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ALGEBRAIC CRYPTOGRAPHY: NEW CONSTRUCTIONS

AND THEIR SECURITY AGAINST PROVABLE BREAK

D. GRIGORIEV, A. KOJEVNIKOV, AND S. J. NIKOLENKO

Abstract. Very few known cryptographic primitives are based on noncommutative
algebra. Each new scheme is of substantial interest, because noncommutative con-
structions are secure against many standard cryptographic attacks. On the other
hand, cryptography does not provide security proofs that might allow the security of
a cryptographic primitive to rely upon structural complexity assumptions. Thus, it

is important to investigate weaker notions of security.
In this paper, new constructions of cryptographic primitives based on group invari-

ants are proposed, together with new ways to strengthen them for practical use. Also,
the notion of a provable break is introduced, which is a weaker version of the regular
cryptographic break. In this new version, an adversary should have a proof that he
has correctly decyphered the message. It is proved that the cryptosystems based on
matrix group invariants and a version of the Anshel–Anshel–Goldfeld key agreement
protocol for modular groups are secure against provable break unless NP = RP.

§1. Algebraic cryptography

Public-key cryptography, since its very beginning [16, 53], has been actively employing
algebraic constructions. For example, the RSA protocol is based on number theory; the
very construction of the protocol requires computing the Euler totient ϕ(n). Its security
is based on factoring a number into prime divisors, or, more precisely, on the hardness
of the so-called “RSA problem”: find roots of a given degree modulo a number n = pq,
where p and q are prime (this task may not be equivalent to factoring; see [14, 54, 15]
for more information).

However, the term algebraic cryptography is usually employed in a narrower meaning.
Algebraic cryptography deals with constructions where encoding and decoding are both
group homomorphisms. In [29], Grigoriev and Ponomarenko gave the following definition
of a homomorphic cryptosystem (compare with Definition 2, where we introduce the
general notion of a cryptosystem).

Definition 1. Let H be a finite nonidentity group, G a finitely generated group, and
f : G → H an epimorphism. Assume that R is a set of distinct representatives of
the right cosets of ker(f) in G, A is a set of words in some alphabet, and a mapping
P : A → G satisfies Im(P ) = ker(f). A triple S = (R,A, P ) is called a homomorphic
cryptosystem over H with respect to f if the following conditions are satisfied:

• random elements (of the sets A, G, H) can be generated, and the inverse of an
element and the product of two elements (in the group G or H) can be computed
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in probabilistic polynomial in N time, where N is the size of the presentations
of G, H, and A;

• |R| = |H|, and the image f(g) of every element g ∈ R as well as a unique
preimage g ∈ R such that f(g) = h of every element h ∈ H can be computed in
probabilistic polynomial (in N) time;

• the mapping P is a trapdoor function.

Formally speaking, even in this stricter sense, algebraic cryptography was introduced
almost at the same time as public-key cryptography: the quadratic residue cryptosystem
was the first homomorphic cryptosystem and one of the first known cryptosystems in
general [23, 22].

However, algebraic cryptography in its modern sense stems from the works on the
elliptic curve cryptography [45, 37]. The basic constructions of elliptic curve primitives
differ very little from the constructions based on the discrete logarithm, such as the
Diffie–Hellman key agreement protocol. The main difference is that the elliptic curve
cryptography computes in an Abelian group of points of an elliptic curve y2 = x3+ax+b
or y2 + xy = x3 + ax2 + b; this helps to reduce the key size substantially and make the
cryptosystems more efficient [10, 58, 32]. Lately, the U.S. government introduced a
number of cryptographic standards based on elliptic curve cryptography.

Note that both classical constructions and elliptic curve cryptography deal with Abeli-
an groups. This additional structure allows encoding and decoding algorithms to get even
more efficient, while the analysis of arising computational tasks simplifies. However, over
the last ten years, Abelian constructions were found to be susceptible to a new kind of
cryptographic attack, quantum computing. Starting with the seminal work of Peter Shor
[55, 9], factoring and the discrete logarithm were solved in a simple and efficient manner
on a quantum computer for Abelian groups [24] (see also [42, 48] and Chapter 20 of
[7]). In fact, a quantum computer is able to efficiently solve the problem of calculating
the order of an element in an Abelian group (via quantum Fourier transforms), and this
problem generalizes the discrete logarithm.

The discrete logarithm and factoring were effectively the basis of all classical cryptog-
raphy, including elliptic curve cryptography. Thus, in a situation when quantum com-
puting is already gradually becoming feasible (although the prospects are not yet clear),
cryptography can no longer limit itself to commutative constructions. Cryptographers
aim to create non-Abelian constructions, which are expected to be more secure [5].

That is why elliptic constructions and the classical Diffie–Hellman and RSA construc-
tions were generalized, and the task of constructing homomorphic cryptosystems was
introduced in [19, 60]. The first steps in using algebraic constructions, in particular
group theory, for building cryptographic primitives were made in [8, 47, 49, 50]. An
important step on the road of non-Abelian cryptographic constructions was the papers
of Anshel, Anshel, and Goldfeld [3, 4, 2]. We shall focus on one of their constructions
in §9.

These ideas were further developed in the work of Grigoriev and Ponomarenko. They
developed the basic definitions, such as Definition 1, and built constructions of non-
Abelian homomorphic public-key cryptosystems [29], homomorphic public-key cryptosys-
tems over rings [28], and a general scheme of building complex homomorphic cryptosys-
tems from smaller “blocks” [31] (this scheme will play an important part in the present
paper). They also investigated the relationship between homomorphic cryptosystems
and encoding Boolean circuits [30].

In [25], Grigoriev suggested a method for using group invariants for public-key cryp-
tography. In §5, we shall discuss this construction in detail, but now we proceed to
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provable break — the second basic idea of the present work. This paper is a revised and
extended version of [27].

§2. Weak results in modern cryptography

Virtually, modern cryptography does not allow one to prove the security of public key
primitives. Starting with the very first Diffie–Hellman key agreement protocol [16] and
the RSA public key cryptosystem [53], numerous cryptographic constructions have been
devised, but not a single proof of their security has appeared so far. Indeed, it would
be very hard to find an unconditional proof, because it would necessarily include the
proof of P �= NP. However, conditional proofs of the kind “if P �= NP, then a protocol is
secure” are also hard to get. The matter here is that the classical notion of cryptographic
security is related naturally to average-case complexity rather than classical worst-case
complexity.

We begin with a classical notion of semantic security of a cryptosystem; to define it,
we need to begin with the definition of a cryptosystem [22].

Definition 2. A public-key encryption scheme S consists of three probabilistic worst-case
polynomial-time algorithms (G,E,D) for key generation, encryption, and decryption,
respectively.

The key generation algorithm G on input 1n (n is the security parameter) produces
a pair G(1n) = (e, d) of public and private keys. The encryption algorithm E takes as
input a public key e and a plaintext message m and produces a ciphertext

E(e,m) = c.

Finally, the decryption algorithm D takes as input a private key d and a ciphertext c.
The output of D is a message

D(d, c) = m′,

which may fail to equal the original message m when E(e,m) = E(e,m′). These situa-
tions are called collisions ; we assume that collisions happen with negligible probability.

Definition 3. An encryption scheme (G,E,D) is semantically secure if, for all prob-
abilistic polynomial-time algorithms M and A, functions h, and polynomials Q, there
exists a probabilistic polynomial-time algorithm B such that, for sufficiently large k,

Prr
[
A(1k, c, e) = h(m) | (e, d) ←r G(1k),m ←r M(1k), c ←r E(e,m)

]
≤ Prr

[
B(1k) = h(m) | m →r M(1k)

]
+

1

Q(k)
.

Informally speaking, every adversary who knows the distribution of the messages M
and receives as input the encoded message and the public key will not be able to decode
it substantially more often than an algorithm that does not know anything except M (M
is necessary because should, for example, only one message be transmitted all the time,
then the adversary would indeed be able to decode it, even without the code and the
public key). Here the main problem is that the probabilities in this definition are taken
over the distribution on the inputs of the cryptosystem, over the messages; of course, this
is natural because in practice it usually suffices to break a cryptosystem on a substantial
fraction of the inputs, not necessarily on all of them.

Recent results relate cryptographic security (in the sense of Definition 3) to worst-
case complexity assumptions for certain problems [1, 17, 51, 52]. However, so far these
assumptions appear artificial and, as before, do not translate into assumptions about
(in)equality of some complexity classes. In general, it seems that modern cryptography
still has a very long way to go before any provably secure constructions. There even
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exists evidence supporting the view that such constructions may not exist or may lead
to improbable consequences for complexity classes [13].

Thus, it is natural that researchers, having encountered too hard a problem, began
working on alternative definitions, criteria, and contexts, trying to prove security of some
constructions in some definitions.

The first natural approach would be to consider not the “true” cryptographic prim-
itives but their weaker counterparts, such as one-way functions (note that a one-way
function does not imply a public-key cryptosystem; one would need a trapdoor function
for it). Indeed, results on one-way functions are easier to prove. For example, complete
one-way functions (by a complete one-way function we mean a function f such that if
one-way functions exist, then f is a one-way function) have already been known for quite
a long time [40, 21], while complete public-key cryptosystems appeared only recently in
the papers [26, 33] by Harnik et al. and by Grigoriev et al. Moreover, recently Levin
developed more natural combinatorial constructions of complete one-way functions [41];
this theme was continued by recent results by Kojevnikov and Nikolenko [38].

Another approach that also leads to weaker results is to change the notion of security
itself. If we consider weaker notions of security, we are able to construct provably secure
primitives. For example, consider the theory of feebly one-way functions, developed
by A. Hiltgen [34, 35]. Hiltgen considered the circuit complexity of functions in the
complete binary basis, which is the hardest case for proving lower bounds [12, 59]. He
managed to devise a linear invertible function such that computing this function is almost
twice as easy as inverting it. These bounds, however weak, were the first unconditional
security proofs for one-way functions. Lately, Hirsch and Nikolenko created a feebly
secure trapdoor function [36]; it appears possible to devise a provably secure cryptosystem
along the same lines (security is understood in an extremely restricted sense, of course).

On the other hand, partial results were obtained under the assumption of a very strong
adversary, a worst-case adversary who breaks the code in all cases. No wonder that in
this setting one could base security on worst-case complexity assumptions [18, 39]. For a
detailed survey on the subject, we refer the reader to the book [46] and to earlier papers
of the first author [30, 31].

In the next section, we introduce and investigate another approach to weakening the
notion of security. It turns out that our definition of provable break, while being somewhat
artificial, enables us to associate the provable break of invariant-based cryptosystems and
Anshel–Anshel–Goldfeld key agreement protocols with worst-case structural complexity
assumptions.

§3. Provable break

Consider a system with three participants: Alice, Bob, and Charlie. Suppose that, as
usual, Alice (A) and Bob (B) are engaged in a cryptographic protocol (in a key agreement
protocol Alice and Bob are equal peers, and in a public key cryptosystem, Alice generates
a pair of public and private keys and emits the public key, while Bob encodes his message
and sends it to Alice over an open channel), and Charlie tries to eavesdrop, decoding
the messages that Bob sends to Alice. But now Charlie’s task is different: not only does
he need to decipher Bob’s message, he also wants to be able to prove that his decoded
message is actually what Bob had in mind. Perhaps, Charlie does not really trust the
results he receives; perhaps, he has a boss who does not trust Charlie’s algorithm of
breaking the protocol. This is (informally) what we call a provable break.

In this setting, it is not sufficient for Charlie merely to recover the encrypted message
m from a ciphertext c, he should also justify that it is possible to encode m into c. What
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could serve as such a justification? We take the following natural idea as the definition:
in the provable break security model, an adversary, given a codeword E(m), should not
only produce the message m, but also present suitable random bits of E that might lead
to such a cipher.

Remark 1. In what follows, we (equivalently) redefine the encoding algorithm E as a
deterministic worst-case polynomial-time algorithm with access to a random string r. It
receives as input the public key e, the message m, and a random bit string r and outputs
the encoded message E(r, e,m) = c.

There may be several sets of random bits {r1, . . . , rk} that produce the same cipher:
E(m, pk, r1) = · · · = E(m, pk, rk). In this case, of course, an adversary only needs
to present some random string that results in the cipher, not necessarily the one Bob
actually used (when k > 1, Charlie has absolutely no chance to find it anyway).

Informal discussions of the provable break began in connection with the Rabin–Gold-
wasser–Micali cryptosystem based on quadratic residues [22]. It was shown that a prov-
able break of this cryptosystem implies that factoring is contained in RP. However, we
know of no reference where a formal definition was presented and studied.

As we have already mentioned in §2, one of the most fundamental unsolved questions
in theoretical cryptography is to construct a secure encryption scheme based on some
natural complexity assumptions such as P �=NP. In this paper, we present two slightly
different definitions of a provable break (one weaker than the other) and prove that two
different cryptographic protocols, namely, the Anshel–Anshel–Goldfeld key agreement
protocol and cryptosystems based on group invariants, are all secure against a provable
worst-case break provided NP �⊆RP. For the latter cryptosystem, we develop new ways
to provide for their security in the usual cryptographic sense.

§4. Definitions

First, we define the provable break of public-key cryptosystems and then extend it
to key agreement protocols. We present two separate definitions, one of them for the
average case, and the other for the worst case. For this, we recollect Definition 2 and
define the corresponding provable break.

Definition 4. An adversary C performs a provable break of a cryptosystem (G,E,D)
if for a uniform distribution over messages m and random bits of all participating algo-
rithms (the public key pk is taken from the pair (pk, sk) generated by the key generation
algorithm G(1n)) we have

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), and n is the security parameter.

The security parameter in Definition 4 is effectively the key length; the security pa-
rameter should be chosen so that the known adversary algorithms would run long enough
to make a break hopeless.

If E is deterministic, then a provable break is equivalent to a usual break (the set of
random bits is empty). An adversary can prove that he has correctly decoded a message
by encoding it again. This is precisely the idea of a provable break: an adversary should
not only decipher the message, but also check that the cipher is actually a valid one;
while the former task may be trivial (as it will be in some of our examples), the latter
may be very hard.

We also introduce the notion of a very strong adversary who breaks the cryptosystem
in the worst case. The difference from the usual break is that the adversary should be
successful on all inputs.
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Definition 5. An adversary C performs a provable worst-case break of a cryptosystem
(G,E,D) if for all messages m, all pairs of keys (pk, sk) generated by G(1n), and all
random bits of the encoding algorithm E we have

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), n is the security parameter, and the distribution is
taken over the random bits of the adversary C.

We say that a cryptosystem (G,E,D) is secure against a provable (worst-case) break if
there is no polynomial probabilistic Turing machine C performing a provable (worst-case)
break of (G,E,D).

Remark 2. It is easy to think up a trivial cryptosystem that is secure against the provable
break (in the sense of Definition 4, which automatically makes it secure against a worst-
case provable break in the sense of Definition 5). Let Bob transfer the message openly
(decryption is thus trivial), but add a value of some one-way function at the end of the
message. Alice may disregard this one-way function, but Charlie would have to invert
this one-way function in order to get a valid set of Bob’s random bits. Therefore, our
task is not to simply devise cryptosystems that are secure against a provable break,
but to devise them in such a way that they are or at least may be made secure in the
usual cryptographic sense. Of course, we cannot prove their security, but we provide
constructions that we believe to produce reasonably secure cryptosystems.

§5. Invariant-based cryptosystems and their provable break

5.1. Cryptosystems based on group invariants. In [25], D. Grigoriev suggested a
new class of public-key cryptosystems based on group invariants. In an invariant-based
cryptosystem, Alice chooses a group G ≤ GL(n, F ) acting on some vector space Fn. As a
private key, Alice chooses a set X and an invariant f : Fn → X such that f(gx) = f(x)
for all g ∈ G. She also selects a set (or a space given by generators) of messages M ⊆ Fn

such that f(m1) �= f(m2) for all m1 �= m2 ∈ M . Thus, an invariant-based cryptosystem
is determined by a triple (G, f,M). As a public key, Alice transmits generators of G and
M .

Bob selects a vector m ∈ M (m is Bob’s message) and a random element g ∈ G. Then,
Bob communicates gm to Alice. Alice can decipher the message by taking the invariant
f(gm) = f(m). Since she had chosen the set of messages M as a transversal set for
the orbits, the value of f(m) allows her to uniquely determine the original message m.
We say that a triple (G, f,M) is admissible if it correctly determines an invariant–based
cryptosystem.

It is now clear that the primary concern of the security of invariant-based cryptosys-
tems is to find a well-concealed invariant. In what follows, we give several ways to do so.
These ways are similar to those employed in [31] and may be summarized with the fol-
lowing construction. Consider a tree such that each node of it contains a triple (G, f,M).
Alice builds this tree from the leaves to the root, keeping track of G, f , and M at each
step. After the tree is created, Alice takes the cryptosystem from the root and uses it.

An adversary will thus be able to break the cryptosystem if he knows the structure of
the tree (we suppose that the cryptosystems in the leaves are easy to break, otherwise
there is no point in growing a tree at all). From the security point of view this structure is
equivalent to the description of the invariant and may also be regarded as Alice’s private
key. The security of this cryptosystem will rely on the difficulty of the conjugacy and
membership problems, as in [31] (see §6 for the details).
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5.2. An invariant-based cryptosystem secure against a provable break unless
NP ⊆ RP. The construction is based on the modular group. The modular group is the
multiplicative group SL2(Z) of (2×2)-matrices of determinant 1 (unimodular matrices).
Algebraic properties of this group are described in detail, e.g., in [6].

In [11, Corollary 11.5], Blass and Gurevich proved that the following bounded mem-
bership problem (BM) for the modular group is NP-complete.

Problem 1. Let X be a unimodular matrix, S a finite set of unimodular matrices, and
N a positive integer. Can X be represented as

∏m
i=1 Yi, where m ≤ N and for each i

either Yi or Y
−1
i is in S?

Remark 3. Do not confuse this problem with other problems for which in [11] it was
proved that they are DistNP-complete (complete with respect to average case reductions).
The primary difference is that in this case we are dealing with group membership, while
RNP-complete problems arise from checking membership in semigroups.

Let us take G to be the unimodular group

G =

{(
1 x
0 1

)
, x ∈ Z

}
.

As the invariant, we take a rather trivial map

f

(
x1

x2

)
= x2,

and as the message space, the following space of vectors:

M =

{(
1
x

)
, x ∈ Z

}
.

Bob selects a random element g in the given group (obtained by multiplying not more
than, say, N generators), transports the message vector m into gm and transmits gm
and N . Alice computes f(gm) and decides which m it was.

Note that this “cryptosystem” is trivial to break: encryption does not change the part
of the vector that actually carries the message. However, we shall presently see that its
provable break is NP-hard.

Theorem 1. If there is a polynomial adversary C performing a provable worst-case break
of the invariant-based cryptosystem described above, then NP ⊆ RP.

Proof. In short, the provable break is NP-hard because the Integer Sum problem is easily
reduced to deciding bounded membership in a subgroup of the modular group, as was
shown in [11].

First, note that (
1 λ
0 1

)(
1 µ
0 1

)
=

(
1 λ+ µ
0 1

)
.

Thus, the problem of deciding bounded membership in a subgroup of the modular group
is equivalent to the problem of deciding whether a given number is expressible as a
bounded sum of other given numbers. This is the Integer Sum problem, shown to be
NP-complete in [11].

If a polynomial-time algorithm solves a search problem with success probability 1
nConst ,

this probability can easily be amplified to 3/4 by repeating the algorithm a polynomial
number of times and taking the majority vote as an answer. Therefore, if a polyno-
mially bounded adversary provably worst-case breaks the cryptosystem presented, then
NP ⊆ RP. �
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In §§6 and 7 we present constructions aimed at making invariant-based cryptosystems
more reasonable from the security viewpoint.

§6. The tree of groups

6.1. General remarks. The invariant-based protocol described in the preceding sec-
tion shares a discouraging property with the cryptosystem presented in a remark in §4.
It is easy to break in the common cryptographic sense. In this section, we provide a
construction that allows us to “hide” these primitives inside a large tree of groups. We
can also use it to improve the security of the Anshel–Anshel–Goldfeld key agreement
protocol.

We follow the lines of [31] to produce a tree of triples “group–invariant–messages”
such that knowing the structure of the tree, one can efficiently calculate the invariant
in its root, while without knowing the structure, the invariant is “concealed” behind
computationally hard problems in the tree.

In what follows, we concentrate on the invariant-based cryptosystems (introduced
in §5), because [31] can be applied directly to the key agreement protocols described
in §9. However, we need to develop several new techniques to handle invariant-based
cryptosystems. We shall consider the same operations as in [31] and look at what happens
with the invariants. But first we introduce some basic notions.

To each vertex v of the tree, we attach a triple (Gv, fv,Mv). We produce triples by
recursion on the vertices proceeding from the leaves towards the root. At each step, we
apply one of the operations described below. For every vertex v, the group Gv is a matrix
group Gv ≤ GL(n,R) for some n and some base ring R.

Thus, a tree corresponds to the resulting triple (G, f,M), where G ≤ GL(n,R) is a
group, f is an invariant, that is, a function f : Rn → R such that ∀g ∈ G ∀x ∈ Rn

f(gx) = f(x), and M ⊂ Fn is a canonical set of messages with the property that
∀m �= m′ ∈ M f(m) �= f(m′).

The public key consists of R, n, G (given by matrix generators), and M . The point
of building such a tree is to conceal the secret invariant.

Remark 4. Note that in situations where we change the invariant we can either change
the invariant from f to f ◦ h or change the message space from M to h(M). Since we
care about concealing the invariant, and the message space is to be given publicly, we
shall always choose the first alternative.

We want to combine this regular security with the provable worst-case security of
the modular group that we have proved in Theorem 1. For this, we place a provably
secure construction based on the modular group in one of the leaves of the tree. Then,
to solve the membership problem in the root of the tree, Charlie would have to solve the
membership problem for all leaves of the tree (our construction has this property).

6.2. Base of recursion. To treat the construction formally, consider a class of groups
G closed under a certain set of group-theoretical operations O (we list the relevant oper-
ations below) defined on triples (G, f,M) and preserving admissibility. For a set G0 ⊂ G
(which is the base of the construction), we define recursively a class P(G0,O) of quadru-
ples (G, f,M, T ) in the following way.

• Base of recursion: any quadruple (G, f,M, T ), where G ∈ G0, (G, f,M) is an
admissible triple, and T is a single node labeled by G.

• Recursive step: given quadruples {(Gi, fi,Mi, Ti)}si=1 and an operation o ∈ O
of arity s, the class P(G0,O) contains the quadruple (G, f,M, T ), where G =
o(G1, . . . , Gs), f = o(f1, . . . , fs), M = o(M1, . . . ,Ms), and T is the tree obtained
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from T1, . . . , Ts by adding a new root labeled by o, its sons being the roots of
T1, . . . , Ts.

6.3. Recursive step. Now we list the “building blocks” of the tree, the operations
acting on admissible triples. A number of such operations were introduced in [30]; we
need to check what happens with the invariants in these cases.

(1) Changing the base ring φ : R → R′. If the ring becomes smaller (R′ embeds in
R with ϕ : R′ → R, and φϕ = id), an invariant f transforms into an invariant
φ(f) that acts like φ(f)(x′) = f(ϕ(x′)). If ∀x ∈ Rn, g ∈ G: f(x) = f(gx), then

∀x′ ∈ R′n, g ∈ G : φ(f)(gx′) = f(gϕ(x′)) = f(ϕ(x′)) = φ(f)f(x′).

If the ring becomes larger, invariance may break (since there are new elements
in the ring, old equalities may fail now). This property allows us to reason that
any invariant known from invariant theory over fields will carry on to the rings
that are subsets of these fields; e.g., any invariant over C will be an invariant
over Z.

However, this action requires taking the message space into account. Should
different representatives m,m′ ∈ M be such that φ(m) = φ(m′), the correspond-
ing messages would be identical in the resulting message space φ(M). Therefore,
it is sensible to reduce the underlying ring only if φ(M) is nontrivial.

(2) Conjugation g �→ h−1gh. The invariant f(x) becomes the invariant f ′(x) =
f(hx). If ∀g ∈ G, ∀x ∈ Rn: f(gx) = f(x), then

∀g ∈ G, ∀x ∈ Rn : f ′(h−1ghx) = f(hh−1ghx) = f(g(hx)) = f(hx) = f ′(x).

The message space M does not change.
(3) Direct product G1, G2 �→ G1 ×G2. Here we consider the natural representation

of the direct product: if G1 ≤ GL(n1, F ) and G2 ≤ GL(n2, F ), then G1 ×G2 ≤
GL(n1 + n2, F ), acting componentwise. In this situation, if f1(x), f2(x) are
invariants of G1, G2, then any element f ∈ 〈f1(x), f2(y)〉 ≤ R[x, y] is an invariant
of G1 ×G2. We can choose a random element of this set, and the message space
will in any case become M1×M2 (if we do not need that many different messages,
we can choose several at random and discard the others).

(4) Wreath product G �H, where G ≤ GL(n,R), H ≤ Sm. In this case, we take the
natural representation of G �H on Rmn acting as

(g1, . . . , gm, π)

⎛
⎝ x1

. . .
xm

⎞
⎠ =

⎛
⎝ g1xπ(1)

. . .
gmxπ(m)

⎞
⎠ .

Then, for any invariant f , if ∀g ∈ G, x ∈ Rn: f(gx) = f(x), the same will be
true for G � H if we take fm to act componentwise. The permutation disturbs
nothing in the invariant identity. Accordingly, the message space will grow to
Mm (again, we may choose several messages at random or choose the diagonal
∆ = {(x, . . . , x) | x ∈ M} if we do not need that many messages).

Apart from the previously considered ways to extend the tree, invariant theory suggests
new ways. We can consider several transformations o ∈ O that leave the group intact
(o(G) = G) and only change the invariant f and the message space M . The following
will only work if f is a polynomial.

(1) Hessian H(f). If f is a polynomial invariant of G, and ∀g ∈ G ≤ GL(n, F ):
det g = ±1 (note that F is a field), then

H(f) = det

(
∂2f

∂zi∂zj

)



946 D. GRIGORIEV, A. KOJEVNIKOV, AND S. J. NIKOLENKO

is also an invariant. The group G and the message space M remain unchanged.
(2) Jacobian J . If f1, . . . , fn are polynomial invariants of G ≤ SL(n, F ) (note that

F is a field), then

J(f1, . . . , fn) = det

(
∂fi
∂zj

)

is also an invariant. In this way, we can unite n identical groups with different
invariants into one; this will probably be useful only on the first level of the tree,
where we can choose arbitrarily many identical groups.

§7. The leaves of the tree

In the previous section, we explained how to build a new invariant out of existing ones
(thus, the recursive step). The question that remains is to find the base of this recursion.
What should we put in the leaves of this tree?

7.1. General remarks. The first remark to be made is that in computer science, we
cannot truly work over C or R. Anything we do is actually overQ. Invariant theory overQ
is a little different from the classical well-known invariant theory over C. Fortunately, we
must not discard the theory: if f is an invariant of a group G ≤ GL(n,C) represented by
matrices with rational coefficients, then it is still an invariant of the group G ≤ GL(n,Q)
because the elements of G have rational coefficients. Therefore, in what follows we shall
refer to invariants over C, but they will always be the same for Q.

We may also look at invariants over finite fields, usually called modular invariants,
but they provide a completely different story with a completely different theory (see
Example 4 in Subsection 7.3).

7.2. Orbit Chern classes. As an example of a standard well-known construction in
invariant theory (see, e.g., [56]), we recall the so-called orbit Chern classes. They provide
most known invariants of finite groups. The idea is simple: take an orbit aG of an element
a ∈ Fn (suppose for the moment that G acts over a field) and note that

∏
b∈aG(x+ b),

where x is a formal variable, is invariant under G (the elements of G only permute the
factors in this expression). The coefficients of this polynomial are called orbit Chern
classes. For example,

∑
b∈aG b is an invariant of G, namely, the first orbit Chern class.

All orbit Chern classes are simply symmetric functions in the elements of the orbit;
if we take a to be an unknown, we obtain the invariants we are looking for. Similar
statements hold for compact groups.

7.3. Examples of finite groups’ invariants. In this subsection, we give several ex-
amples of invariants of different finite groups. The examples may easily be multiplied.

Example 1. The symmetric group Sn has a monomial representation on Fn : Sn →
GL(n, F ) that permutes the variables. The ring of invariants in this case is generated by
all symmetric polynomials, from x1 + · · · + xn to x1 · · ·xn. This is a simple example of
orbit Chern classes.

Example 2. A cyclic group Zn may be represented by any matrix g ∈ GL(m,F ) such
that gn = e (a unipotent matrix of a matching order). For a function f to be an invariant
of a cyclic group’s representation, it suffices to ensure that it remains unchanged under
the action of the only generator: f(x) = f(gx).

For example, the cyclic group Zn is naturally represented by the subgroup generated
by ξne, where ξn is a primitive nth root of unity and e is the identity matrix. Obviously,
any homogeneous polynomial of degree n is an invariant of this group. We can go one
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step further and consider the representation of the cyclic group Zn generated by a matrix
of the form ⎛

⎜⎝
ξ1 . . . 0
...

...
0 . . . ξm

⎞
⎟⎠ ,

where the ξi are (possibly different) primitive roots of unity, ξni = 1. The invariant ring
of this group will be C[xn

1 , . . . , x
n
m].

Note that invariants depend not only on the groups themselves, but also on their rep-
resentations; the same group with different representations can have different invariants.

Example 3. A dihedral group D2k has a representation D2k → GL(2,R) as the symme-
try group of a regular polygon. In this representation, D2k is generated by two matrices:

D2k =

〈(
cos 2π

k − sin 2π
k

sin 2π
k cos 2π

k

)
,

(
1 0
0 −1

)〉
.

Then the invariant ring of the dihedral group in this representation is generated by
the polynomials

q = x2 + y2, h =

k−1∏
i=0

((
cos

2πi

k

)
x+

(
sin

2πi

k

)
y

)
.

Example 4. For an odd prime p, the dihedral group D2p has a representation D2p →
GL(2,Fp) over the finite field Fp. This representation is given by the matrices

D2k =

〈(
1 1
0 1

)
,

(
−1 0
0 1

)〉
.

In this case the invariant ring is isomorphic to Fp[y, (xy
p−1 − xp)2]. However, if we

switch to the dual representation (by simply transposing the matrices), the invariants
will change substantially; now the ring will be isomorphic to Fp[x

2, y(yp−1 − xp−1)]. In
this example, it was important that the group was represented over a finite field of degree
not coprime with the group’s degree.

These two examples show how much invariants depend on the actual representation.
Some other examples of invariants of finite and classical groups may be found in [25].

7.4. Invariants of classical groups. In this subsection, we give two examples of well-
known invariants of classical groups. They may also lie in the leaves of the tree of groups.

Example 5. The orthogonal group in an even dimension SO(2l, F ) has the well-known
Dickson invariant : if charF �= 2, which we assume to be the case, it is (−1)det g for
g ∈ SO(2l, F ). This invariant works for any field with characteristic not equal to two.
Note that this invariant only has two values, so it is good for encrypting only one bit.

Example 6. By definition, the symplectic group Sp(2n, F ) preserves a nondegenerate
skew-symmetric bilinear form. The value of this form is an invariant (and, unlike the
previous example, a polynomial invariant).

§8. Attacks on invariant-based cryptosystems

When a new cryptosystem (or a family of cryptosystems) is presented, it is common
to analyze the attacks on such cryptosystems. In this section, we analyze several attacks
on invariant-based cryptosystems and give practical advice on how to avoid their success.
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8.1. Linear algebra attacks. The most dreaded attacks on algebraic cryptosystems
usually go by linear algebra: an adversary constructs a system of linear equations and
finds the private key (the most notable example of this approach breaks the Polly Cracker
scheme [20], which was only recently augmented with special techniques to make linear
algebra attacks less efficient [44]).

Suppose that the invariant f is a polynomial of degree d. In this case, an adversary can
view it as a polynomial with

(
n+d+1

d

)
indefinite coefficients. To find the coefficients, he

considers the equations f(gimj) = f(mj) for all elements of the message space mj ∈ M
and all generators gi ∈ G. The space of solutions will yield an invariant separating the
orbits of M (along with trivial invariants such as f = const, of course). If d is a constant,
this attack will actually succeed, so Alice should choose invariants in such a way that(
n+d+1

d

)
be superpolynomial.

Example 7. Suppose that we are trying to build an invariant-based cryptosystem based
on the monomial representation of the symmetric group Sn generated by transpositions
τij and its first degree invariant

f(x1, . . . , xn) = x1 + · · ·+ xn.

For the message space we should choose a collection of vectors such that the sums of
their coordinates are different; we denote them by mi = (mi1, . . . ,min). An adversary
performing this kind of attack will simply consider a polynomial

h = λ1x1 + · · ·+ λnxn

and solve a system of equations to ensure that transpositions do not change h. The
equation corresponding to τij is h(τijx) = h(x), which is equivalent to λi = λj . So, the
adversary will arrive at the correct invariant (or a constant factor of it) after performing
a polynomial algorithm. Note that in order to overcome this algorithm, one should
choose the message space in such a way that it contains messages with identical sums of
elements. The adversary does not need to find the same invariant; he only needs to find
an invariant that separates the vectors of M .

8.2. Monte-Carlo attack and orbit sizes. Another concern comes from the sizes of
the orbits of elements of M . Indeed, suppose that an element m ∈ M has an orbit mG of
polynomial size. In this case, an adversary has a polynomial chance of hitting the correct
cipher E(m) by simply picking an element g ∈ G at random and comparing E(m) and
gm. Thus, the elements of the message space should be chosen with care to ensure that
their orbits are large.

Example 8. For a trivial yet representative example, consider a message space consisting
of a zero vector and some other vector (the following analysis will do for any subgroup of
GL(n, F ) and any invariant). The size of the zero vector orbit is 1, so that an adversary
has no need to do anything: if he sees a zero vector, the message was zero; if he sees a
nonzero vector, it was the other vector that got “encrypted”.

8.3. Tree reconstruction attack. Finally, an adversary may attempt to reconstruct
the tree with which the invariant was built. Along this way he will encounter, for example,
the problem of finding a matrix a such that a−1Ga = H for given G and H. This is a
well-known hard problem; for example, in [43], it was shown that the graph isomorphism
problem reduces to the problem of group conjugation. This kind of attacks was considered
in detail in [30]; the same argument applies in this case, since the task of reconstructing
the tree has not become any easier. In fact, it has become harder, as the tree nodes are
now augmented with invariants that may change nontrivially when going up the tree;
consequently, to reconstruct a tree an adversary needs not only to reconstruct the groups,
but also to reconstruct invariants.
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§9. Anshel–Anshel–Goldfeld key agreement protocol

secure against provable break

First, we recall the construction of the Anshel–Anshel–Goldfeld key agreement proto-
col [3]. Let G be a group, and let two players A and B choose two subgroups of G:

GA = 〈a1, . . . , am〉, GB = 〈b1, . . . , bn〉.

Remark 5. Note that all arguments below go without change if instead of GA and GB we
consider subsemigroups of G, G̃A and G̃B, generated by the same elements 〈a1, . . . , am〉
and 〈b1, . . . , bn〉, respectively, but generated as semigroups rather than as groups. All
commutators are taken in the larger group G.

The group G and elements ai, 1 ≤ i ≤ m, and bj , 1 ≤ j ≤ n, are made public. Both
players A and B randomly choose secret elements a ∈ GA and b ∈ GB as products of no
more than N generators and transmit the following sequences to each other:

XA = {a−1bja}nj=1, XB = {b−1aib}mi=1.

After this transmission, player A (respectively, B) has a representation of the element
a (respectively, b) in the subgroup GA (respectively, GB). Therefore, he can compute
a representation of the element b−1ab (respectively, a−1ba) by using elements of the
sequence XA (respectively, XB). Thus, both players have shared a common key, namely,
the commutator

a−1(b−1ab) = [a, b] = (a−1ba)−1b.

An obvious necessary condition for this protocol to be secure is that the set of all com-
mutators with a ∈ GA and b ∈ GB should contain at least two elements.

To provably break the Anshel–Anshel–Goldfeld key agreement protocol, one needs to
find representations of certain elements a′ in GA and b′ in GB, where

XA = {a′−1bja
′}nj=1, XB = {b′−1aib

′}mi=1.

Theorem 2. The Anshel–Anshel–Goldfeld key agreement protocol for a modular group
G and its subgroups GA and GB is secure against a provable worst-case break unless
NP ⊆ RP. The same statement is true if, instead of GA and GB, we consider subsemi-
groups of G, G̃A and G̃B, generated by the same elements 〈a1, . . . , am〉 and 〈b1, . . . , bn〉,
respectively, but generated as semigroups rather than as groups.

Proof. Assume that there is a probabilistic polynomial-time Turing machine M such
that for infinitely many security parameters N and an input I = {a1, . . . , am, b1, . . . , bn,
a−1b1a, . . . , a

−1bma, b−1a1b, . . . , b
−1anb} we have

Pr[M(I) = a′1, s1, . . . , a
′
f , sf , b

′
1, t1, . . . , b

′
g, tg] ≥ 1/p(N),

where GA = 〈a1, . . . , am〉 and GB = 〈b1, . . . , bn〉 are subgroups of the modular group,

a ∈ GA, b ∈ GB, a
′ =

∏f
i=1 a

′si
i , b′ =

∏g
j=1 b

′tj
j , a′i ∈ {ai}mi=1, b

′
j ∈ {bj}nj=1, a

′−1bja
′ =

a−1bja for all 1 ≤ j ≤ n, b′−1aib
′ = b−1aib for all 1 ≤ i ≤ m, si and tj are in {−1, 1}

for all 1 ≤ i ≤ f and 1 ≤ j ≤ g, f, g ≤ N , and p is some polynomial. Note that we
can check the correctness of the answer of M , so we also assume that M produces only
correct answers.

Using M , we can construct a probabilistic polynomial time Turing machine M ′ that
contains p(N)/2 copies of M and is such that on the input (X, {Yi}i, N) it does the
following.

(1) If X =
∏m

i=1 Y
′si
i , where Y ′ ∈ {Yi}i, m ≤ N , si ∈ {−1, 1} (if we regard GA and

GB as semigroups, here we take positive degrees only), then Pr[M ′ accepts] ≥
1/2.

(2) Otherwise, Pr[M ′ accepts] = 0.
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For inputs of all copies of M we take a = b = X, ai = bi = Yi, and compute all
a−1b1a, . . . , a

−1bma, b−1a1b, . . . , b
−1anb in polynomial time. By [11, Corollary 11.5], the

BM problem is NP-complete; hence, NP ⊆ RP. �

Remark 6. If GA and GB are semigroups, the BM problem is hard on the average [57].

Note that the key agreement protocol described above can be insecure against a linear
algebra attack (cf. Subsection 8.1): it gives an adversary the decision of the conjugacy
problem, which could be unique, provided that the ring generated by GA (or by GB)
coincides with the entire ring of matrices (that is the case if we build our protocol on the
Blass-Gurevich groups). To make a cryptosystem more resistant against linear algebra
attacks, one can replace G by a tree-like construction of groups or semigroups as in §6.

Formally speaking, we produce the following recursive construction for a class of groups
G closed under a certain set of group-theoretical operations O; this time we need not
worry about admissible triples, and the operations are defined simply on groups of G.
For a set G0 ⊂ G (which is the base of the construction) we define recursively a class
P(G0,O) of pairs (G, T ).

The recursive definition is done precisely as in Subsection 6.2, omitting the construc-
tions of invariants and message spaces. In our case, the set O of admissible operations
consists of changing the underlying ring, direct products, wreath products, and conju-
gations (similar to invariant-based cryptosystems, but without invariant-specific opera-
tions).

The security of the Anshel–Anshel–Goldfeld key agreement protocol for matrix groups
is based on the following problem.

Linear Transporter Problem (LTP). Let R be a commutative ring, V an R-
module, and G ≤ GL(V,R). Given u ∈ V and v ∈ uG = {ug : g ∈ G}, find g ∈ G such
that v = ug.

If an adversary can efficiently solve LTP, he can obviously break the Anshel–Anshel–
Goldfeld protocol. In [31], the following proposition was proved (Lemma 3.4).

Proposition 1. Let G ∈ G. Then, given a derivation tree of G, LTP for G can be solved
in time polynomial in the size of the tree and the times of solving LTP for leaves of the
tree.

Of course, this does not prove that the security of the Anshel–Anshel–Goldfeld key
agreement protocol in the root of the tree depends on the security of this protocol in
the leaves of the tree. We have a much weaker statement that goes in the undesirable
direction twice: if we can solve LTP, we can break the Anshel–Anshel–Goldfeld protocol,
and if we can solve LTP for leaves of the tree, we can solve LTP for its root. To prove
security, we would need to reverse both statements. However, this is the best we can do,
and we know of no similar constructions with stronger dependencies.

§10. Conclusions and further work

In the paper, we have introduced a new notion of a provable break and of provable
security in general. While this notion is undoubtedly much weaker than regular cryp-
tographic security, it appears natural, well-defined, and sensible. Moreover, this notion
of security is one of the few known notions for which provable positive statements are
possible. We have provided two examples of cryptographic protocols: an invariant-based
cryptosystem secure against provable break (we have also substantially advanced the
theory of invariant-based cryptosystems since [25]) and a key agreement protocol se-
cure against provable break, a special case of the Anshel–Anshel–Goldfeld key agreement
protocol. We are sure that more examples can be produced along the same lines.
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Therefore, on the one hand, further work lies in the search for more cryptographic
primitives secure against a provable break. On the other hand, it is desirable to look
for relationships between the provable break and other notions of security. It is easy
to think of a trivial cryptosystem for which provable security is equivalent to regular
cryptographic security (for example, Bob may not use random bits at all); however, it
may be useful to look for nontrivial examples of the same. These lines will probably be
similar to the research carried out by Ajtai and Dwork [1], later augmented by Regev
[51, 52]. They managed to reduce a worst-case problem to an average-case one and thus
produced a cryptosystem that is secure under some worst-case assumptions.

Acknowledgments

The authors are grateful to Edward A. Hirsch for valuable discussions and for Re-
mark 2.

References

[1] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence,
STOC’97: 29th Annual ACM Symposium on Theory of Computing (El Paso, TX, 1997), ACM,
New York, 1999, pp. 284–293 (electronic). MR1715640

[2] I. Anshel, M. Anshel, B. Fisher, and D. Goldfeld, New key agreement protocols in braid group cryp-
tography, Topics in Cryptology — CT–RSA 2001 (San Francisco, CA), Lecture Notes in Comput.
Sci., vol. 2020, Springer, Berlin, 2001, pp. 13–27. MR1907085 (2003c:94016)

[3] I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res.
Lett. 6 (1999), 287–291. MR1713130 (2000e:94034)

[4] , Non-abelian key agreement protocols, Discrete Appl. Math. 130 (2003), no. 1, 3–12.
MR2008401 (2004h:94050)

[5] M. Anshel, Braid group cryptography and quantum cryptoanalysis, 8th Internat. Wigner Symposium
(New York, U.S.A., 2003), Baruch College of CUNY, pp. 13–27.

[6] T. M. Apostol, Modular functions and Dirichlet series in number theory, Grad. Texts in Math.,
vol. 41, Springer, New York, 1990. MR1027834 (90j:11001)

[7] S. Arora and B. Barak, Complexity theory: a modern approach,
http://www.cs.princeton.edu/theory/complexity/, 2008.

[8] J. Benaloh, Dense probabilistic encryption, 1st Annual Workshop on Selected Areas in Cryptology
(Queen’s Univ., Kingston, Canada, 1994), Springer-Verlag, London, 1994, pp. 120–128.

[9] C. H. Bennett and P. W. Shor, Quantum information theory, Information Theory: 1948–1998, IEEE
Trans. Inform. Theory 44 (1998), no. 6, 2724–2742. MR1658902 (99h:94025)

[10] I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography, London Math. Soc. Lecture

Note Ser., vol. 265, Cambridge Univ. Press, Cambridge, 2000. MR1771549 (2001i:94048)
[11] A. Blass and Y. Gurevich, Matrix transformation is complete for the average case, SIAM J. Comput.

24 (1995), 3–29. MR1313476 (96f:68037)
[12] N. Blum, A Boolean function requiring 3n network size, Theoret. Comput. Sci. 28 (1984), 337–345.

MR0742295 (86g:68053)
[13] A. Bogdanov and L. Trevisan, On worst-case to average-case reductions for NP problems, 44th An-

nual IEEE Symposium on Foundations of Computer Science (FOCS’03) (Cambridge, MA, U.S.A.,
2003), IEEE Computer Soc., Washington, DC, 2003, pp. 308–317.

[14] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring, Advances in
Cryptology— EUROCPYPT’98 (Espoo), Lecture Notes in Comput. Sci., vol. 1403, Springer, Berlin,
1998, pp. 59–71. MR1729052

[15] D. R. L. Brown, Breaking RSA may be as difficult as factoring, Tech. Rep. 2005/380, Cryptology
ePrint Archive, 2005.

[16] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22
(1976), 644–654. MR0437208 (55:10141)

[17] C. Dwork, Positive applications of lattices to cryptography, Mathematical Foundations of Computer
Science 1997 (Bratislava) (MFCS’97), Lecture Notes in Comput. Sci., vol. 1295, Springer, Berlin,
1997, pp. 44–51. MR1640207 (99k:94034)

[18] S. Even and Y. Yacobi, Cryptocomplexity and NP-completeness, Automata, Languages and Pro-
gramming (Proc. Seventh Internat. Colloq., Noordwijkerhout, 1980), Lecture Notes in Comput.
Sci., vol. 85, Springer, Berlin–New York, 1980, pp. 195–207. MR0589004 (82a:94085)

http://www.ams.org/mathscinet-getitem?mr=1715640
http://www.ams.org/mathscinet-getitem?mr=1907085
http://www.ams.org/mathscinet-getitem?mr=1907085
http://www.ams.org/mathscinet-getitem?mr=1713130
http://www.ams.org/mathscinet-getitem?mr=1713130
http://www.ams.org/mathscinet-getitem?mr=2008401
http://www.ams.org/mathscinet-getitem?mr=2008401
http://www.ams.org/mathscinet-getitem?mr=1027834
http://www.ams.org/mathscinet-getitem?mr=1027834
http://www.ams.org/mathscinet-getitem?mr=1658902
http://www.ams.org/mathscinet-getitem?mr=1658902
http://www.ams.org/mathscinet-getitem?mr=1771549
http://www.ams.org/mathscinet-getitem?mr=1771549
http://www.ams.org/mathscinet-getitem?mr=1313476
http://www.ams.org/mathscinet-getitem?mr=1313476
http://www.ams.org/mathscinet-getitem?mr=0742295
http://www.ams.org/mathscinet-getitem?mr=0742295
http://www.ams.org/mathscinet-getitem?mr=1729052
http://www.ams.org/mathscinet-getitem?mr=0437208
http://www.ams.org/mathscinet-getitem?mr=0437208
http://www.ams.org/mathscinet-getitem?mr=1640207
http://www.ams.org/mathscinet-getitem?mr=1640207
http://www.ams.org/mathscinet-getitem?mr=0589004
http://www.ams.org/mathscinet-getitem?mr=0589004


952 D. GRIGORIEV, A. KOJEVNIKOV, AND S. J. NIKOLENKO

[19] J. Feigenbaum and M. Merritt, Open questions, talk abstracts, and summary of discussions, Dis-
tributed Computing and Cryptography (Princeton, NJ, 1989), DIMACS Ser. Discrete Math. Theo-
ret. Comput. Sci., vol. 2, Amer. Math. Soc., Providence, RI, 1991, pp. 1–45. MR1105537 (92b:68006)

[20] M. Fellows and N. Koblitz, Combinatorial cryptosystems galore! Finite Fields: Theory, Appli-
cations, and Algorithms (Las Vegas, NV, 1993), Contemp. Math., vol. 168, Amer. Math. Soc.,
Providence, RI, 1994, pp. 51–61. MR1291417 (95e:94028)

[21] O. Goldreich, Introduction to complexity theory, Lecture notes, Weizmann Inst. Sci., 1998–1999.
[22] S. Goldwasser and M. Bellare, Lecture notes on cryptography, Summer course on cryptography at

MIT, 2001.
[23] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci. 28 (1984), 270–299.

MR0760548 (86j:94047)
[24] D. Grigoriev, Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum

machines, Theoret. Comput. Sci. 180 (1997), 217–228. MR1453867 (98b:68090)

[25] , Public-key cryptography and invariant theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI) 293 (2002), 26–38; English transl., J. Math. Sci. (N. Y.) 126 (2005),
no. 3, 1152–1157. MR1948823 (2003m:94065)

[26] D. Grigoriev, E. A. Hirsch, and K. Pervyshev, A complete public-key cryptosystem, Groups, Com-
plexity, Cryptology 1 (2009), 1–12. MR2502933

[27] D. Grigoriev, A. Kojevnikov, and S. I. Nikolenko, Invariant-based cryptosystems and their security
against provable break, Tech. Rep. 158, Max-Planck-Inst. Preprints, 2007.

[28] D. Grigoriev and I. Ponomarenko, Homomorphic public-key cryptosystems over groups and rings,
Complexity of Computations and Proofs, Quad. Mat., No. 13, Dept. Math. Seconda Univ. Napoli,
Caserta, 2004, pp. 305–325. MR2131411 (2006b:94027)

[29] , On non-abelian homomorphic public-key cryptosystems, Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI) 293 (2002), 39–58; English transl., J. Math. Sci. (N. Y.) 126
(2005), no. 3, 1158–1166. MR1948824 (2004a:94044)

[30] , Homomorphic public-key cryptosystems and encrypting Boolean circuits, Appl. Algebra
Engrg. Comm. Comput. 17 (2006), 239–255. MR2233784 (2008b:94067)

[31] , Constructions in public-key cryptography over matrix groups, Algebraic Methods in Cryp-
tography (L. Gerritzen, D. Goldfeld, M. Kreuzer, R. Gerhard, and V. Shpilrain, eds.), Contemp.
Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006, pp. 103–119. MR2389292

[32] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography, Springer-Verlag,
New York, 2004. MR2054891 (2005c:94049)

[33] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen, On robust combiners for oblivious
transfer and other primitives, Advances in Cryptology — EUROCRYPT 2005, Lecture Notes in
Comput. Sci., vol. 3494, Springer, Berlin, 2005, pp. 96–113. MR2352183 (2008i:94043)

[34] A. P. Hiltgen, Constructions of feebly-one-way families of permutations, Advances in Cryptology
— AUSCRYPT’92 (Gold Coast, 1992), Lecture Notes in Comput. Sci., vol. 718, Springer, Berlin,
1993, pp. 422–434. MR1292706 (96e:94014)

[35] , Towards a better understanding of one-wayness: Facing linear permutations, Advances
in Cryptology — EUROCRYPT’98 (Espoo), Lecture Notes in Comput. Sci., vol. 1403, Springer,
Berlin, 1998, pp. 319–333. MR1729060 (2000i:94050)

[36] E. A. Hirsch and S. I. Nikolenko, A feebly trapdoor function, PDMI Preprints no. 16/2008, S.-
Peterburg. Otdel. Mat. Inst. Steklov. (POMI), St. Petersburg, 2008.

[37] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–209. MR0866109 (88b:94017)
[38] A. Kojevnikov and S. I. Nikolenko, New combinatorial complete one-way functions, 25th Symposium

on Theoretical Aspects of Computer Science (STACS’08) (Bordeaux, February 2008), Bordeaux,
2008.

[39] A. Lempel, Cryptography in transition, Comput. Surveys 11 (1979), no. 4, 215–220.
[40] L. A. Levin, One-way functions and pseudorandom generators, Combinatorica 7 (1987), 357–363.

MR0931193 (89c:68048)
[41] , One-way functions, Problemy Peredachi Inf. 39 (2003), no. 1, 103–117; English transl.,

Probl. Inf. Transm. 39 (2003), no. 1, 92–103. MR2101668 (2005g:94080)
[42] H.-K. Lo, T. Spiller, and S. Popescu (eds.), Introduction to quantum computation and information,

World Sci. Publ. Co., Inc., River Edge, NJ, 1998. MR1750536 (2000k:81058)
[43] E. M. Luks, Permutation groups and polynomial-time computation, Groups and Computation (New

Brunswick, NJ, 1991), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 11, Amer. Math.
Soc., Providence, RI, 1993, pp. 139–175. MR1235801 (94h:20005)

[44] L. V. Ly, Polly Two: A new algebraic polynomial-based public-key scheme, Appl. Algebra Engrg.
Comm. Comput. 17 (2006), 267–283. MR2233786 (2007c:94149)

http://www.ams.org/mathscinet-getitem?mr=1105537
http://www.ams.org/mathscinet-getitem?mr=1105537
http://www.ams.org/mathscinet-getitem?mr=1291417
http://www.ams.org/mathscinet-getitem?mr=1291417
http://www.ams.org/mathscinet-getitem?mr=0760548
http://www.ams.org/mathscinet-getitem?mr=0760548
http://www.ams.org/mathscinet-getitem?mr=1453867
http://www.ams.org/mathscinet-getitem?mr=1453867
http://www.ams.org/mathscinet-getitem?mr=1948823
http://www.ams.org/mathscinet-getitem?mr=1948823
http://www.ams.org/mathscinet-getitem?mr=2502933
http://www.ams.org/mathscinet-getitem?mr=2131411
http://www.ams.org/mathscinet-getitem?mr=2131411
http://www.ams.org/mathscinet-getitem?mr=1948824
http://www.ams.org/mathscinet-getitem?mr=1948824
http://www.ams.org/mathscinet-getitem?mr=2233784
http://www.ams.org/mathscinet-getitem?mr=2233784
http://www.ams.org/mathscinet-getitem?mr=2389292
http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.ams.org/mathscinet-getitem?mr=2352183
http://www.ams.org/mathscinet-getitem?mr=2352183
http://www.ams.org/mathscinet-getitem?mr=1292706
http://www.ams.org/mathscinet-getitem?mr=1292706
http://www.ams.org/mathscinet-getitem?mr=1729060
http://www.ams.org/mathscinet-getitem?mr=1729060
http://www.ams.org/mathscinet-getitem?mr=0866109
http://www.ams.org/mathscinet-getitem?mr=0866109
http://www.ams.org/mathscinet-getitem?mr=0931193
http://www.ams.org/mathscinet-getitem?mr=0931193
http://www.ams.org/mathscinet-getitem?mr=2101668
http://www.ams.org/mathscinet-getitem?mr=2101668
http://www.ams.org/mathscinet-getitem?mr=1750536
http://www.ams.org/mathscinet-getitem?mr=1750536
http://www.ams.org/mathscinet-getitem?mr=1235801
http://www.ams.org/mathscinet-getitem?mr=1235801
http://www.ams.org/mathscinet-getitem?mr=2233786
http://www.ams.org/mathscinet-getitem?mr=2233786


ALGEBRAIC CRYPTOGRAPHY: NEW CONSTRUCTIONS 953

[45] V. S. Miller, Use of elliptic curves in cryptography, Advances in Cryptology — CRYPTO’85 (Santa
Barbara, CA, 1985), Lecture Notes in Comput. Sci., vol. 218, Springer, Berlin, 1986, pp. 417–426.
MR0851432 (88b:68040)

[46] A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group–based cryptography, Birkhäuser, Basel,
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