Restricting the Rost invariant to the center
HTML articles powered by AMS MathViewer
- by S. Garibaldi and A. Quéguiner-Mathieu
- St. Petersburg Math. J. 19 (2008), 197-213
- DOI: https://doi.org/10.1090/S1061-0022-08-00993-X
- Published electronically: February 1, 2008
- PDF | Request permission
Abstract:
For simple simply connected algebraic groups of classical type, Merkurjev, Parimala, and Tignol gave a formula for the restriction of the Rost invariant to the torsors induced from the center of the group. This paper completes their results by giving formulas for the exceptional groups. The method is somewhat different and also recovers their formula for classical groups.References
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II, Tohoku Math. J. (2) 20 (1968), 443–497. MR 244259, DOI 10.2748/tmj/1178243073
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- R. Skip Garibaldi, Groups of type $E_7$ over arbitrary fields, Comm. Algebra 29 (2001), no. 6, 2689–2710. MR 1845137, DOI 10.1081/AGB-100002415
- Ryan Skip Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv. 76 (2001), no. 4, 684–711. MR 1881703, DOI 10.1007/s00014-001-8325-8
- Philippe Gille, Invariants cohomologiques de Rost en caractéristique positive, $K$-Theory 21 (2000), no. 1, 57–100 (French, with English and French summaries). MR 1802626, DOI 10.1023/A:1007839108933
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- A. S. Merkur′ev, The norm principle for algebraic groups, Algebra i Analiz 7 (1995), no. 2, 77–105 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1996), no. 2, 243–264. MR 1347513
- Alexander Merkurjev, Rost invariants of simply connected algebraic groups, Cohomological invariants in Galois cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, 2003, pp. 101–158. With a section by Skip Garibaldi. MR 1999385, DOI 10.1007/s00222-003-0292-9
- A. S. Merkurjev, R. Parimala, and J.-P. Tignol, Invariants of quasitrivial tori and the Rost invariant, Algebra i Analiz 14 (2002), no. 5, 110–151; English transl., St. Petersburg Math. J. 14 (2003), no. 5, 791–821. MR 1970336
- A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13–47. MR 1324207, DOI 10.1515/crll.1995.461.13
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62. MR 0224710
- J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220 (French). MR 277536, DOI 10.1515/crll.1971.247.196
Bibliographic Information
- S. Garibaldi
- Affiliation: Department of Mathematics & Computer Science, Emory University, Atlanta, Georgia 30322
- MR Author ID: 622970
- ORCID: 0000-0001-8924-5933
- Email: skip@member.ams.org
- A. Quéguiner-Mathieu
- Affiliation: Laboratoire Analyse, Géométrie & Applications, UMR CNRS 7539, Institut Galilée, Université Paris 13, 93430 Villetaneuse, France
- Email: queguin@math.univ-paris13.fr
- Received by editor(s): July 27, 2006
- Published electronically: February 1, 2008
- © Copyright 2008 American Mathematical Society
- Journal: St. Petersburg Math. J. 19 (2008), 197-213
- MSC (2000): Primary 12G05
- DOI: https://doi.org/10.1090/S1061-0022-08-00993-X
- MathSciNet review: 2333896