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A PROBLEM WITH AN OBSTACLE THAT GOES OUT
TO THE BOUNDARY OF THE DOMAIN
FOR A CLASS OF QUADRATIC FUNCTIONALS ON R¥

A. A. ARKHIPOVA

Dedicated to Vasilit Mikhailovich Babich

ABSTRACT. A variational problem with obstacle is studied for a quadratic functional
defined on vector-valued functions uv : @ — RN, N > 1. It is assumed that the
nondiagonal matrix that determines the quadratic form of the integrand depends on
the solution and is “split”. The role of the obstacle is played by a closed (possibly,
noncompact) set K in RY or a smooth hypersurface S. It is assumed that u(z) € K
or u(z) € S a.e. on . This is a generalization of a scalar problem with an obstacle
that goes out to the boundary of the domain. It is proved that the solutions of the
variational problems in question are partially smooth in Q and that the singular set
3 of the solution satisfies Hy,—2(X) = 0.

INTRODUCTION

Let K be a domain in RY, N > 1, with C2-smooth boundary 9/, and let K = KUoK.
The set K may be noncompact in R¥.

Let 2 be a bounded domain in R™, n > 2, with sufficiently smooth boundary 0f).
Consider the variational problem

(1) Flu] = /Q((A(a:,u)um,uw) +a(x)|u* + f(z)u)de — 111/11}37
where
(2) Wi = {u € W (4 RY), u(zx) € K for a.e. z € Q}.

Here A(z,u) is a positive definite symmetric matrix of size nN x nN, a and f are
known functions, a(z) > ag > 0, and the function u : © — RY N > 1, has the form
w=(ut,.. ), up = {ul Zég

Note that the functions u belonging to Wy have the following property: u(z) € K a.e.
on Jf). Thus, we consider a problem with an obstacle expanding up to the boundary.

In this paper, we study the regularity of functions at which the minimum in problem
(1), (2) is attained. Certainly, we could modify the problem slightly in order to ensure
the existence of a nontrivial solution. Specifically, this can be done by assuming that
a = f =0 and by imposing a Dirichlet condition on a part of the boundary 9.

In the present paper, we also consider an obstacle expanding up to the boundary and
determined by the condition () C S, where S is a smooth hypersurface in R™Y. More

2010 Mathematics Subject Classification. Primary 35J20.

Key words and phrases. Variational problem, quadratic functional, nondiagonal matrix, Signorini
condition.

Supported by RFBR (grant no. 09-01-00729) and by the grant NSH-4210.2010.1 for support of leading
scientific schools.

©2011 American Mathematical Society
847



848 A. A. ARKHIPOVA

precisely, for the functional (1), we study the regularity of a solution of the variational
problem

(3) Flu] — min,
(4) Ws = {u € Wi (QRY), u(x) € S for ae. x € Q}.

The main condition on the matrix A is its split structure:
(5) Agf(a:,u) = a®P(2)bpy(z,u), a,B<n, k,iI<N,

where a®? and by,; are symmetric positive definite matrices on R”™ and RY, respectively.

It should be noted that, in the case where by = bi(u), a = f =0, uly = ¢, v C 00N (¢
is a given function with ¢(y) C K or ¢(y) C S), the split structure (Bl makes it possible to
treat the variational problems in question as problems about harmonic mappings (written
in local coordinates) in the situation where the entire image is covered by a single chart
and the Signorini condition is fulfilled on 99 \ ~.

The first results about the partial regularity of functions giving a local minimum for
functionals such as (II) were obtained by Giusti and Giaquinta in [I]. In that paper it was
shown that a free local minimum wu of class Wy ,.(€) (i.e., in an obstacle-free problem)
is Holder continuous on some open set o C €2, and that H,,_(X) = 0 for the closed set
¥ =0\ Q. By a well-known result of Morrey, ¥ = & in the two-dimensional case. The
authors of [I], 2] also considered quadratic functionals with a split matrix (B). In this
situation, in [2] it was proved that for a bounded local minimum of the functional (), ([2)
we have the following estimate of the singular set: dimgy ¥ < n — 3, and in dimension 3,
the set ¥ is either empty or consists of isolated points. A similar result on the regularity
of minimums near the boundary under the Dirichlet condition was obtained by Jost and
Meier [3].

The obstacle problem for quadratic functionals of the form (), (@) and under the
Dirichlet boundary condition has been studied by Hildebrandt, Widman, Fuchs, Duzaar,
Wiegner and other authors (see [4, [5 [6] [7, 8, @1 10, 11l 12 13| 14] and the references
therein). Various obstacles of the type u(2) C K have been treated, where X C RY. In
particular, it was shown that dimyg ¥ < n — 3, and ¥ may only consist of isolated points
if n =3 and K is a compact subset of RY with C3-smooth boundary 9K (see [T]).

Various restrictions on I of a geometric nature have been stated under which the
solution of the variational problem with obstacle is smooth on Q (see [13} 14} @, [T1]). In
the author’s paper [15], partial regularity up to the boundary was proved for functions
that provide the minimal value for the functional (), () in the case of noncompact
K with 0K € C2. In the same paper, obstacles of the form u(Q) C S, where S is a
noncompact hypersurface in RY, were considered. In both cases, it was proved that
H,_5(X) = 0 for the possible singular set X.

It should be noted that in all papers mentioned above the regularly near the bound-
ary for solutions of the variational problems was studied under the Dirichlet boundary
condition.

Regularity for a problem with obstacles on the boundary (u(9Q) C K C RN, N > 1),
i.e., the Signorini problem, has been studied since the 1970s. The regularity of solutions
of a scalar Signorini problem has been explored in more detail; see [16] 17, 18] 19} 20, 21]
and the references therein. In particular, under various conditions on the elliptic oper-
ator of the problem, it was proved by Caffarelli [I7], Kinderlehrer [19], and Ural'tseva
[20] that the solutions of variational inequalities are C1'®*-smooth. The optimal smooth-
ness u € C11/2(Q) for the solution of the Signorini problem was established recently by
Athanasopoulos and Caffarelli [22].
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Under various restrictions on a convex set I C RN, N > 1, for linear operators, in
[23, 24, 25] it was proved that the solutions of the Signorini problem belong to W22 (£2; RY).
Shumann [26] proved that, in the case of linear operators of elasticity theory, the solutions
of the Signorini problem in the half-space are C*®-smooth. The joint papers [27 28, 29]
by the author and Ural'tseva were devoted to the regularity problem for solutions of
variational inequalities with diagonal linear and strongly nonlinear elliptic operators
under convex restrictions fixed at the boundary.

In [30], the author proved partial regularity for the solutions of Signorini-type vari-
ational problems with functionals of the form (), (B). More precisely, smoothness was
studied for the minimizers of such functionals on the sets Vic = {u € W3 (Q;RY), u(z) €
K forae. z€dQ} and Vs = {u € WHQ;RY), u(z) € S for a.e. = € IN}, where K
and S are as in ([2)) and ().

In the present paper, we consider the situation in which the obstacle K ¢ RY expands
up to the boundary of 2. We shall prove a partial regularity result for the solutions of
problems (), ) and @), @) similar to the results of [30]. This will be done by the local
penalty method.

We shall pay more attention to problem (), ). In §1, we present the main assump-
tions about the data of that problem and state the principal result (Theorem 1). In §2,
the local statement of the problem in the half-ball is presented and the local penalty
method is described. In §3, a monotonicity inequality is obtained for the local normal-
ized energy of penalty problems. In §4, we show that the solutions of penalty problems
are smooth near the point at which the normalized energy integral for the solution of the
original problem is small. §5 is devoted to an estimate, uniform in the penalty parameter,
for the maximum of the modulus of the gradient for the solutions of penalty problems.
Here the split structure (@) of the matrix A(x,u) is used substantially. It enables us to
apply certain methods pertinent to scalar boundary-value problems. In §6, we present
a Holder estimate for the first derivatives of the solution of the variational problem in
question (in the local setting). It should be noted that only the limit function obeys this
estimate, and no uniformity with respect to the parameter of penalty problems is proved.
Also in that section, we finish to prove the main result, Theorem 1. The last section, §7,
is devoted to the analysis of problem (@), ). Here Theorem 4 is proved, which is the
main partial regularity result for the solution of that problem.

The following notation is adopted in the paper:

we write Br, Bf, I'r, Sf if 2° = 0;
|A| = meas,, A is the Lebesgue measure of a subset A of R", w,, = meas,, B1(0);

1 1
][ gdx = ol gdz, j[ gdx = n_2/ gdzx,
Q,(20) | r| Q,.(z0) Q r Q,

r

1 ov
7{ faU = == | fdls v, =5, [9(x, W)}, = Goo + Gu U, -

T,
For short, we write u € B(£) instead of u € B(Q;RY). Various constants depending on
the data of the problem will be denoted by ¢, ¢;. The dependence of constants on the
penalty parameter € is indicated separately each time.
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§1l. STATEMENT OF THE MAIN RESULTS

We list the main assumptions about the problem data.

[Ax] Let K C RY be the closure of a domain with C2-smooth boundary K. There
exist numbers 6y and M > 0 such that a C2-smooth distance function d(u) = dist(u, 9K)
is defined in the neighborhood Uss, (K), and

(6) sup [|d"(u)|| < M.
UGUQJO(IC)

[As] S is a C?-smooth hypersurface without boundary in RY; there exist numbers
09 and M such that the distance function is defined in the two-sided neighborhood

U, (S) = Uss) (S)USU U (S), d € C*(Uis, (8)), i = 1,2, and

(7) sup |d"(u)] <M, i=1,2.

Uty (5)

[A1] The matrix a(z) = {a®?(z)}*P<" is defined and C'-smooth on Q, a®’(z) =
aP®(x), and
(a(x)E,€) > €}, €eRY, 2€Q, v = const > 0.
[A2] The matrix b(x,u) = {byi (7, u) }ri<n is defined and C'-smooth on Q x RY,

Sup {|b(az,u)| + |b;(a:,u)\ + \b;(x,uﬂ} < u, bkl(xvu) = blk(xau)v
QxRN

(b(x,u)n,m) > weln)®, neRY, (z,u) € A xRN, 1y = const > 0.

[Az] a € Ly/2(Q), f € Lg(R), ¢ > n, a(x) > ap > 0. Q is a bounded domain in R™,
n > 2, with C2-smooth boundary 95).

Remark 1. If the set K or the surface S is compact in RY, it suffices to assume that they
are merely C2-smooth. For a noncompact hypersurface S, condition [Ag]| ensures that
this surface is not glued at infinity and its principal curvatures are uniformly bounded.

The main results of the paper are described by the following theorems.

Theorem 1. Suppose that conditions [Ax] and [A1]-[As] are satisfied and that the min-
imum of the functional (1), (5) on the set Wi defined by (2) is attained at the function
u € Wi. Then there exists 8 € (0,1/2) such that u € CY#(Qp), where Qg is relatively
open in Q, and the closed singular set ¥ = Q\ Qo admits the estimate H, (%) = 0.

Theorem 2. Suppose that conditions [Ag| and [A1]-[A3] are satisfied and that the min-
imum of the functional (1), (5) on the set Wg defined by (4) is attained at a function u.
Then the claim of Theorem 1 holds true.

§2. LOCAL PENALTY METHOD

Consider problem (1), (2), (5). Suppose that the functional (1), (5) attains its mini-
mum on the set (2) at the function u € Wx. Fixing 6y and Ry (which are arbitrary for
the moment), we define the set

(8) X00,Ro = ﬂ {xo €Q: j[ elu] dx > 98}, e[u] = 1 (A(z, u)u,, uy).
7 Qe (a0 2
r<Rq r(z9)
Put
(9) Qo =0\ Zo,.R,-

We want to show that, for 6y and Ry sufficiently small, Qg is a set of regular points for w.
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By the definition (@), we have
(10) 7[ e[u](z) dz < 62
Qr, (2°)

for some Ry = R1(2°) < Ry, provided that 20 € .
In order to prove Theorem 1, first we verify the following claim.

Theorem 3. Suppose that conditions [Ax], [A1]-[As] are fulfilled. There exist constants

0o and Ry such that Qq is relatively open in Q and u € C*P(Qy) with some 3 € (0,1/2).
The constants 0y and Ry depend on the parameters in conditions [Ax], [A1]-[As].

We prove Theorem 3 in the case where 20 € 9Q N Q.

We fix the parameters 6y and Ry, arbitrary for the moment, and consider a point z° €
002N Q. At this point, the solution u of problem (), @), (&) obeys condition (I0). At a
neighborhood of z°, we rectify the boundary with the help of a C?>-smooth transformation
y = y(x) such that Bf (0) C y(Qg,(2°)), Tr,(0) C y(02 N Bg,(0)) for some Ry >
0, where R; is taken from ([I0). (Clearly, this rectification procedure imposes some
restrictions on the smallness of Ry = Ro(092).)

We do not change the notation for independent variables and consider the local model
problem

2

K

~ 1 ~ R ~ )
Flw; B} ] = —/ [(A(z, w)w,, wy) + alw|* + fw] dz — min,
2 B (0) wi
(11) Ro

W,é ={ve W;(BEQ;]RN), U|B;2 er, v—u|sg2 = 0}.

Here A, a, and fpossess the same properties as in the definition (), and the function
u, when calculated in the new coordinates, gives a minimal value for the functional (II]).
After this, the smallness condition (I0)) will turn into

(12) 74 e[u](z) dx < .03 = 62,
By, (0)

where the constant c, does not depend on 20 € 99 N Qy but is determined by the
parameters in the assumptions of Theorem 1.
In order to prove Theorem 3, we show that if 6y and Ry are sufficiently small (conse-

quently, 6 and Rs in (IZ)) are also small), then u € Cl’ﬁ(B;rRQ) for some 8, 7 € (0,1/2).

Under conditions [As], the expression dw|? + fw in the integrand in (II) does not
create additional complications when we study the regularity of the function w at which
the minimum in problem (II) is attained. So, in what follows we assume for simplicity
that a = f: 0 and write A in place of A.

Thus, preserving the notation for the variables and the functions, we are going to show
that the function u at which the minimum of the functional
(13) Fi[w; By ] = %/ (A(z, w)wy, wy) dz — min

B, (0) Wi
is attained, is smooth in By (0), 7 € (0,1/2), provided (I2) is true with 6, and R,
sufficiently small. The parameters 3 and 7 do not depend on 20 € 9Q N Qg and are
determined by the data (), ), (&) of the problem.

Without loss of generality, we assume that
(14) a"(z) =1, acEBEz; anrlrg, =0, 7=1,...,n—1

(see, e.g., [39)).
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We shall prove that u is smooth by the local penalty method. To construct the penalty,
we consider the following scalar function: y(s) = s for s < §2; x(s) = —1/6(;—2 —8s+62)
0

for s € (62, 402); x(s) = 5/2 2 for s > 452. The function y belongs to C11([0,0)), and
4
(15) V() 20, ()l < sopx(s)
0

Here dp is the parameter taken from condition [Ax].
For an arbitrary e € (0, 1], consider the variational problem

Filt] = = /B (A2, 0)0r, 02) + v — uf?] da

2 Jp+
(16) )
+ = x(d*(v)) dz + —/ x(d*(v)) dl' — min,
2e BY 2e Tr, %
where
(17) V={veWy(Bf):v- u|5;2 =0}.

For every fixed € > 0, the variational problem ([I6]), (I7) admits a solution u¢ € V. Since
u € K almost everywhere in 2 and on 99, we see that x(d?(u)) = 0 a.e. in Q and on 9.
Consequently,
(18) Filu] < Fylu] = Fifu].
It follows that
Hu;:”zB;z < C||uz||273;2; ||ue||27B;2 < CHUHWQl(B;?)?
(19) 1 . 1 e
= | x(@))de < cllugly g s = | x(@(u)) dl < clfugll} 5 -
B;Q TR € FRQ T

€

By (M), there is a function u° € W%(BEZ) such that, for some sequence of values of
€ — 0, the sequence u¢ converges weakly to ug in W21(B§2). Moreover, u® € K a.e. in
BE2 and on I'g,, u® = u on Sg. Next,

Fi[u] < Fiu] < Fi[u]
and
(20) Fi[u’] < limeinf Fi[uf] < limsup Fy[uf] < Fi[u] < Fy[u].
The last inequality is true because the function u is minimal for the functional F}. Thus,

equality occurs throughout in the chain ([20)) of inequalities, whence we see that the
following limit exists:

(21) lim Fy [uf] = Fiy[u].
From (I8) and (21)) we deduce that
lim |u¢ — ul? dz = / |u® — u|*dz =0,
€ 3;2 13};2

(22) 1 1
lim — x(d*(u))dx =0, lim- x(d*(u)) dT = 0.

€ € Bgz € € T,
Thus, u° = u in BEQ. Since the u¢ converge to u weakly in W} (BEQ), by 1)) we see
that u¢ tends to u in the norm of Wy (BEQ). Therefore, we have proved the following
assertion.



A PROBLEM WITH AN OBSTACLE 853

Proposition 1. The solutions u¢ of the penalty problems [I8), (I7) tend to the solution
u under study for the problem (I3)) in the norm of W (B;;Q) for some sequence € — 0,
and formulas [22)) hold true.

In what follows, we shall write

(23) el (1)) = x(d ().

§3 MONOTONICITY INEQUALITY FOR THE NORMALIZED ENERGY INTEGRAL

We put
o¢(r,2°) = e‘lufl(zx) dx 1 (d?(u)) dry,
o et =f | ewl@drtif e
eu)(x) = %[(A(Ivue)@,u;) +u = ul? + xe(d*(u))],

where x. is defined by @3), w,(2°) = Bp,(0) N Br(2°), 7,(2°) = Tr,(0) N B(2°),
2% € Bp, UTR,, and r < dist(z?, Sj.[%).

Remark 2. Proposition 1 and condition ([I2) show that for some sequence of € — 0, we
have

(25) ®(Ry,0) < 0%, €< e,
In the sequel we only consider this sequence of € — 0.

Proposition 2. If 25) is fulfilled, there exist numbers 71 € (0,1/2) and ¢; > 0 such
that

(26) (p,a°) < 1 ((r,2%) +6%), 2°€ B, p<r<Ry=nR,
The constants T and c¢; do not depend on € < ¢,.

Proof. The arguments presented below are a modification of the method suggested in
[38] for the proof of a monotonicity formula for harmonic mappings into the sphere.

Let u® be the solution of the variational problem (I6), (I7). Then this function is a
critical point for the functional Ff[-] both relative to variation of dependent variables
and relative to variation of independent variables. This means that we can fix a family
of smooth homeomorphisms

Ur(x) =2 +7¢(x) =2, =€ B =B} (0),

such that ¢, : BY — BT for 0 < 7 < 1. Here £ = (£',...,¢&"), € € CON(BY),
spt{ € BYUT, I’ =Tg,(0), & > 0in BT, £"r =0, and ¥ (") C T
For € fixed, we calculate the expression
I(r) = 7 (Ff[u(27)] = F{[u“(2))).
The quantity I.(7) tends to a finite limit as 7 — +0, and

. dFe[us(z(m)
(27) 7_1_1320 I = %‘T:Jro >0

because € is minimal.
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Inequality (27)) can be rewritten as the following integral inequality for the function u*:

—/ ef[uf] div§dm+/ Agf(ue)’;ﬁ(ue); &Y dx
B+ B+ T

(28) —5 AR O s, et [ (= da

B+

- l/xe(dQ(ue)) div'£dy > 0,

2Jr

where £ € COY(BY), €* > 0in BY, £"|r =0, {|s+ = 0, and div' € = 3,1 €2, The

expression e[u¢] was defined in (24)), and u is the solution under study of problem (I3).
Now we fix 20 € T'g/2(0) and R < Ry/2. Then wgr(z®) = BT N Br(z°) = Bf(2?),

vr(2%) =T N Br(z?). Suppose that spt & C wgr(2®) Uyr(z°) in @8). We can write

Aglﬁ(z, ue)(ue)l (ue)l;a = eo[u] + % Aao‘ﬁbkl(x,ue)(ue)l (ue)k

g T
where

eofts] = = a® (20)bga (&, u) (), (u)¥,

Aa = a(z) — a(z®), |Aa| < ¢z —2°).

By an orthogonal transformation of the coordinates x, we can reduce the matrix a(z")
in the above integral inequality to a diagonal form, after which it can be transformed to
the unit matrix. Similar transformations were presented in detail in the author’s paper
[15] for the problem with penalty x. in wr(2°), and in the author’s paper [30] for the
problem with penalty x. on v(z°). Here we only give the further arguments for the
simplest case where a(z) = id (i.e., the unit matrix), and b = b(u). Then ([28) takes the
form

— / e‘[uf] divE&dx + / bkl(ue);a (ue)’;ﬁ;’a dz
wr(20) wr(z?)

(20) 1
—l—/ (u€ —u)ug & dx — —/ Xe div’ €dy > 0,
W (x0) 2 Jy(@o)

where ¢ is as in (2§]).

Fixing two numbers r and r + h < R arbitrarily, we define a function n by n(s) =1
for s <r and n(s) = 52 + 1 for s € (r,r + h], and put & = (z — 2%)n(|z — 2°]) in 29).
(Recall that 2° € T'g,, whence % = 0 and §"|rp, = 0.) After some calculations, we let
h tend to zero, and we arrive at the relation

(2—n) / e‘luf]dx + r/ e“[u]ds
B (%) 55 (%)

—1 u)h (2 — 2N ((WE, (2 — 2°)) ds
s B 2@ =) d

- / e (@ () + fuf — uf?) d + / (e — ), (g, (2 — 7)) de
B (a0) B (x0)

n—1 r
! 5 )/ xed7+§/ Xed(0v) > 0.
e (20) Oy, ()
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n—1

Dividing this by r”~*, we readily obtain the inequality

-2 1
(_(n 71)/ e“dx + 72/ eeds)
rh B rh st
(n—2) / 1 1
=t ), 2 X

#(-
> in/ o = a0)((u)x — %) ds

1
2

xed(@))

(30)

1
+ -1 /B (Xe + |’LL _’LL| )d:l?— ] /Bj(u6 —u, (ux,.’lf —xo))diﬂ.

Now, the left-hand side of @) is (®¢(r,2"))., and the first integral on the right is

r
nonnegative (the latter is because of a split structure of A). So, we see that

1
(®<(r, 2°)).. > |u¢ — ul? dz — |u€ — u| |ug| dz
r n—1
r BF BF

1 r
> € _ 2d _ m2d-
Z 5 n T /B:r |u® — ul* dx 27%% |uz|? dz

Integrating over the interval (p,r), we obtain

" 1
o< (r, 2°) — (p, 2°) > / ( — / |u® — ul? da —7[ |u€ — ul |y dx) dt
p N By B
1 /" 9
>—— |t |uz|® dz | dt,
2J, B/

where 0 < p < r < R. To deduce 26) from (BIl), we need some additional information
about the limit function u(x). For this, we put r = R = R3/2 in the first inequality in

1)), obtaining

R2/2
®c(p, x°) < @6(%,560) +/ (7{3+ [u€ — ul |y dx) dt.
P t

Since ®¢(Ra/2,2°%) < 2"720¢(R2,0) < 277202, letting € tend to 0, from the last inequality
and [22) we derive that

(32) ﬁ*( 0)|ux|2d$§ct92, 2% €TR,2(0), p< Ro/2.
xr

(31)

Clearly, for every z° € BR /4( ) and every 79 < dy = dist(2°, g, ), we can use (28] with

¢ € C%Y(B,,(x9)) to obtain an inequality of the form (BI]) for 0 < p < 7 < 7. The limit
passage as € — 0 in the resulting relation shows that

33 uxQdISCOQ, p < dy, 2% € BL , (0).
Ry /4
B, (z%)

The usual procedure of “sewing” the boundary estimate ([32) and the inner estimate (B3])
guarantees that

(34) sup 7[ lug|* dz < c6?
rOGBg2/4,p§R2/4 wp (x0)

for the limit function u(x), i.c., u, € L*" 2(Bf, 14(0)); moreover, the seminorm [] of

the Campanato space £2’"(B§ /4) is estimated as follows:

(35) [u]i@”)w;w < 62
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Estimates (B4) and (35) for the limit function are useful in the current proof, but they
will also be useful in the sequel.
Returning to (BI) with 2° € T'g, o, by the invocation of ([B2)) we conclude that

(36) &%(p,2%) < & (r,2°) + (s — p?),

p<r<Ry/2,2°€ I'r, /2. Similarly, by using (B3)) for the limit function u, we obtain an
inequality such as (B6) for interior points 2% € Bp,,4(0) and r < dist(2°,I'g,4). This
implies the general result. It should be noted that, in the case where the matrix aqg is

of general form, an inequality such as ([B0) and all the subsequent estimates will involve
junior terms immaterial for the proof; see [30]. |

Remark 3. As was noted in Remark 2, condition (I2]) implies estimate ([25]). Taking (26)
into account, we conclude that (I2]) guarantees the existence of a constant ¢y > 0 (which
depends on the problem data) with
(37) sup d(p,xY) < cp 62,

0B}, p<Rs
where R3 = 71 Ry was fixed in Proposition 2.

Remark 4. Estimate ([B3)) shows that the limit function u(x) belongs to the Campanato
space Ez’"(Bj{’s), R3 < Ry; consequently, u € Lm(B;%) for all m < oo and, moreover,

m m pn 1-m/2 m -~ —
(38) ||u|\m,B;z < ¢(m)0™RE + CR;I( m/ )Hu”sz; &(m,n, Ry L HUHQ,B;S)-
3 3

§4. THE SMOOTHNESS OF u¢ NEAR THE ORIGIN

Generally speaking, the vector-valued functions u¢ at which the functional Ff[] of
problem (I6), (I'7) attains its minimum may have a singular set 3, C Ba UT'g,. Never-
theless, we shall show that, in our case, estimate [37) with 6 sufficiently small guarantees
that u® € CV(BYf,), Rs < Rs, for every y € (0,1) (however, the corresponding norm
may grow as € — 0). It is important that R4 does not depend on e. This preliminary
information about the smoothness of u¢ will be required in the next section to estimate

HufEHOO’Bg uniformly in e for some R < Rjy.

Proposition 3. There exist § > 0, Ry > 0 such that, whenever a solution u®, € < €., of
problem ([@8), (T0) satisfies [20), we have ut € CLV(B;%) N WQQ(BRI) for every v € (0,1)
and Ry = 75 Ro; moreover, the parameter 79 < 1 does not depend on €. Next,

(39) 6l gy + Nl < KT,

Ry

where K (e71) may tend to infinity as € — 0.

Proof. First, we observe that, under condition (23, estimates ([28) and (B17) are valid
in BES, where R; = 11 Ry, 1 < 1/2. In order to show that u¢ is Holder continuous

in some closed half-ball BE(O), R < Rsz, € < €, we apply the “direct” method of
checking smoothness for solutions (minimizers rather than arbitrary extremal elements)
of variational problems; see [31, Chapter 6]). At the first step, we estimate |u$| in L, on

BE for some p > 2 and some R < Rz, say, R = R3/2:

||u§||p’Bg3 <Ki(e™h), e<e,.

/2
The exponent p > 2 only depends on the ellipticity constants for the matrix A and on
the dimension n. The volume and surface penalty integrals will appear in the estimate
as supplementary terms with coefficient %
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Next, we freeze the arguments of the matrix A(x,u) and show that

€ —1
Hu HCQ(B;SH) < K2(€ )a o€ (07 1)’
provided 6 and Rs are sufficiently small (they will depend on A but not on €). After
that, we regard u® as an extremal element for the functional FY} that is a weak solution
of the following boundary-value problem:

€ (o3 € € 1 a € eym
L] = — (A7 (e, u) () e + 5 (AD e (), (W),
1d x(d?(uf))
ek k _
(40) +[(u)* —wu }+§ e =0, z€ B}(0),
dXe

1
AZf(x,ue)(ue)l :) bkl(a:,uﬁ)(ue)l =3 x€lg, R=R3/2, k<N.

T8 (14 Tn duk’

The function u¢ € Wy (Bj) N C*(B}) satisfies the identity
e € € 1 o € e€e\ym €
[ AR oy B, + AT e, (02,1 () =
R
(41) L dxe hk} d / LdXeprgp — g
+2duk T FR(O)2duk ’
h e Wy (Bf) N Lo(Bf), hlg: =0.

A local estimate for the Holder norm of the gradient for the solution of a strongly
nonlinear elliptic system was obtained in [33]; an estimate near the boundary for the
gradient under the Dirichlet condition and a nonlinear boundary condition of Neumann
type were established by the author in [34].

So, by [34], the solutions u¢ of problem (&II) belong to C1” (Bg/z) for every v € (0,1),
and [, g, < Kol ), R< 4.

The last estimate allows us to view problem (0] as a linear problem with the Neumann
condition on I'g and to conclude that, at least, ||uS, ||, g+ < ka(e™!). Thus, Proposition 3

"R

is proved with Ry = % =19 Rsy. O

The information obtained above makes it possible to pass to estimating [lug ||, B

uniformly in € < €, in some half-ball BES, where Rs5 < R4 does not depend on € < e,.

x

§5. AN ESTIMATE OF |[u$|| ., g+ UNIFORM IN € < €,
PR

In this section, we show that the function

€ _ 1 € e\l ek 1 2/ €
(42) plu](z) = 5 > bral, u) (), (W)l + S Xe(d™(u?))
aln
is bounded in BES with some R5 < Ry, uniformly in € < ¢, provided that (1) is fulfilled
with 6 sufficiently small.

To do this, it is useful to observe that the integrals
7[ o) lut |*de,  w,(2°) = B} (2°)n B§4, 20 € Ba, r < Ry,
wy(x

are invariant under the transformation y = A(z — 2°), A = const > 0. This makes it
possible to fix a conjectural maximum point z° for the function p[u](z) and, in some
neighborhood w,.(z%), consider a transformation y = A(z — 2°) such that the function
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plv] = %, v<(y) = u(x® + y/N), is bounded on the set @y, (0) = y(w,(x°)) uniformly

in € < €,. Condition ([B7) and the boundedness of the functions p[v¢] imply that
0 < c(s)92, s> 1.

12113 2,
Also, we observe that, by using the split structure (f) of A, we can show that the

scalar functions
pilu)(@) = Y brlw,u)(u), (u)s, + xe(d*(u))
r<n—1
and
pa[u)(x) = bia(a, u) (), (w5, + xe(d®(u))
are subsolutions of the elliptic equation with the operator Lw = —(a®?(2)wy,)s, and
with supplementary terms involving |ug|*. After passage to the coordinates y indicated
above, the functions p;[v¢] = iA[ZE], 1 = 1,2, become bounded subsolutions of elliptic
equations with supplementary terms of small Lg-norm, s > 1.
The facts explained above allow us to prove the following statement.

Proposition 4. There exist constants 6 > 0 and Re > 0 such that, if (20) with these
constants is fulfilled, then

max p[u](z) < es(R5 ', 071,
3;5
(43) .

Hu;w”ZBES + H T <c(R1,07Y), e<e,,

2,Bf_
where Rs = 13Ry with some 3 € (0,1/2).

Proof. Tt should be noted that we shall use a modification of the method employed in [35]
for the study of solutions of penalty problems required for the investigation of harmonic
mappings.

Let 6 and Rs be fixed in accordance with Proposition 3. Then € is a smooth function
in some half-ball 3;547 € < €.. We note that (28] implies (7).

For an arbitrary R < R4, consider the quantity
(44) max {(R - 0)? max p[u)(x) } = (R - 00)? max p*[u’],

Oso<k BS(0) BJ,
where p¢[u] is defined by ([@2).

To simplify the arguments, we even omit the term involving u—w in (@Il). By estimates
B3) and @BY) for the limit function u, this term does not bring about essential changes
in the proof.

We fix 0¢ € [0, R) by [@). Let 2° be a point in B, (0) at which the function p[u¢](z)
attains its maximum. Put

R —
e = pTu)(a) = maxp'fu](@), po =~
(45) 5,

Woo (1,0) = BE(O) n BPO (‘TO)v VPO(IO) = FR(O) n BPO (‘TO)

Changing the coordinates by the rule y = \/eg (z — 2°), we set

(46) vé(y) = uf (xo + To = Po/€o-

/)
N
Next, we denote

Y(wpo (%)) = e (0), Y705 (2°)) = 3y (0).-
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By ) (we omit the summand involving (u® — u) in it), we see that v = v° obeys the
relation

" ~ 1o s 1 dXc(d*(v))
apf k > saf ’ o pk g 2 BX® )k
/@m(m A L A T L
1 % (d2
A0 2 dv

h € CH@r(0),  hlorw,, =0, 0wy (0) = wry(0) \ 31y (0).

Here @ and b denote the functions a and b in the new coordinates, and the transformed
penalty functions look like this:

~ Xe() -~ Xe()
43 el") = ) el’) = .
(48) Xe() =220 Xel) NG
Note that

sup p[u] < sup  puf] < deg;
wpg () Bl ., (0 (
consequently, for p¢[v¢] = %:6] we have
(49) plv](0) =1, SU(P)F[UE}(ZJ) <4
Brg (0

If ¢y < 4z (throughout, we assume that 6 < 1), formula (@4) with ¢ = R/2 implies that

sup pfluf] <4dey < 4/927
B;/2(0)

which yields the first estimate in @3] with Rs = R4/2 if we take R = Ry.
Now we analyze the opposite situation: eg > 1/62, i.e

1
(50) — <62
€o
If, moreover,
(51) To < 2;
where 7¢ is defined by (@6]), then, putting ¢ = R/2 in (@), we see that
(R/2)? sup puf] < (R —o0)’eo =4piey =412 <16,
Bf/»(0)

yielding the first estimate in ([@3]) with R = Ry.
Thus, in order to prove the first estimate in ([@3)), it remains to consider the case where
(52) ro > 2

and (B0) is true.
We show that this case is impossible if 4 is sufficiently small. We introduce the scalar
functions

(53)  Hl Z ba(y, v)vl, vf Q] = —bmy, vy, vy, v =0(y).
T<n 1
By ([@2) and (@S], we have
]/)\6[1}6} _ pe[ue] _ H[’Ue] + Q[Ue] + l%€(d2(ve)).
€0 2

We are going to show that under conditions (B0, (B2]) we have
(54) Xe(d*(v°(0))) + H[v](0) < A1 (6),  Q[v](0) < A2(6),
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where \;(0) — 0,i=1,2, as § — 0. By ([&4) and {9)), we obtain
1 =p(0) < A (0) + A2(0) = 0, 60— 0.

Thus, if 6 is sufficiently small, we arrive at a contradiction, so that (52]) cannot be true
under condition (B0). As has already been mentioned, this guarantees the first estimate
in (43).

To prove (B4), first we invoke [@T), putting h = (vy, @)y, T <n—1, ¢ € C}(B2 UFa),
spt ¢ C o U7, ¢ > 0, and integrate by parts in the resulting formula. This yields the
inequality

v

5 /A 0 ‘Uy’y|2¢ dy + [ 0 aaﬁ(y)Hyg(byu dy + Te + Me

(55) ‘-‘JQ( ) w2( )

<[ I8+ G W6y, ) dy
(:Jg 0

where v = viva, |vyyl® = S e 1a<n Vi, Te and M, are integrals with penalty
function to be estimated separately, and g and G“ are certain functions bounded on
@Wr,(0) and admitting the estimate

(56) l9(W)| + G (W)| < clvy |,y € B, (0),

in accordance with the second condition in ([@9). Here v = v¢(y).
Note also that

(57) [ ouPrrod=F  (upexddr < o,
©2(0) W, o5 (20) (37)

because 2/,/ey < po by (2.

Now, we have

7;—-/£(Ogizddﬂgry,¢dy
—/(){%sz% vy, 2 dy + R vy )20 + X ddl ook ) dy
@'20

> / Kl Pody—e / (R Dy, 6 dy
(1\)20 #,

(15),(6) ©2(0)
> o [ o, Pody—c [ Rl Pody
(49) @ @2
The integral M, is estimated similarly:

M, = [iédd,]lyr y7¢d’7
72(0)

> [ RdwPodi—c [ (Rl Podr
2(0) 4(0)
The boundary condition for v = v¢ looks like this:
(58) by v)vy, = Reddy, k<N, yq,(0).

By the boundary condition, we have Ekl(y, v)vén dj, = X.d, and

(59) sup (X.d) < sup |v,, | < c
Arg (0) Arg (0) (49)
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Next, since \/%—O < po by [B2), it follows that

(60) / Qe d:}\/ = % Xe dy 2" 2 < 0592~
A42(0) Y2/ g (®) @37
We fix 4% € 52(0) by the condition
S (2 0 cs 607 2
Xe(d™(v(y")) < 7z = b
72|

Then for every y € 43(0) we have
Re(d W) < 6 +sup D (R, Hyr =zl < ceb? + e = er.
w2 7<n—1 (59)
Therefore,
(61) sup X (d*(v(y))) < er.
42(0)
Now we can assert that

M, > —c / oy, Pody = c / Iy, 126}y, dy
2(0) @2(0)

(59),(61)
= c/ (2vy,Vy,y, ¢ + |vy, ‘quyn) dy.
@2(0)

The resulting volume integral admits an easy estimate and does not change the structure

of inequality (G3l).
Next, taking the estimates for T, and M. into account, we deduce the following in-

equality from (B3)):

v ~a
2 wPody+ [ a6, dy
(62) @2(0) @(0)

< / g Gy e / (R, d)[vy, [26 dy.
@20 L:)Q

We need to estimate the last integral in (G2]). For this, we observe that X. obeys the
inequality

Xey | Voo
(63) ‘C[?} + 5()(2 d)* < C(|”y|4 + |Uy|2)
a.e. on ((0), where Lw] = —(a@*?(y)wy, )y, . Indeed, direct calculations show that

~aff &) ) — ’\Otﬂ k dd/
(a (2 Y5/ Ya (@ yﬁ)ane

+a P[P (d vy, (dy),) + Xe(d' vy, )(d vy,) + (Re d) vy, 0t ;

we can find (a*%v l;ﬁ)ya from the system for the function v¢ and plug the result into the
inequality obtained above. This leads to the relation
%e Tkm d)?e dwe 2

el ]+ %

2 + dvmdvk_ clvy] dv

a.e. in ©(0); {b*} = b is the matrix inverse to b. Inequality 3] follows.

Now, (63) gives rise to the integral inequality

~af Xe v / o~ 2
a®’ () byt 5 | (Xed ¢dySC/ g ¢dy,
(64) /az(o) ( 2 )yﬁ Y 2 Ja, ) @2(0)

(15207 Spt(bC@U’?%
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where ¢ is a bounded function satisfying (Bf). We have dropped the integral over 45 aris-
ing from integration by parts because it is nonnegative by the boundary condition (G8]).
From (62) and (G4) it follows that the scalar function z(y) = H[v](y) + $X(d*(v(y))),
v = v, satisfies the inequality

14 ~, ~x
Zl (‘”y’y|2+(Xle d)2)¢dy—|—/ a 5Zyﬁ¢ya dy
2

©2(0)
sQ/@wmm%@+/(#w+m%a@
L:)Q 0’52 0

Estimating the first integral on the right by the Cauchy inequality, we see that

v ~ ~a

g/ (|vy’y|2+(X/ed)2)¢dy+/ a ﬂzya¢ya dy

(65) £2(0) s

< / (96 + G0y ) dy, 620, ooy =0,
D2

with some functions g and G* satisfying (B6]), and &'@Ws = 005 \ Jao.

In (65), we put ¢ =¢2, £ =1fory € W3/2(0), spt & C Wa UAs, [§,| < c. By (E0), (D),
and ([@9), we see that

(66) / \Uy,y|2dy+/ (K. d)2dy < 0.
&3/2(0) @3/2(0)
The nonnegative function z satisfies the inequality
(67) / aaﬂzy{f¢ya dy S / (g(l5 + Ga(bya) dy7 (b Z 07 (b‘a’@g = 07
©2(0) @2(0)
and moreover,
(68) / 2dy < c / (Jvy|* + Xe) dy < csb?.
@1(0) (49)  Ja&, 57)
We show that, under condition (68]), inequality (67 implies that
(69) sup z(y) < A1(6)
Wi/2

with some function A;(#) that tends to 0 as # — 0. To this end, we put ¢(y) = (2(y) —
k)1 €2(y) in 1), where (2 — k)4 = max{z — k,0}, k > 0, and £ is a cutoff function for
B,(0) (p € (1/2, 1]) such that { = 1 in B,1-)(0), [§] < -5, p(1 —0) > 3. As a result,
we obtain

1
@ [ mPed<a(cs [ GoRidlagl) kzo
Ag,p (op) Ag.p

where Ay , = {y € ©,(0) : z(y) > k}.

By the lemma at the end of this section, under condition (68]), inequalities ([70)) imply
the estimate

sup z(y) <2ko = cOniz = A1(6),
UJ1/2(0)

provided that 6 < 6y, 81 = 61(co,n).

Thus, we have obtained the first estimate in (54]). To obtain the second, we put
h = (n)y, in @0, where sptn C &y, U7y, and integrate by parts in the first and the
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third summand. We arrive at

(63 (63 N 1 S 0
[ (O){ Cbavl, g, Mo + (@ buly, vy 0y, — 5 @7 (o) vy, vy nyﬂ} dy
Wrq

1 Ay 1
+—/ ( ) ndy+—/
2 @TO(O) d vk Un 2 Ao

Now, we specify n = v,, ¢ in (1), where ¢ is a C!-smooth nonnegative function and
spt ¢ C W2(0) UA2(0). We observe that, in the resulting identity, the first integral over
A2 is nonnegative by the boundary condition. Also, the second integral over Ao is well
defined under the above choice of 77, because the boundary condition yields an expression
for v¥ that can be differentiated in the tangent directions (i.e., vy, ,, exists on 4z). This

(71)

ndy —l—/ T”bkﬂ) nde’y =0.
Aro

Yn
results in an inequality for the function @ = (1/2) bklvynv’;ﬂ'

v ~a AT

E/A |Uyny|2¢d3/ "’[ a Bst¢ya dy + [ a kulvzlm (”Izjn‘b)yf dy + D.
(72) w2 w2 2

é[ (06 + G 6, )dy, &> 0, spté C a U,
O

v

Here D, = %f@rz [d

satisfy (G0).
Since D, > —c [ |vy, Pody —c [ (X.d)|vy, |*¢ dy, we can deduce from ([72))
(6),(15),(49) -

;];n v’y“ngédy, [vy,, y| = |(vy, )y, and the bounded functions g and G*

that

ﬁ vy o260 dy + / a°%Qy, 6. dy + / Bt (0 6, dy
wa w2 Y2

NN

(73)
s[ (%Ld)|vyn|2¢dy+[ (g6 + G0, ) dy, &> 0, sptéC Gz U,

Adding ([©4) and (73), we easily obtain the following inequality for the function M (y) =
~ (g2
Qy) + Xe(d 2(11(?!)), v = ve(y):

v - I PO

2 ol + Ry + [ 00, dy+ [ @, (05,00, 7
(74) w2 w2 72

g[ (90 + Gy, dy

Here g, G*, and ¢ possess the same properties as in ([73).
In the last inequality, we denote the integral over 45 by J and represent it as follows
by using the boundary condition (G8]):

AT dSC\G ! AT T
7= [a(55) whedv— [ @, ol ohodv+ [ @B, o6, dy
Yo yr 2 2
=J1+Jj2+ s
Inequalities (@), (I3), @9), (B9), and (6I)) help us in obtaining the estimate

gtz =c [ logPody=c [ (uyPo),.d
w2

Y2

14
2 nsPody—c [ uyPodyte [ loPo,, dn
wa wa wsa

Y
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Now, from ([4]) we deduce the inequality

v 2 4 ao ATl ok d

3 (Jvy, ol + (X: ) )¢ dy + My, ¢y, dy + klUy, Uy, by, dvy

(75) @2 @2 A2

S [ (Ga¢1/a + g¢) dy7 ¢ Z 07 Spt(b C @2 U :?Qa
Do

with some new functions g and G still satisfying (56l). We also observe that

(76) / |vynyn|2 dy < cb?;
@3/2(0)

to see this, it suffices to express vy, ,, by using the system and to refer to (Gal).

Now, we turn to (75) with ¢ = (M(y) — k)1+£%(y), where k > 0 and ¢ is a cutoff
function for the balls B,(0), p € (1/2,1], having the same properties as the function & in
([@)). This yields

1
[Pyl [ ) -0y Al
Ak, p (Up) Ag.p
where the surface integral

To= [ @M, ob, (M, € + (M~ ),266,,) b,

lk.p
ey ={y €7+ M(y) >k}

will be estimated separately. Differentiating the boundary condition (58]) in the tangential
directions, we see that

1 . . 1 1, .
My, =Qy, + §(Xe)y bwv;n vr Uy, T §[b13]yfvynvzjj + §(Xe)yf
R . ) 1 S 1
= ((X. dd;)yf - [bij]yrvin)%n + E[bij]yrv’[zjnvén + E(Xe)yr

; 1 S 1, .
= (RLdd)y v, = 3lbiily, v, v, + 5 (Rl

Now, using (I3), (@9), E9), (EI), and the fact that the matrix b is symmetric, we can
estimate the integral

J1 =/ mbkw U v M, & dy
Ik .
as follows: ji; > —c|li p|-
The integral jo, = flk "‘Lbklv v (M — k)4 26&,, dy admits the estimate

(o,p)Q /lkp(M k) d’Y+C‘lkp|

. C
] < —/l (M — k)4 dy <
k,p

op

Thus,

. . &
Jp =N +]2 Z - (Up)2 ‘/l (M k) d")/ C|lk7p|7
k,p

and by (7] we obtain

[ mrea s el [ 0w -wtasiag)

(78) e :
+C11{W/ (M(il/)—k)id7+|lk,p|}, k> 0.

lk,p
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We observe that, moreover,
1

(79) M?dy < c6?, ‘/‘Aﬁdwgcﬁg
5

Indeed, the first estimate is an immediate consequence of ([@J) and (E7). In order to
verify the second estimate in ([{9), we introduce a function 7 such that n = 1 in @;(0)

and spt 7 C @39 U73/2. Then
[ . a
w3 /2

wldy< [ ol =
Y3/2
<cf (ol +lfrdy < et
@ (57),(66),(76)

2!

/ M2d7§092+£/ LZdy < ch*
5 co J5 (60)

By the lemma at the end of this section, under condition ([9) with < 6; =
02(c10, €11, 1), inequalities (7)) imply that
sup M(y) < cTFDETD = \y(f) - 0, 6 — 0.
@1/2(0)

Thus, we have deduced the second estimate in (B4]). As has already been mentioned, if
0 is sufficiently small, then estimates (B4) contradict (52). It should be noted that the
choice of 6 does not depend on € < ¢,. Thus, we have obtained the first estimate in ([43)).

To deduce the second estimate in [@3)), we put h = (u,. £2),. in @), where u = u¢,
7 <n-—1, and £ is a cutoff function for Br, with { =1 in Bg,(0), R¢ = (1/2) Rs. After
integration by parts, using the first estimate in (@3) and the boundary condition [0),
we obtain

/ VA, g, € dT + / N g, € d + /
T B+

U |? da
B+

(80)
§c<1—|—/ (X’ed)2£2dx), u=u, BJr:BE57 [ =Tg,.
B+

Direct inspection shows that the function y. = x.(d?(u¢)) satisfies the inequality

1oudxe dxe d xe
. af 2 paml & Xe @ Xe aB (g 4 I <
(@ (@) (X a o + 5 0™ P oo+ 0 (d g, )(d )X, < 0 (14|22,
{bml}:b—l_

To deduce (&I), we need to express (aaﬁu’gﬁ)% by using the system ([@0). Now, (&I
implies the following integral inequality:

14
/ aaﬁ(Xe)wg(bwu d.’13‘+§/
B+ B+
dXe
< — = >
_C/B+(1+’du Jodz, dlg- =0, 6>0.

By the boundary condition (0], the integral over I' in (82]) is nonnegative. Putting

(81)

dXe
du

2
o d + / (xe), T
(82) r

¢ = |—dd>if m=2¢m m > 2, where ¢ has the same properties as in (80), we see that
dxe|™
(83) / (xed)™dr < / CXe §dx <c(m), m>2.
B B+ du

+
Rg
In particular, putting m = 2 in B3) and invoking (80), we deduce that [, [uS,|*dz <c.

Then we express |ug, , | by using ([0), obtaining the second estimate in ([@3]). This com-
pletes the proof of Proposition 4. |
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Remark 5. Since by the first estimate in ([@3]) we have

sup xe(d*(u)) < c(07', RyY), e<e.,

it follows that
sup x(d*(uf)) < ce < 02, €< e,
B,
if €, is sufficiently small (J is taken from condition [Ax]). By the definition of x(-), this

means that y(d?(u)) = d?(u), € < €, T € BE{). In particular, the boundary condition
Q) takes the form

(84) b (z, u) (u)l, = gd;k (u®), k<N, xelg,.
€

In what follows, we denote Q, = B, N {y, > —d} and v, = B, N {y, = —J}, where
r € (0,1] and 4 is a fixed number in [0, 1].

Lemma. Suppose a nonnegative function w € W4 (Q1) satisfies the inequalities

/

R

1
oy <mi{ s [ =R+ dy Al
k,p

1
+m2{w/ (w—k)id’y-l-ﬂk,p‘}, k>0,

lkyp

where p € (1/2,1), 0 € (0,1), Ap, ={y € Q, : w(y) >k}, lpp ={y € v : w(y) >k},
k> 0.
Then there exists a constant T, = T.(my, ma,n) < 1 with the property that if

[wllz.0 + lwlloq <7

for some T < 7y, then

T\ GFD =D
[b] sup w < 2(—) ey
Q12 T

If in [a] we have ma = 0 and ||w||2,0, < T for T < 7., then instead of [b] we obtain

2
T\ nt+2
[c] sup w < 2(—) .
Q12 T
§6. AN ESTIMATE OF THE HOLDER NORM FOR THE GRADIENT OF u(x)

We prove the following result for the solution u(z) of the variational problem (I3]).

Proposition 5. There exist positive constants 8 and Ry such that if [I2)) is fulfilled with
these parameters, then the solution u of problem (I3) belongs to C*# (B}, ) and

(85)

Hmllcﬂ(ﬁ) <c,

with some 7, € (0,1/2). The constant ¢ in [B8) depends on 5 and the parameters in
conditions [Ax], [A1], and [As].

In essence, the proof of Proposition 5 is a modification of an idea employed by
Ural’tseva in the study of the regularity for the Signiorini problem; see [39].
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Proof. Let u be a solution of problem ([3)), and let [I2)) be fulfilled with  and R, taken
from Proposition 4. Then the approximate solutions u¢ obey ([28) and (B1); moreover,
x(d?(u)) = d*(u®), € < €,. The function v = uf, , 7 < n — 1, satisfies the identity

1
[ annt b dos [ L@ mar+
Bt < Tr, €

Rg IRre

(86) + /B
),

Here ®“ and @) are certain functions bounded on BEG.
Let M = max = |ut(z)|, and let Spy = KX NBys(0) be a compact part of the surface
R

OK. Let By (0) :6{u € RY : |u| < M}. There exists 6; > 0 such that the smooth
projection wp = Prs,,w, w € Vs, (Sar), is well defined on a two-sided neighborhood

Clearly, u(xz) € KNBy(0) for z € B;{FG. Two cases are possible: 1) dist (u(0), Spr) <
361, or 2) dist(u(0), Sar) > 361. In the second case, dist(u€, Sp) > 0 and u® € int K for
e<e.and x € BEG provided that e, and Ry are chosen sufficiently small. In this case,
the problem for u¢ takes the form

(87) Lu =0, z¢€ B;{FG; ug, [rp, = 0.

d
—dj, v™n*dr
€

1 ! ! d "o, m k
N E(d,v)(d,n)dw—i— N demv n"dx
Rg BRG

+
Rg

Using the split structure (F) of the matrix A, we can view each component (u¢)*, k =
1,..., N, as a solution of a scalar equation with zero Neumann condition on the “plane”
part of the boundary:

—(a*(2) (), )z = Z"(2), w € Bf, (u)}

z Tn

FRG = 07
where the entries of the matrix a belong to CI(BEG) and ZF € Lm(BEG) for m > n;

moreover, the norms ||Zk||m7B;z are bounded uniformly in € < e, (see {@3)), (83)). By
6

classical results, we have

(88) H(ue)kHCLﬁ(B—E) S C, k é N,

with 8 =1—" € <., Ry = (1/2) Rg. This proves Proposition 5 in the case in question.

We turn to the first case, which is more substantial. Clearly, in this situation the
projection u% () is well defined for z € BEG and € < ¢, if €, and Ry are fixed sufficiently
small.

We introduce a smooth moving coordinate system

M (w), ..., An-1,v(w)), wE Sy,

where the A;(w), j < N — 1, belong to the tangent plane T,(0K) and v(w) = d'(w) is a
normal to Ty, (0K). We observe that

(89) sup - ([VuA(w)| + [Vur(w)]) < ¢
’LUGV51 (S]\/[)

by the assumption [Ax].
By {@3)) and (89), we see that

(90) sup Y (0 (up (@) + | ((up(@)s] <e, e <ex.
Bj;G j<N-—1
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Now we fix a number R < Rg/2 and a point z € I'g4(0). Consider the solution G% (x)
of the problem

o : L, & (@)
o —mﬁwwwmmwzjiﬁﬁszyw
@)l =0, G§|S; =0, w,(@)=BLNB,2), p<R/S

Here I, (z) is the characteristic function of a set w C R™.
We extend the functions a®?(z) to By (0) as follows:

a2 xn) = a*P (', —2,), a,f<n—1 or a=pf=n;
AP (2 xy) = —a*P (2’ 2,), a<n—1,8=n.

Then the even extension of the function G% to By (0) is a regularization of the Green
function for the Dirichlet problem in Bp for the operator Lw = —(a*?(z)ws, ), . The
properties of such functions are well studied (see [14] [36, [37]).

Next, we fix constants [y, ...,Iy_1 such that

(92) sup |;| < sup |uf| < ¢, e<ey
JSN-1 ;JCEBJr (43)

their values will be specified later.

We define the function v = v — ZN YN (us () (v= ug, , the constants [; depend
on7<n-—1)and put n =" Gfg €2 in (I&EI), where ¢ is a cutoff function for Bgr/,(7) such
that £ = 1 in Bg/4(Z). Then
N-1
(93)  (d\0)(d,n) = (d',v)

uwAmﬁﬂ—wszmerS
j=1
Next, estimates ([83]), (@3] and the boundary condition ([84]) imply that

d d
(o4 H N

<ec.

€ Hm,,BE6 € Hoo,FRs

Taking ([@3), ([@4), and the properties of Gf into account, by summation over 7 =
1,...,n — 1 we obtain
5/ 15, 12G2 (z) €2 da +/ a®PH,,(G),. 6% dx < in/ P2 dz + ¢ R,
95)  2Jan on B Jry,
&\}R:Bg/g(%)v TR:B;’%—/Q( )\BR/4( )
Here H(z) = by (z,u®)d'd%, v = y(m) > 0, and we assume that m > n. By ([@3), it is
possible to pass to the limit as ¢ — 0 in (OF]), obtaining

(96) g/ |ag\2G§52dx+/ a®HY (G2),, €% da < %/ 52 dz + ¢ R,
L/J:JR @R

where &g, Tr, and 7 are the same as in ([@8), ¥° = u,,_ ZN Y1\ (up), and H® =
3 bia (2, u) (0°) (0°)F (u is the solution in question of problem (I3)). The integral involving
HY can be estimated much as it was done, e.g., in [14]. More precisely, we must consider
the integral identity satisfied by the solution G of problem (@I)):

(97) LNWW@%ﬂmM=f(ﬂM)% v e Wy (BR), ¢lgr =0,

and put ¥ = H°¢£2 in it.
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Then the integral J = f/\ a”‘ﬁHgﬁ G%)xa €2 dx (which we are busy with) can be
estimated as follows:

- 1
(98) J= —[ a®PH2¢&,,(Gh)e, + EJ[A HY¢* dx > —|L|,

WR P

where

« z C ~0
L= [ APH 266, G ol < 5 [ BOPIG )] o

TR(LE)
S/ ‘(G ) | |~o|2d 4+
Tr

G, Gp |0°)? d

R2
<ert | |<Gp>z|2|v0\2dx+—/ P do = o(R"2(a) + (b))
R

The integral (b) was already taken into account by (@6, and the integral (a) is treated
as follows. Suppose a function n = n(|z — Z|) > 0 has the properties that n(r) = 0
outside the interval 7 € [R/8, R] and n(7) = 1 for 7 € [R/4, R/2|, |n.| < . Putting
Y= G% |2°]?n? in ([@T), we obtain

/ a®?(G2)4, (GL12°12 %), dz =0,
Dg(Z)

whence

@se| (@PRPPdrse [ (@Rl e d
Dr(Z) Dr(%)

Dr(3) = BE(3)\ B}, 5(3)-
Thus, the expression £ in ([@8) admits the following estimate:

L] §c/ G” |5°\2d:1c+ |v0|2dm
DR(I

R’VL
Now, ([@6]) and ([@8) imply that

(99) / G£\172|2d33§c/ G§‘1~12|2dl‘+—n/ [0°|* dx + c RY.
Bl @ Dr@ " R

We observe that

(100) / \v°|2dx—/ (uar, v(up))? dx + Z/ (uzr, Aj(up)) —1;)* da.
DR DR

J<N-1

Put I; = (I w .,lj ) l(T) fDR(uwT,/\j(up)) dz. We estimate the last integral

in (I00) by using the Poincaré mequality, which results in

/ G U | da < |um/m|2da?+cR7+in/ (ugr, v(up))? dr.
Bt R Dr R Dgn

rs(®)

Now, Gi(x) — G®(z) a.e. in BR/B( Z) as p — 0, and the Fatou lemma shows that

(101) / G? |ugr o|? dx < c/ G? |ugs o |* dx 4+ ¢ RY + % (ugr, v(up))? de.
B} 5(@) Dr R" Jpy

Next, we want to prove that

(102) / G£|(umn)z|2dx§c/ G5|(umn)z|2dx+i lug, |? dz + cRY,
F @ Dr(3) R™ Jp,
R/8
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where the set D is as in ([0I). To do this, we put h = (uf, GE&?),
and & are as before. After integration by parts, we obtain

[ {<A?f o, AR T, b, )l G5 €%, — %
WR
" % /aR (((f;i:);n’uxJGf’ e+ % /:,R (Cilfj’u””)Gf’ & dy

b [ @bt (i GE, dy =0, u=t, A= Tap@).
~

in (@), where G7

n

g Ta

(Al (uh G2 €2),., b da

Taking @3), [@4), and the properties of G, into account, we arrive at the following
inequality, in which Z(z) = 1by(z, u®)(u®)}, (u)k :

(103) [ G, )P o+ [
Or(%)

a7, (G2, 2 do+ L < in/ us_ Pdz+c R
WR R TR
Here @r and Txr have been defined earlier, and L{ denotes the surface integral over

I'r/2(). In the expression

e[ ), (W, G € ar+ [

Tr/2(%) Tr/2(%)
the last integral is nonnegative by the boundary condition ([84). To estimate the first
integral, we differentiate the boundary condition in the tangent directions 7 =1,...,n—1
and calculate ug, , on I'p (7). As a result, we obtain the estimate

Ty

d €
;(dl? uxn)GP 52 dru

(104) Ly > —cR+ / a™ b (u)l, (u)k (G2, dT.
(94) T2 (2) ' '
The integral j. on the right in (I04]) will hamper the deduction of an integral estimate
similar to (I02)) for the penalty function u¢; however, we observe that
d(uf -
limj, = lim M) (), g ) (GE ), dr
e—0""(84) e—=0 T /2() € T s

(105)
[ @) Lok G s, aT = 0.

Tr/2(2) (%)
Indeed, the second estimate in (O4) and the uniform convergence of u¢ to u on I'g,
guarantee the existence of a nonnegative function ¢ € L (I'g,) such that d /e — 9 1,ecax
s-weakly in Loo(Tg,); here 1,ecpk is the characteristic function of the set on which
u(r) € OK, x € I'g,. Identity (*) is true because (d(u))), = (d',u,,)=0,7 <n—1, on

€T

the set where v € OK. From (I04]) and ({I05) it follows that
lim Lt > —cR.
e—0
We pass to the limit as € — 0 in ([I03]). This yields
(106) / G2 (ug, )0 |2€? da +/ a2 (G2, €2 dx < %/ lug, |2 dz + c R,
@R 3] Tr

where Z0 = 1byul, u® . We estimate the summand involving Z° with the help of (@7),
much as we treated the summand involving H® in ([@6). This results in the estimate

/ Gﬁl(uxn)xIQdasSc/ Mdaﬂ—i/ lug, [2dz + cRY.
B} (3 p, R" R Jp,

R/8
In this inequality, we pass to the limit as p — 0 and use the Fatou lemma, obtaining
([I02). Thus, the limit function v satisfies (I01)) and ([I02]).



A PROBLEM WITH AN OBSTACLE 871

Next, we put tg(Z) = I'r(Z) \ I'r/s(Z) and
t9) = {z e tr(@) : u(z) € 0K}, t¥ ={zctr(®@) : u(z) € mtK}.

For a fixed R < Rg/2, two cases are possible: (a) |tg)| > Ltgl, or (b) |tg)| > 1tgl.
In case (a), we have d(u(xz)) = 0 on the set tg) of “thick” measure. Consequently,

(d,uz,) =0, 7 <nm—1, on this set. By the Poincaré inequality, we have

ugr, v(u))? dz < ¢ R ugr,v)?]L|? da.
/DR(”“””<R/”( L2 d

Dgr
Now, (I0I) shows that

(on) [

G g o|? dz < c/ G¥uy o[> dx 4+ ¢ RY.
R/S(

z) Dr

In case (b), the boundary condition by (z, u)ul, = ¥(z)lycox v*(u), k < N, guarantees
that uy, = 0 for z € tg) )
inequality, we obtain

, where tg is of large measure on tg. Applying the Poincaré

/ |uzn|2dx < ch/ |(le)m\2 dx.
Dr Dr
Now, by ([I02) we have

(108) G |(ug, )o|? dz < ¢ G*®|(ug, )o|? dz 4+ ¢ R,
B;/s Dr

Having obtained (I07)) and (I08]), we may further argue as in the author’s paper [30].
We present the details for completeness.
Applying the “hole-filling” method, from the last two inequalities we deduce that

(109) / Gﬁwdmgq/ G®wdz + ¢ R,
B}, 4(®) Bl (2)

with a parameter ¢ € (0,1). For every fixed R < (1/2)Rg, in (I09) we have w = |, |?
or w = |(ug, ).|*. We write (I09) in the form
(110) V(R/8,w) < qy(R,w) +cR7,
where ¢(r,w) = [+ G®(x)w(x) dr and 7 is fixed in (0, 1).

To argue by iteration, we fix a value of the radius p € (0, R) arbitrarily and consider
the sequence R; = %, j=0,...,M+ 1, where M is chosen from the condition

Ryy1 < p< Ry
Next, among two options for w we choose that one for which ([I0) is true for at least [4]]
radii R;, j < M. We denote this sequence of radii by R, = R;,, s < m, [%] <m< M,

and argue by iteration for the above choice of w and the sequence {R;}.
As a result, we arrive at the inequality

(111) / G%x,x\?d;vgc(ﬁ)a{/ e d:c+1}
B} (3) R B} (3)
or
(112) / (g, )P dr < e (£) {/ (s, ) do 41},
B} (3) R B} (3)

where R < Rg/2, Z € T'r/4(0), p < R, and a = a(q) is a parameter in the interval (0,1).
(Since v € (0, 1) can be fixed arbitrarily, we may assume that v > «.)
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It should be noted that, analyzing the above proof, we can see that, avoiding the limit
passage as € — 0 in (@8], we can estimate u¢ with € < €, as in ([I0I]) and, therefore, as in
(1D

It can easily be checked that the expressions in braces in the last two inequalities are
bounded. Now we see that, in any case, u satisfies the inequality

(113) T,(3) = / G?|(ug, )a? d < e(Rg)p"
B (3)

where Z € I'g/4(0), p < R < Rg/2. Indeed, either (II2)) is true, or we estimate T),(Z) by
the invocation of system (@0) (satisfied by the functions u€) and by employing (@4]) and
the fact that (IIII) is true both for u and for u°.

In a similar and even simpler way, we deduce an estimate of the form ([II3]) for z €

Bg/z(O), R < min{Rg/2,dist(Z,Tg(0))}. “Gluing” these two estimates (internal and

near the boundary), we conclude that (I13) is true for all Z € BE (0), Ry = Rg/8. This
means that u,, € C°(Bf.), 8 =a/2.

After that, we view each component u* of u as the solution of the standard Neumann
problem:
— (aaﬁu’C Vo, = g’“(w), T e Ba,

s

(114)
ral= Lm(B;%), m < 00, u];"|rR7 € Cﬁ(FR7).

The theory of linear boundary-value problems shows that u € C1# (BES), Rg = R7/2 =
7 Ry, with some 7 < 1/2. This proves Proposition 5. |

Remark 6. It should be noted that the Holder exponent 3 and the value of 6 are fixed
independently of the choice of z° € 9Q. Moreover, the restrictions on R in (I2) that
emerged in the proofs of Propositions 3, 4, and 5 are determined by the problem data
and do not depend on z°.

What has been said above allows us to fix 6y and Ry in (8) and (I0) so as to ensure
the claim of Theorem 3.

It is easily seen that the set Qg defined by (@) is relatively open in Q. Thus, Theorem 3
is proved.

To complete the proof of Theorem 1, we observe that all points of )y are points of
smoothness for the solution u(z) of problem (), @), (B). By the definition (§), it is
clear that the closed set ¥ = Xy, g, admits the estimate H,_»(X) = 0. This proves
Theorem 1.

§7. PROOF OF THEOREM 2

Let u be the solution of the variational problem @B)-(El), and let (I0) be fulfilled in
a neighborhood of some point fixed on 9. (We retain the notation of the preceding
sections.)

As before, we consider the model variational problem in the half-ball and construct
a family of penalty problems for it, much as we did in §2. Surely, in the present case
the penalty function x(d?(-)) depends on the distance function d = d(u, S) defined in a
two-sided neighborhood of the surface S.

Condition [Ag] makes it possible to repeat the arguments of §§2-5. We only mention
a distinction in estimation of the Holder norm for the gradient of w in §6. In the present

case, the limit function u(z) takes values on S for x € B;; and, consequently, d(u(z)) =0,
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(d,uz. ) =0, 7 <n—1, almost everywhere on this set. Thus, the last integral in (I0I])
disappears. This enables us to obtain the estimate

G S qUR) e, )= [ el i

with some ¢ € (0,1) for every R < Rg/2. Iterating, we arrive at the inequality

(115) v(p) < (R, B)p*

with some § € (0,1/2).
Recall that the solutions u¢ of the penalty problems satisfy (@0). From (43]) and ([@4)
it follows that the limit function w is the solution of the system

(116) —(Agf(x, u)u;ﬁ

1
o + E(Azﬁ);ku;ﬁu;" + AMx)v*(u) =0, k<N,
almost everywhere in BEG. Here A(x) is a certain scalar function, all finite powers of

which are integrable on BEG.
System ([I6) and inequality (15 show that

(117) / Gy, o, |?de < cp?®, p< Rg/2, z € Tgy)o.
B (@)
We note that the integral involving A(z) has been estimated with the help of the Holder

inequality with the exponents s = s" = 221 (B comes from (II3])) in the following
way:

_n
n—2428"

=123
As was mentioned in §6, an estimate of the form (II7) can be obtained for all z € BE7,

p < Ry, R; = Rg/8. This ensures the relation u,, € C** (B, ).
Now, viewing each component u* of u as the solution of problem (IT4)), we conclude
that u € C1P (B].Es), Rg = R7/2. As was shown in §6, this implies the claim of Theorem 2.

G N de < |G M2, g < el 2 2 =" >q
Ly o) &N S UG g N < eIV 7 2 n
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