Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

$\mathrm A_2$-proof of structure theorems for Chevalley groups of type $\mathrm F_4$
HTML articles powered by AMS MathViewer

by N. A. Vavilov and S. I. Nikolenko
Translated by: N. A. Vavilov
St. Petersburg Math. J. 20 (2009), 527-551
DOI: https://doi.org/10.1090/S1061-0022-09-01060-7
Published electronically: June 1, 2009

Abstract:

A new geometric proof is given for the standard description of subgroups in the Chevalley group $G=G(\mathrm {F}_4,R)$ of type $\mathrm {F}_4$ over a commutative ring $R$ that are normalized by the elementary subgroup $E(\mathrm {F}_4,R)$. There are two major approaches to the proof of such results. Localization proofs (Quillen, Suslin, Bak) are based on a reduction in the dimension. The first proofs of this type for exceptional groups were given by Abe, Suzuki, Taddei and Vaserstein, but they invoked the Chevalley simplicity theorem and reduction modulo the radical. At about the same time, the first author, Stepanov, and Plotkin developed a geometric approach, decomposition of unipotents, based on reduction in the rank of the group. This approach combines the methods introduced in the theory of classical groups by Wilson, Golubchik, and Suslin with ideas of Matsumoto and Stein coming from representation theory and $K$-theory. For classical groups in vector representations, the resulting proofs are quite straightforward, but their generalizations to exceptional groups require an explicit knowledge of the signs of action constants, and of equations satisfied by the orbit of the highest weight vector. They depend on the presence of high rank subgroups of types $\mathrm {A}_l$ or $\mathrm {D}_l$, such as $\mathrm {A}_5\le \mathrm {E}_6$ and $\mathrm {A}_7\le \mathrm {E}_7$. The first author and Gavrilovich introduced a new twist to the method of decomposition of unipotents, which made it possible to give an entirely elementary geometric proof (the proof from the Book) for Chevalley groups of types $\Phi =\mathrm {E}_6,\mathrm {E}_7$. This new proof, like the proofs for classical cases, relies upon the embedding of $\mathrm {A}_2$. Unlike all previous proofs, neither results pertaining to the field case nor an explicit knowledge of structure constants and defining equations is ever used. In the present paper we show that, with some additional effort, we can make this proof work also for the case of $\Phi =\mathrm {F}_4$. Moreover, we establish some new facts about Chevalley groups of type $\mathrm {F}_4$ and their 27-dimensional representation.
References
  • Eiichi Abe, Automorphisms of Chevalley groups over commutative rings, Algebra i Analiz 5 (1993), no. 2, 74–90 (Russian); English transl., St. Petersburg Math. J. 5 (1994), no. 2, 287–300. MR 1223171
  • E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
  • Z. I. Borevich and N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Trudy Mat. Inst. Steklov. 165 (1984), 24–42 (Russian). Algebraic geometry and its applications. MR 752930
  • Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
  • N. A. Vavilov, Subgroups of split classical groups, Doctor. Diss., Leningrad. Gos. Univ., Leningrad, 1987. (Russian)
  • N. A. Vavilov, How is one to view the signs of structure constants?, Algebra i Analiz 19 (2007), no. 4, 34–68 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 4, 519–543. MR 2381932, DOI 10.1090/S1061-0022-08-01008-X
  • N. A. Vavilov, Numerology of quadratic equations, Algebra i Analiz 20 (2008), no. 5, 9–40 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 20 (2009), no. 5, 687–707. MR 2492358, DOI 10.1090/S1061-0022-09-01068-1
  • —, Calculations in exceptional groups, Vestnik Samarsk. Univ. 2007, no. 7, 11–24. (Russian)
  • —, Decomposition of unipotents in adjoint representation of a Chevalley group of type $\mathrm E_6$, Algebra i Analiz (to appear). (Russian)
  • N. A. Vavilov and M. R. Gavrilovich, $A_2$-proof of structure theorems for Chevalley groups of types $E_6$ and $E_7$, Algebra i Analiz 16 (2004), no. 4, 54–87 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 4, 649–672. MR 2090851, DOI 10.1090/S1061-0022-05-00871-X
  • N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, The structure of Chevalley groups: a proof from The Book, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 13, 36–76, 271–272 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 5, 626–645. MR 2253566, DOI 10.1007/s10958-007-0003-y
  • N. A. Vavilov and A. Yu. Luzgarev, The normalizer of Chevalley groups of type $E_6$, Algebra i Analiz 19 (2007), no. 5, 37–64 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 5, 699–718. MR 2381940, DOI 10.1090/S1061-0022-08-01016-9
  • N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, A Chevalley group of type $E_6$ in the 27-dimensional representation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 338 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 14, 5–68, 261 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 145 (2007), no. 1, 4697–4736. MR 2354606, DOI 10.1007/s10958-007-0304-1
  • N. A. Vavilov and E. B. Plotkin, Net subgroups of Chevalley groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 94 (1979), 40–49, 150 (Russian). Rings and modules, 2. MR 571514
  • N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, Calculations in Chevalley groups over commutative rings, Dokl. Akad. Nauk SSSR 307 (1989), no. 4, 788–791 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 1, 145–147. MR 1020667
  • I. Z. Golubčik, The full linear group over an associative ring, Uspehi Mat. Nauk 28 (1973), no. 3(171), 179–180 (Russian). MR 0396783
  • —, Normal subgroups of the orthogonal group over the associative ring with involution, Uspekhi Mat. Nauk 30 (1975), no. 6, 165. (Russian)
  • I. Z. Golubchik, Normal subgroups of the linear and unitary groups over associative rings, Spaces over algebras, and some problems in the theory of nets (Russian), Bashkir. Gos. Ped. Inst., Ufa, 1985, pp. 122–142 (Russian). MR 975035
  • Jean A. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5, Springer-Verlag, Berlin-New York, 1971 (French). Troisième édition. MR 0310083
  • A. Yu. Luzgarev, On overgroups of $E(E_6,R)$ and $E(E_7,R)$ in minimal representations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), no. Vopr. Teor. Predst. Algebr. i Grupp. 11, 216–243, 302 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 134 (2006), no. 6, 2558–2571. MR 2117858, DOI 10.1007/s10958-006-0127-5
  • V. V. Nesterov, Generation of pairs of short root subgroups in Chevalley groups, Algebra i Analiz 16 (2004), no. 6, 172–208 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 6, 1051–1077. MR 2117453, DOI 10.1090/S1061-0022-05-00890-3
  • T. A. Springer, Linear algebraic groups, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 5–136, 310–314, 315 (Russian). Translated from the English. MR 1100484
  • Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
  • A. V. Stepanov, Stability conditions in the theory of linear groups over rings, Candidate Diss., Leningrad. Gos. Univ., Leningrad, 1987. (Russian)
  • A. V. Stepanov, On the normal structure of the general linear group over a ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 236 (1997), no. Vopr. Teor. Predst. Algebr i Grupp. 5, 166–182, 220 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 95 (1999), no. 2, 2146–2155. MR 1754458, DOI 10.1007/BF02169976
  • James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • Eiichi Abe, Chevalley groups over local rings, Tohoku Math. J. (2) 21 (1969), 474–494. MR 258837, DOI 10.2748/tmj/1178242958
  • Eiichi Abe, Chevalley groups over commutative rings, Radical theory (Sendai, 1988) Uchida Rokakuho, Tokyo, 1989, pp. 1–23. MR 999577
  • Eiichi Abe, Normal subgroups of Chevalley groups over commutative rings, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 1–17. MR 991973, DOI 10.1090/conm/083/991973
  • Eiichi Abe and James F. Hurley, Centers of Chevalley groups over commutative rings, Comm. Algebra 16 (1988), no. 1, 57–74. MR 921942, DOI 10.1080/00927878808823561
  • Eiichi Abe and Kazuo Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 28 (1976), no. 2, 185–198. MR 439947, DOI 10.2748/tmj/1178240833
  • Michael Aschbacher, The $27$-dimensional module for $E_6$. I, Invent. Math. 89 (1987), no. 1, 159–195. MR 892190, DOI 10.1007/BF01404676
  • Michael Aschbacher, Some multilinear forms with large isometry groups, Geom. Dedicata 25 (1988), no. 1-3, 417–465. Geometries and groups (Noordwijkerhout, 1986). MR 925846, DOI 10.1007/BF00191936
  • H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), no. 2, 551–562. MR 1047327, DOI 10.1080/00927879008823931
  • A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969.
  • Anthony Bak, Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability, $K$-Theory 4 (1991), no. 4, 363–397. MR 1115826, DOI 10.1007/BF00533991
  • A. Bak, R. Hazrat, and N. Vavilov, Localization-completion strikes again: Relative $K_1$ are nilpotent by abelian, $K$-Theory (to appear).
  • Anthony Bak and Nikolai Vavilov, Normality for elementary subgroup functors, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 35–47. MR 1329456, DOI 10.1017/S0305004100073436
  • Anthony Bak and Nikolai Vavilov, Structure of hyperbolic unitary groups. I. Elementary subgroups, Algebra Colloq. 7 (2000), no. 2, 159–196. MR 1810843, DOI 10.1007/s100110050017
  • A. Bak, R. Hazrat, and N. Vavilov, Structure of hyperbolic unitary groups. II. Normal subgroups, Algebra Colloq. (to appear).
  • A. Bak and N. Vavilov, Cubic form parameters (to appear).
  • Hyman Bass, Unitary algebraic $K$-theory, Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 343, Springer, Berlin, 1973, pp. 57–265. MR 0371994
  • Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
  • Arjeh M. Cohen and Bruce N. Cooperstein, The $2$-spaces of the standard $E_6(q)$-module, Geom. Dedicata 25 (1988), no. 1-3, 467–480. Geometries and groups (Noordwijkerhout, 1986). MR 925847, DOI 10.1007/BF00191937
  • Douglas L. Costa and Gordon E. Keller, The $E(2,A)$ sections of $\textrm {SL}(2,A)$, Ann. of Math. (2) 134 (1991), no. 1, 159–188. MR 1114610, DOI 10.2307/2944335
  • Douglas L. Costa and Gordon E. Keller, Radix redux: normal subgroups of symplectic groups, J. Reine Angew. Math. 427 (1992), 51–105. MR 1162432
  • Douglas L. Costa and Gordon E. Keller, On the normal subgroups of $G_2(A)$, Trans. Amer. Math. Soc. 351 (1999), no. 12, 5051–5088. MR 1487611, DOI 10.1090/S0002-9947-99-02231-X
  • Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
  • Roozbeh Hazrat, Dimension theory and nonstable $K_1$ of quadratic modules, $K$-Theory 27 (2002), no. 4, 293–328. MR 1962906, DOI 10.1023/A:1022623004336
  • Roozbeh Hazrat and Nikolai Vavilov, $K_1$ of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179 (2003), no. 1-2, 99–116. MR 1958377, DOI 10.1016/S0022-4049(02)00292-X
  • —, Bak’s work on $K$-theory of rings (with an appendix by Max Karoubi), Preprint no. 5, Queen’s Univ., Belfast, 2008, pp. 1–60.
  • Fu An Li, The structure of symplectic groups over arbitrary commutative rings, Acta Math. Sinica (N.S.) 3 (1987), no. 3, 247–255. MR 916269, DOI 10.1007/BF02560038
  • Fu An Li, The structure of orthogonal groups over arbitrary commutative rings, Chinese Ann. Math. Ser. B 10 (1989), no. 3, 341–350. A Chinese summary appears in Chinese Ann. Math. Ser. A 10 (1989), no. 4, 520. MR 1027673
  • Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214
  • Eugene Plotkin, On the stability of the $K_1$-functor for Chevalley groups of type $E_7$, J. Algebra 210 (1998), no. 1, 67–85. MR 1656415, DOI 10.1006/jabr.1998.7535
  • Eugene Plotkin, Andrei Semenov, and Nikolai Vavilov, Visual basic representations: an atlas, Internat. J. Algebra Comput. 8 (1998), no. 1, 61–95. MR 1492062, DOI 10.1142/S0218196798000053
  • T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
  • Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974, DOI 10.1007/978-3-662-12622-6
  • Michael R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965–1004. MR 322073, DOI 10.2307/2373742
  • Michael R. Stein, Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups, Japan. J. Math. (N.S.) 4 (1978), no. 1, 77–108. MR 528869, DOI 10.4099/math1924.4.77
  • A. I. Steinbach, Groups of Lie type generated by long root elements in $\mathrm F_4(K)$, Habilitationsschrift, Gießen, 2000.
  • Anja Steinbach, Subgroups of the Chevalley groups of type $F_4$ arising from a polar space, Adv. Geom. 3 (2003), no. 1, 73–100. MR 1956589, DOI 10.1515/advg.2003.007
  • Alexei Stepanov and Nikolai Vavilov, Decomposition of transvections: a theme with variations, $K$-Theory 19 (2000), no. 2, 109–153. MR 1740757, DOI 10.1023/A:1007853629389
  • Kazuo Suzuki, On normal subgroups of twisted Chevalley groups over local rings, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1977), no. 366-382, 238–249. MR 447426
  • Kazuo Suzuki, Normality of the elementary subgroups of twisted Chevalley groups over commutative rings, J. Algebra 175 (1995), no. 2, 526–536. MR 1339654, DOI 10.1006/jabr.1995.1199
  • Giovanni Taddei, Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 693–710 (French). MR 862660, DOI 10.1090/conm/055.2/1862660
  • L. N. Vaserstein, On the normal subgroups of $\textrm {GL}_{n}$ over a ring, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 456–465. MR 618316, DOI 10.1007/BFb0089533
  • Leonid N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), no. 2, 219–230. MR 843808, DOI 10.2748/tmj/1178228489
  • L. N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J. Math. 110 (1988), no. 5, 955–973. MR 961501, DOI 10.2307/2374699
  • L. N. Vaserstein, Normal subgroups of symplectic groups over rings, Proceedings of Research Symposium on $K$-Theory and its Applications (Ibadan, 1987), 1989, pp. 647–673. MR 999398, DOI 10.1007/BF00535050
  • Leonid N. Vaserstein and Hong You, Normal subgroups of classical groups over rings, J. Pure Appl. Algebra 105 (1995), no. 1, 93–105. MR 1364152, DOI 10.1016/0022-4049(94)00144-8
  • Nikolai A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative algebras and related topics (Hiroshima, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 219–335. MR 1150262
  • Nikolai Vavilov, Intermediate subgroups in Chevalley groups, Groups of Lie type and their geometries (Como, 1993) London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. MR 1320525, DOI 10.1017/CBO9780511565823.018
  • Nikolai Vavilov, A third look at weight diagrams, Rend. Sem. Mat. Univ. Padova 104 (2000), 201–250. MR 1809357
  • N. A. Vavilov, Do it yourself structure constants for Lie algebras of types $E_l$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 281 (2001), no. Vopr. Teor. Predst. Algebr. i Grupp. 8, 60–104, 281 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 120 (2004), no. 4, 1513–1548. MR 1875718, DOI 10.1023/B:JOTH.0000017882.04464.97
  • Nikolai Vavilov, An $A_3$-proof of structure theorems for Chevalley groups of types $E_6$ and $E_7$, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1283–1298. MR 2355697, DOI 10.1142/S0218196707003998
  • Nikolai Vavilov and Eugene Plotkin, Chevalley groups over commutative rings. I. Elementary calculations, Acta Appl. Math. 45 (1996), no. 1, 73–113. MR 1409655, DOI 10.1007/BF00047884
  • William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117
  • J. S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc. 71 (1972), 163–177. MR 291304, DOI 10.1017/s0305004100050416
  • R. Hazrat, V. Petrov, and N. Vavilov, Relative subgroups in Chevalley groups, $K$-Theory (to appear).
  • N. A. Vavilov and A. K. Stavrova, Basic reductions in the description of normal subgroups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), 30–52; English transl., J. Math. Sci. (N.Y.) 151 (2008), no. 3, 2949–2960.
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 20G15, 20G35
  • Retrieve articles in all journals with MSC (2000): 20G15, 20G35
Bibliographic Information
  • N. A. Vavilov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 20, Petrodvorets, 198504 St. Petersburg, Russia
  • Email: nikolai-vavilov@yandex.ru
  • S. I. Nikolenko
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 20, Petrodvorets, 198504 St. Petersburg, Russia
  • Received by editor(s): October 25, 2007
  • Published electronically: June 1, 2009
  • Additional Notes: Supported by the RFBR grants 03–01–00349 (POMI RAN) and INTAS 03-51-3251. Part of the work was carried out during the authors’ stay at the University of Bielefeld with the support of SFB-343 and INTAS 00–566
  • © Copyright 2009 American Mathematical Society
  • Journal: St. Petersburg Math. J. 20 (2009), 527-551
  • MSC (2000): Primary 20G15, 20G35
  • DOI: https://doi.org/10.1090/S1061-0022-09-01060-7
  • MathSciNet review: 2473743