Categories of motives for additive categories. II
HTML articles powered by AMS MathViewer
- by
A. V. Yakovlev
Translated by: the author - St. Petersburg Math. J. 20 (2009), 1003-1022
- DOI: https://doi.org/10.1090/S1061-0022-09-01082-6
- Published electronically: October 2, 2009
- PDF | Request permission
Abstract:
This is a continuation of the paper by the same author published in this journal, v. 19 (2007), no. 6.References
- D. K. Faddeev, An introduction to the multiplicative theory of modules of integral representations, Trudy Mat. Inst. Steklov. 80 (1965), 145–182 (Russian). MR 0206048
- A. V. Yakovlev, Torsion-free abelian groups of finite rank and their direct decompositions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Kol′tsa i Moduli. 3, 135–153, 165 (Russian); English transl., J. Soviet Math. 57 (1991), no. 6, 3524–3533. MR 1047246, DOI 10.1007/BF01100125
- A. V. Yakovlev and N’Famara Kamara, Mixed abelian groups of finite rank and their direct decompositions, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom. vyp. 2 (1993), 57–61, 125 (Russian, with English and Russian summaries); English transl., Vestnik St. Petersburg Univ. Math. 26 (1993), no. 2, 50–53. MR 1370233
- A. V. Yakovlev, The categories of motives for additive categories. I, Algebra i Analiz 19 (2007), no. 6, 173–183 (Russian); English transl., St. Petersburg Math. J. 19 (2008), no. 6, 995–1002. MR 2411964, DOI 10.1090/S1061-0022-08-01032-7
- Carl Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973. MR 0366960
Bibliographic Information
- A. V. Yakovlev
- Affiliation: Mathematics and Mechanics Department, St. Petersburg University, Petrodvorets, 198904 St. Petersburg, Russia
- Email: yakovlev.anatoly@gmail.com
- Received by editor(s): June 6, 2008
- Published electronically: October 2, 2009
- © Copyright 2009 American Mathematical Society
- Journal: St. Petersburg Math. J. 20 (2009), 1003-1022
- MSC (2000): Primary 18E05
- DOI: https://doi.org/10.1090/S1061-0022-09-01082-6
- MathSciNet review: 2530899