

ϕ2(ζ) = Ci
(

arcsin ζ

+
b2 − a2

2ai
√

a2 − 1

(
log

(a + ζ)(aζ − 1 − i
√

a2 − 1
√

1 − ζ2)
(a − ζ)(aζ + 1 + i

√
a2 − 1

√
1 − ζ2)

− πi
))

+ s
(4.9)

and

(4.10) C = 3
(
1 +

b2 − a2

a
√

a2 − 1

)−1

=
3a

√
a2 − 1

b2 − a2 + a
√

a2 − 1
.

For ε > 0 sufficiently small, let γε denote the semicircle {ζ : |ζ − 1| = ε, Im ζ > 0}
oriented in the clockwise direction. Using (4.7), we can find the change ∆(γε) in p = ϕ2(ζ)
when ζ runs along γε:

(4.11) ∆(γε) = lim
ε→0+

(
Ci

∫
γε

t2 − b2

(t2 − a2)
√

1 − t2
dt

)
= −3πi

2
b2 − a2

b2 − a2 + a
√

a2 − 1
.

Since ϕ2 maps the upper half-plane onto Π(τ, s), it follows that

(4.12) ∆(γε) = −πi

2
.

Equating (4.11) and (4.12), we express b as a function of a:

(4.13) b =
√

a2 + (a/2)
√

a2 − 1.

Substituting this into (4.10), we obtain

(4.14) C = 2.

Substituting (4.13) and (4.14) into (4.9) and simplifying, we can represent ϕ2 as

(4.15) ϕ2(ζ) = − log
(ζ +

√
ζ2 − 1)2(a

√
ζ2 − 1 + ζ

√
a2 − 1)√

ζ2 − a2
+ πi + s.
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Now we can write the closed form of the extremal function fα. By Lemma 6, we have
log(zf ′

α(z)) = ϕτ,s(z) for some τ and s = log β. Using equation (4.15) we obtain

(4.16) f ′
α(z) = −βz−1

√
ζ2 − a2

(ζ +
√

ζ2 − 1)2(a
√

ζ2 − 1 + ζ
√

a2 − 1)
,

where ζ = ϕ1(z) is defined by (4.6). The parameter β can be found from the equation

(4.17) lim
z→0

(ϕ2(ζ) − log z) = log α.

Solving (4.6) for z, we obtain

(4.18) z = −a−2(ζ −
√

ζ2 − a2)2

with the principal branch of the radical. Using (4.15) and (4.18) and taking the limit in
(4.17), we obtain equation (1.7):

(4.19) β = αa2(a +
√

a2 − 1).

Integrating (4.16), we find

fα(z) = −β

∫ z

−1

z−1

√
ζ2 − a2

(ζ +
√

ζ2 − 1)2(a
√

ζ2 − 1 + ζ
√

a2 − 1)
dz

=
2αa2

(a −
√

a2 − 1)2

×
(

a

a +
√

a2 − 1
− ζ

ζ +
√

ζ2 − 1

+
√

a2 − 1
a −

√
a2 − 1

log
2a

√
a2 − 1(ζ +

√
ζ2 − 1)

(a +
√

a2 − 1)(a
√

ζ2 − 1 + ζ
√

a2 − 1)

)
(4.20)

with β given by (4.19) and ζ = ζ(z) defined by (4.18). Thus, (4.20) gives an integrated
form of the extremal function (1.4).

To express a as a function of α, we shall use the normalization fα(0) = 1. From (4.20)
we obtain

fα(0) = β
(
(a −

√
a2 − 1) + (a +

√
a2 − 1)(1 − a2 − a

√
a2 − 1) log

(a +
√

a2 − 1)4

16a2(a2 − 1)

)
.

Since fα(0) = 1, this leads to equation (1.3).
To show that the right-hand side of (1.3) is monotone in 1 < a < ∞, we change

variables via
a =

x√
x2 − 1

,

which expresses a as a monotone function of x, 1 < x < ∞. Then the right-hand side of
(1.3) becomes

T (x) =
x2

x2 − 1

(
1 − x + 1

(x − 1)2
log

(x + 1)4

16x2

)
.

Differentiating, we find

T ′(x) =
x(2 + x)

(x − 1)4(x + 1)2
T1(x),

where

T1(x) = (1 + x)2 log
(x + 1)4

16x2
− 2(x − 1)2.

To show that T1(x) > 0 for x > 1, we put

T2(x) = (1 + x)−2T1(x).
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Then T2(1) = 0 and

T ′
2(x) =

2
x

(
x − 1
x + 1

)2

> 0

for all x > 1. Thus, T1(x) > 0 for x > 1. Therefore, T (x) strictly increases in 1 < x < ∞.
Since

lim
a→∞

a2

(
1 −

√
a2 − 1(a +

√
a2 − 1)3 log

(a +
√

a2 − 1)4

16a2(a2 − 1)

)
=

1
4

and

lim
a→1−

a2

(
1 −

√
a2 − 1(a +

√
a2 − 1)3 log

(a +
√

a2 − 1)4

16a2(a2 − 1)

)
= 1,

the monotonicity established above implies that for every 1 < α < 4 there is exactly one
solution a = a(α) of equation (1.3).

To evaluate the minimal area A(α) := area(Dα), we apply the standard line integral
formula:

area(Dα) =
1
2

Im
∫

∂Df (d)

w̄ dw

=
1
2

Im
∫

Lfr

w̄ dw =
1
2

Re
∫ θ0

−θ0

fα(eiθ)eiθf ′
α(eiθ) dθ

=
β2

2
Re

∫ π

−π

fα(eiθ)
eiθf ′

α(eiθ)
dθ =

β2

2
Im

∫
|z|=1

fα(z)
z2f ′

α(z)
dz

= πβ2 Re Res
[

fα

z2f ′
α

, 0
]

= πβ2 Re
[
(fα/f ′

α)′
∣∣∣
z=0

]
= πβ2(1 − α−2f ′′

α(0)).

(4.21)

To find f ′′
α(0), we differentiate equation (1.4) with gα and ζ = ϕ1(z) defined by (1.6)

and (1.5). Then we obtain

(4.22) α−2f ′′
α(0) =

2
αa2

√
a2 − 1(a +

√
a2 − 1).

Combining (4.21) and (4.22), we find the minimal area:

area(Dα) = παa2(a +
√

a2 − 1)2(αa2 − 2
√

a2 − 1(a +
√

a2 − 1)),

which gives the right-hand side of inequality (1.2).
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[1] D. Aharonov, C. Bénéteau, D. Khavinson, and H. Shapiro, Extremal problems for nonvanishing
functions in Bergman spaces, Selected Topics in Complex Analysis. S. Ya. Khavinson Memorial
Volume (V. Eiderman and M. Samokhin, eds.), Oper. Theory Adv. Appl., vol. 158, Birkhäuser,
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