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SCHRÖDINGER OPERATOR ON THE AXIS

WITH POTENTIALS DEPENDING ON TWO PARAMETERS

R. R. GADYL′SHIN AND I. KH. KHUSNULLIN

Dedicated to Vasilĭı Mikhăılovich Babich, a remarkable mathematician and personality

Abstract. A Schrödinger operator on the axis is considered; its localized potential is
the sum of a small potential and certain potentials with contracting supports, which
can increase unboundedly when their supports are contracted. Sufficient conditions
are presented for the absence (or existence) of eigenvalues for such an operator. In
the case where eigenvalues exist, their asymptotic expansion is constructed.

Introduction

The study of one-dimensional Schrödinger operators with small potential has a long
history. In [1, Chapter III, §22], it was proved that, in the case of a small rectangular
potential well, the Schrödinger operator has a single eigenvalue, and the asymptotic
expansion of this eigenvalue with respect to a small parameter was constructed.

The operator

(0.1) − d2

dx2
+ δW (x), 0 < δ � 1,

where W (x) is an integrable real function that decays sufficiently rapidly at infinity, was
studied in [2, 3, 4, 5].

By the Birman–Schwinger method, it was proved that if

(0.2) 〈W 〉 :=
∫ ∞

−∞
W (x) dx > 0,

then the operator (0.1) has no eigenvalues; if

(0.3) 〈W 〉 ≤ 0,

then the operator has a single eigenvalue λδ with the asymptotic expansions

(0.4) λδ = −δ2
〈W 〉2

4
(1 +O(δ)) if 〈W 〉 < 0

and

(0.5) λδ = −δ4
1

4

Å ∫ ∞

−∞

Å ∫ x

−∞
W (t) dt

ã2

dx

ã2

(1 +O(δ))

in the critical case where 〈W 〉 = 0.
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Obviously, the operator

(0.6) − d2

dx2
+ μ−1hW (x),

where 0 < μ, h and μ−1h � 1, reduces to the operator (0.1) by the substitution δ =
μ−1h. Therefore, from (0.4) and (0.5) we see that if inequality (0.2) is fulfilled, then the
operator (0.6) has no eigenvalues; if inequality (0.3) is fulfilled, then there exists a unique
eigenvalue λμ,h with the asymptotic expansions

(0.7) λμ,h = −
(
hμ−1

)2 〈W 〉2

4
(1 +O(hμ−1)) if 〈W 〉 < 0

and

(0.8) λμ,h = −(hμ−1)4
1

4

Å∫ ∞

−∞

Å ∫ x

−∞
W (t) dt

ã2

dx

ã2

(1 +O(hμ−1))

if 〈W 〉 = 0.
Also, it is obvious that, by the change of variable ξ = h−1x, the operator

(0.9) − d2

dx2
+ μ−1W

(x

h

)

reduces to an operator of the form (0.1) for δ = h2μ−1. Therefore, for h2μ−1 � 1,
formulas (0.4) and (0.5) show that if inequality (0.2) is fulfilled, then the operator (0.9)
has no eigenvalues. If inequality (0.3) is fulfilled, then there exists a unique eigenvalue
λμ,h with the asymptotic expansions

(0.10) λμ,h = −
(
hμ−1

)2 〈W 〉2

4
(1 +O(h2μ−1)) if 〈W 〉 < 0

and

(0.11) λμ,h = −h2
(
hμ−1

)4 1

4

Å∫ ∞

−∞

Å∫ x

−∞
W (t) dt

ã2

dx

ã2

(1 +O(h2μ−1))

if 〈W 〉 = 0.
From (0.7) and (0.10) it follows that if 〈W 〉 < 0, then the leading terms of the

asymptotic expansions for the eigenvalues of the operators (0.6) and (0.9) coincide. In
the critical case where 〈W 〉 = 0, from (0.8) and (0.11) it follows that the leading terms
of the asymptotic expansions for the eigenvalues of these operators have distinct orders
of smallness.

In the present paper, we study the eigenvalues of the operator

Hμ,h := − d2

dx2
+ μ−1

Å n∑
j=1

Vj

(x− xj

h

)
+ hW (x)

ã
, 0 < h � 1,

under the assumption that there exists γ > 0 such that

(0.12) μ−1h1/2 = o(hγ).

Here, the xj are arbitrary distinct numbers, and V1(x), . . . , Vn(x), W (x) are complex-
valued functions of class C∞

0 (R) at least two of which are nonzero. Clearly, even for real
functions, the operator Hμ,h cannot be reduced to (0.1) by a change of variables.

The operator H0 := − d2

dx2 in L2(R) with domain W 2
2 (R) is selfadjoint, its discrete

spectrum is empty, and the essential spectrum coincides with the nonnegative real axis.
Since the functions Vj and W have compact support, the essential spectrum of the
operator Hμ,h regarded as an operator in L2(R) with domain W 2

2 (R) coincides with the
nonnegative real axis (for the case of complex functions, see, e.g., [6]).
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§1. Statement of main results

Denote

κV,W :=
n∑

j=1

〈Vj〉+ 〈W 〉 .

In the present paper, we prove the following statements.

Theorem 1.1. Under condition (0.12), if ReκV,W > 0, then the operator Hμ,h has no
eigenvalues converging to zero.

If ReκV,W < 0, then the operator Hμ,h has a unique eigenvalue λμ,h converging to
zero; this eigenvalue is simple and

(1.1) λμ,h = −
(
μ−1h

)2 κ
2
V,W

4
(1 +O(μ−1h)).

Formula (1.1) is a natural generalization of identities (0.7) and (0.10) to complex-
valued potentials.

In the critical case, for simplicity of the statements and calculations below, we only
deal with real-valued functions V1(x), . . . , Vn(x),W (x).

Theorem 1.2. Let conditions (0.12) and 〈W 〉 = 〈Vj〉 = 0, j = 1, . . . , n, be fulfilled.
Then the operator Hμ,h has a unique eigenvalue λμ,h converging to zero. This eigenvalue
is simple and has the asymptotic expansion

(1.2) λμ,h = −1

4

(
μ−1h

)4 Å ∫ ∞

−∞

Å ∫ x

−∞
W (t) dt

ã2

dx

ã2

(1 +O(h+ μ−1h)).

This theorem shows that, in the version κV,W = 0 of the critical case in question, the
potential μ−1hW (x) is “principal”, and the leading term of the asymptotic expansion of
the eigenvalue (1.2) coincides with the leading term of the asymptotic expansion of the
eigenvalue (0.8) for the operator (0.6).

For clarity, the remaining versions of the critical case where κV,W = 0 are considered
for two potentials.

Theorem 1.3. Assume condition (0.12). Let

Hμ,h = − d2

dx2
+ μ−1

(
V

(x

h

)
+ hW (x)

)
,

and let 〈V 〉+〈W 〉 = 0, but 〈W 〉 〈V 〉 �= 0. Then the operator Hμ,h has a unique eigenvalue
λμ,h converging to zero. This eigenvalue is simple and has the asymptotic expansion

(1.3)
λμ,h = −1

4

(
μ−1h

)4 Å ∫
suppW

Å∫ x

p

W (t) dt

ã2

dx+ q〈W 〉2
ã2

× (1 +O(h+ μ−1h)) if 0 �∈ suppW,

where q = dist{0, suppW}, p = maxx∈suppW |x|, and

(1.4)
λμ,h = −1

4

(
μ−1h

)4 Å ∫ 0

−∞

Å∫ x

−∞
W (t) dt

ã2

dx+

∫ ∞

0

Å ∫ ∞

x

W (t) dt

ã2

dx

ã

× (1 +O(h+ μ−1h)) if 0 ∈ suppW.

Comparing (1.3) and (1.4) with (0.8) and (0.11), we see that, in the case in question,
the contribution of the narrow potential μ−1V

(
x
h

)
to the leading term of the asymptotic

expansion in question is as significant as that of the potential μ−1hW (x).
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Theorem 1.4. Under condition (0.12), let

Hμ,h = − d2

dx2
+ μ−1

(
V

(x− x1

h

)
− V

(x− x2

h

))
, x1 < x2,

and suppose 〈V 〉 �= 0. Then the operator Hμ,h has a unique eigenvalue λμ,h converging
to zero. This eigenvalue is simple and has the asymptotic expansion

(1.5) λμ,h = −1

4

(
μ−1h

)4 Å∫ x2

x1

Å∫ x

−∞
V (t) dt

ã2

dx

ã2

(1 +O(h+ μ−1h)).

Formula (1.5) shows that, in this situation, the smallness order of the leading term of
the eigenvalue differs from the case of a single narrow potential (see (0.11)) and is equal
to that order in the case of a single small potential (see (0.8)).

§2. Preliminary information

In [7], the operator

(2.1) Hε = − d2

dx2
+ εLε

was considered, where 0 < ε � 1 is a small parameter and Lε is an arbitrary localized
second order linear operator. Namely, there exists a bounded domain Q ⊂ R such that

(2.2) Lε : W 2
2,loc(R) → L2(R;Q),

where
L2(R;Q) := {u : u ∈ L2(R), supp u ⊂ sQ}

and

(2.3) ‖Lεu‖L2(R) ≤ C1‖u‖W 2
2 (Q),

where the constant C1 does not depend on ε. In [6], it was proved that the operator
Hε in L2(R) with domain W 2

2 (R) is closed and its essential spectrum coincides with the
nonnegative real semiaxis.

For small complex k, we define an operator A(k) : L2(R;Q) → W 2
2,loc(R) as follows:

A(k)g :=
1

2k

∫ ∞

−∞
e−k|x−t|g(t) dt.

The definition of A(k) implies that if R(λ) is the resolvent of the operator − d2

dx2 in L2(R),

then A(k) = R(−k2) on functions in L2(R;Q) for Re k > 0. We denote by I the identity
operator and by

rA(k) : L2(R;Q) → W 2
2 (Q) and Tε(k) : L2(R;Q) → L2(R;Q)

the operators acting as follows:

rA(k)g := A(k)g − 1

2k
〈g〉 ,(2.4)

Tε(k)g := Lε
rA(k)g.(2.5)

In [7], the following results were obtained.

Proposition 1. For small k, the equation

(2.6) 2k + εFε(k) = 0,

where
Fε(k) =

〈
(I + εTε(k))

−1Lε(μ,h)[1]
〉
,

has a unique solution kε.
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If Re kε < 0, then the operator Hε has no eigenvalues converging to zero.
If Re kε > 0, then the operator Hε has a unique eigenvalue λε converging to zero, and

(2.7) λε = −k2ε .

The definition of the function Fε(k) shows that, for every N ≥ 2, we have

(2.8) Fε(k) = 〈Lε[1]〉+
N−1∑
j=1

(−1)jεj
〈
T j
ε (k)Lε[1]

〉
+ εNFε,N (k),

where Fε,N (k) is a function holomorphic in k and uniformly bounded with respect to ε.

§3. Reduction of the operator Hμ,h
to the operator Hε

Lemma 3.1. Suppose −∞ < a < x0 < b < ∞ and c0 > 0. Then

∫ x0+c0h

x0−c0h

|u|2 dx ≤ C2h‖u‖2W 2
2 (a,b)

for all functions u of class W 2
2 (a, b), where the constant C2 is independent of h.

Proof. Without loss of generality, we may assume that [a, b] ⊂ (0, 1). We denote by

W̊ 1
2 (0, 1) the completion of C∞

0 (0, 1) with respect to the norm W 1
2 (0, 1). In [8], it was

proved that for all functions v ∈ W̊ 1
2 (0, 1) we have

(3.1)

∫ x0+hc0

x0−hc0

|v(x)|2 dx ≤ C3h‖v‖2W 1
2 (0,1)

,

where the constant C3 does not depend on h and v.
It is well known (see, e.g., [9]) that there exists a bounded linear extension operator

P : W 1
2 (a, b) → W̊ 1

2 (0, 1) such that u = Pu for x ∈ (a, b) for every u ∈ W 1
2 (a, b).

Therefore, by (3.1), we have

∫ x0+hc0

x0−hc0

|u(x)|2 dx =

∫ x0+hc0

x0−hc0

|Pu(x)|2 dx ≤ C3h‖Pu‖2W 1
2 (0,1)

≤ C3‖P‖2h‖u‖2W 1
2 (a,b)

= C2h‖u‖2W 1
2 (a,b)

≤ C2h‖u‖2W 2
2 (a,b)

for every u ∈ W 1
2 (a, b). The lemma is proved. �

By Vh, we denote the operator of multiplication by the function

n∑
j=1

Vj

(x− xj

h

)
+ hW (x).

Lemma 3.2. Let Q be an arbitrary finite interval such that

(3.2) suppW ∪
n⋃

j=1

{xj} ⊂ Q.

Then, for every u ∈ W 2
2,loc(R) and all sufficiently small h, we have the estimate

(3.3)
∥∥h− 1

2Vhu
∥∥
L2(R)

≤ C4‖u‖W 2
2 (Q),

where C4 is a constant independent of h.
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Proof. Let V(j)
h and W denote the operators of multiplication by the functions Vj

(x−xj

h

)
and W (x), respectively. Obviously,

(3.4) ‖Vhu‖L2(R)
≤

n∑
j=1

∥∥V(j)
h u

∥∥
L2(R)

+ h ‖Wu‖L2(R)
.

Let c > 0 be a number such that suppVj(t) ⊂ (−c, c) for every j. Then, by Lemma 3.1,

(3.5)

∥∥V(j)
h u

∥∥2

L2(R)
=

∫ xj+hc

xj−hc

∣∣∣∣Vj

(x− xj

h

)
u(x)

∣∣∣∣
2

dx

≤ max
t∈[−c,c]

|Vj(t)|2
∫ xj+hc

xj−hc

|u(x)|2 dx ≤ rCjh‖u‖2W 2
2 (Q).

It is obvious that

(3.6) ‖Wu‖L2(R)
= ‖Wu‖L2(Q) ≤ rCW ‖u‖L2(Q) ≤ rCW ‖u‖W 2

2 (Q) .

Relations (3.4)–(3.6) lead to estimate (3.3). �

Lemma 3.3. Suppose

(3.7) 0 < h � 1, h = o(μ2),

and let Q satisfy condition (3.2),

(3.8) ε(μ, h) := μ−1h
1
2 , Lε(μ,h) := h− 1

2Vh.

Then

(3.9) 0 < ε(μ, h) � 1,

the operator Hμ,h can be represented in the form (2.1), and relations (2.2) and (2.3) are
valid.

Proof. Inequality (3.9) follows from (3.7) and (3.8). By (3.8), we have

Hμ,h = − d2

dx2
+ μ−1Vh = − d2

dx2
+ μ−1h

1
2h− 1

2Vh = − d2

dx2
+ ε(μ, h)Lε(μ,h).

Consequently, the operator Hμ,h can be represented in the form (2.1). From (3.8) and
(3.3), it follows that

‖Lε(μ,h)u‖L2(R) =
∥∥h− 1

2Vhu
∥∥
L2(R)

≤ C5‖u‖W 2
2 (Q).

In other words, inequality (2.3) is valid for the operator Lε(μ,h). Now, obviously, the
definition of Lε(μ,h) implies relation (2.2). �

In the sequel, we assume that Q is an arbitrary finite interval satisfying (3.2).

§4. Proof of Theorem 1.1

Using (2.5), (2.8), and Lemma 3.3, we get

(4.1)
Fε(μ,h)(k) = h− 1

2

Å
〈Vh[1]〉+

N−1∑
j=1

(−1)jμ−j
¨(
Vh

rA(k)
)j(Vh[1]

)∂ã

+
(
μ−1h

1
2

)NFε(μ,h),N (k).

We prove that the following estimate uniform in k is valid for small k:

(4.2)
∣∣∣〈(Vh

rA(k)
)jVh[1]

〉∣∣∣ = O(hj+1), j ≥ 1.
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The definition (2.4) of rA(k) shows that

rA(k)g =
1

2k

∫ ∞

−∞

(
e−k|x−y| − 1

)
g(y) dy

for g ∈ L2(R;Q). Expanding the function e−k|x−y| in a series in k, we obtain

(4.3) rA(k)g =
1

2

∞∑
i=1

(−1)i
ki−1

i!

∫ ∞

−∞
|x− y|ig(y) dy, x ∈ Q.

Consequently,

(4.4)
(
Vh

rA(k)
)
Vh[1] =

1

2
hVhF1,

where

F1(x, h, k) =
∞∑
i=1

(−1)i
ki−1

i!
f1,i(x, h),

f1,i(x, h) =

∫ ∞

−∞

Å n∑
j=1

|x− xj − hy|iVj(y) + |x− y|iW (y)

ã
dy.

(4.5)

From the definition of f1,i, it follows that for sufficiently small h we have

(4.6) |f1,i(x, h)| ≤ C5M
i, x ∈ sQ,

where M = 2R and R is a positive number such that the supports of the functions Vj(x)
and W (x) and the points xj lie in (−R,R). Consequently, the series (4.5) converges
uniformly for x ∈ Q and small k and h, and

(4.7) |VhF1(x, h, k)| ≤ C6.

Therefore, by (4.4) and (4.5),

〈(
Vh

rA(k)
)
Vh[1]

〉
=

1

2
h

∞∑
i=1

(−1)i
ki−1

i!

〈
Vhf1,i(x, h)

〉
.

Hence, by (4.6), we obtain

∣∣∣〈(Vh
rA(k)

)
Vh[1]

〉∣∣∣ ≤ 1

2
h

∞∑
i=1

|k|i−1

i!

∣∣〈Vhf1,i(x, h)
〉∣∣

≤ 1

2
h

∞∑
i=1

|k|i−1

i!

〈∣∣Vh[1]
∣∣ ∣∣f1,i(x, h)∣∣〉 ≤ hC6

〈∣∣Vh[1]
∣∣〉.

Next,

〈∣∣Vh[1]
∣∣〉 =

∫ ∞

−∞

∣∣∣
n∑

j=1

Vj

(y − xj

h

)
+ hW (y)

∣∣∣ dy

≤ h
n∑

j=1

∫ ∞

−∞
|Vj(y)| dy + h

∫ ∞

−∞
|W (y)| dy ≤ C7h.

The last two inequalities combine to yield

(4.8)
∣∣∣
〈(

Vh
rA(k)

)
Vh[1]

〉∣∣∣ ≤ C7h
2.

We have proved (4.2) for j = 1.
For j = 2, we use the representation

(
Vh

rA(k)
)2Vh[1] =

1

2
hVh

rA(k)VhF1 =
1

4
h2VhF2,



890 R. R. GADYL′SHIN AND I. KH. KHUSNULLIN

where

F2(x, h, k)=
∞∑
i=1

(−1)i
ki−1

i!
f2,i(x, h, k),

f2,i(x, h, k)=

∫ ∞

−∞

Å n∑
j=1

|x− xj − hy|iVj(y)F1(xj + hy, h, k) + |x− y|iW (y)F1(y, h, k)

ã
dy.

Taking (4.7) into account and repeating the above estimates, we see that (4.2) is true for
j = 2.

The further proof of (4.2) proceeds by an easy induction.
Using (4.1), (3.8), (4.2), (0.12), and the fact that N is arbitrary, we get

(4.9) ε(μ, h)Fε(μ,h)(k) = μ−1 〈Vh[1]〉+ μ−2h2G(k, h, μ),
where G(k, h, μ) is a function holomorphic in k and uniformly bounded in μ and h.

By the definition of Vh,

(4.10)

〈Vh[1]〉 =
∫ ∞

−∞

Å n∑
j=1

Vj

(x− xj

h

)
+ hW (x)

ã
dx

= h
n∑

j=1

∫ ∞

−∞
Vj(t)dt+ h

∫ ∞

−∞
W (x) dx = hκV,W .

Relations (4.9) and (4.10) show that equation (2.6) takes the form

k = − h

2μ

(
κV,W + μ−1hG(k, h, μ)

)
.

Combining this with Proposition 1, we obtain Theorem 1.1.

§5. Proof of Theorems 1.2–1.4

First, we derive a general formula for the eigenfrequency in the critical case where

(5.1) κV,W = 〈Vh[1]〉 = 0.

(By an eigenfrequency, we mean a solution of equation (2.6), in the notation (3.8).)
From (4.1), (5.1), (4.2), (3.8), (0.12), and the fact that N is arbitrary, it follows that

(5.2) ε(μ, h)Fε(μ,h)(k) = −μ−2
¨(
Vh

rA(k)
)(
Vh[1]

)∂
+ μ−3h3G(k, h, μ),

where G(k, h, μ) is a function holomorphic in k and uniformly bounded in μ and h.
First, we prove that

(5.3)
¨(
Vh

rA(k)
)(
Vh[1]

)∂
= −1

2

∫ ∞

−∞
Vh

Å∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx+ h2kG1(k, h),

where G1(k, h) is a function holomorphic in k and uniformly bounded in h. Using (4.3),
we immediately obtain the equation

(5.4)
¨(
Vh

rA(k)
)(
Vh[1]

)∂
= −1

2

∫ ∞

−∞
Vh

Å∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx+ k rG1(k, h),

where rG1(k, h) is a function holomorphic in k and uniformly bounded in h that is defined
by the equation

rG1(k, h) =
1

2

∞∑
i=2

(−1)i
ki−2

i!

∫ ∞

−∞
Vh

Å∫ ∞

−∞
|x− y|iVh[1](y) dy

ã
dx.
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Similarly to (4.8), it can easily be proved that

(5.5)
∣∣ rG1(k, h)

∣∣ ≤ C8h
2.

Now, (5.4) and (5.5) lead to (5.3).
We prove that, in the critical case (5.1) in question, the following identity is valid:

(5.6)

∫ ∞

−∞
Vh

Å∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx = −2

∫ ∞

−∞

Å ∫ x

−∞
Vh[1](t) dt

ã2

dx.

Indeed,∫ ∞

−∞
Vh

Å ∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx

=

∫ ∞

−∞
Vh

Å∫ x

−∞
(x− y)Vh[1](y) dy

ã
dx+

∫ ∞

−∞
Vh

Å ∫ ∞

x

(y − x)Vh[1](y) dy

ã
dx.

We change the order of integration in the second integral on the right:∫ ∞

−∞
Vh

Å ∫ ∞

x

(y − x)Vh[1](y) dy

ã
dx =

∫ ∞

−∞
Vh

Å∫ y

−∞
(y − x)Vh[1](x) dx

ã
dy.

The last two identities imply∫ ∞

−∞
Vh

Å ∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx = 2

∫ ∞

−∞
Vh

Å∫ x

−∞
(x− y)Vh[1](y) dy

ã
dx.

Furthermore, integration by parts yields∫ x

−∞
(x− y)Vh[1](y) dy =

∫ x

−∞

∫ y

−∞
Vh[1](t) dt dy.

From the last two equations, we obtain

(5.7)

∫ ∞

−∞
Vh

Å∫ ∞

−∞
|x− y|Vh[1](y) dy

ã
dx = 2

∫ ∞

−∞
U ′(x)

∫ x

−∞
U(y) dy dx,

where

U(z) =

∫ z

−∞
Vh[1](t) dt.

Integrating the right-hand side of identity (5.7) by parts and taking into account the
fact that 〈Vh[1]〉 = 0, we obtain

(5.8)

∫ ∞

−∞
Vh

Å∫ x

−∞

∫ y

−∞
Vh[1](t) dt dy

ã
(x) dx = −

∫ ∞

−∞

Å∫ x

−∞
Vh[1](t) dt

ã2

dx.

The last two identities result in (5.6).
By (5.2), (5.3), and (5.6), we have

(5.9)
ε(μ, h)Fε(μ,h)(k) =− μ−2

∫ ∞

−∞

Å∫ x

−∞
Vh[1](t) dt

ã2

dx

− μ−2h2kG1(k, h) + μ−3h3G(k, h, μ).
Using the definition of Vh and the fact that

∫ x

−∞
Vj

Å
t− xj

h

ã
dt = h

∫ (x−xj)h
−1

−∞
Vj (t) dt,

we represent (5.9) in the form

(5.10) ε(μ, h)Fε(μ,h)(k) = −μ−2h2
(

rκV,W + kG1(k, h)− μ−1hG(k, h, μ)
)
,
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where

(5.11) rκV,W :=

∫ ∞

−∞

Å n∑
j=1

∫ (x−xj)h
−1

−∞
Vj(t) dt+

∫ x

−∞
W (t) dt

ã2

dx.

From (5.10), it follows that (2.6) takes the form

k =
h2

2μ2

(
rκV,W + kG1(k, h)− μ−1hG(k, h, μ)

)
.

Hence,

(5.12) kε(μ,h) =
h2

2μ2
rκV,W +O(μ−3h3).

Proof of Theorem 1.2. In the case in question, we have

〈W 〉 = 0, 〈Vj〉 = 0, j = 1, . . . , n.

Obviously, that there exist positive numbers cj such that suppVj(x) ⊂ (−cj , cj). There-
fore, for small h we have

(5.13)

∫ ∞

−∞

Å ∫ (x−xj)h
−1

−∞
Vj(t) dt

ã2

dx =

∫ xj+hcj

xj−hcj

Å∫ (x−xj)h
−1

−∞
Vj(t) dt

ã2

dx = O(h),

∫ ∞

−∞

∫ (x−xj)h
−1

−∞
Vj(t) dt

∫ x

p

W (t) dt dx = O(h),

∫ ∞

−∞

∫ (x−xi)h
−1

−∞
Vi(t) dt

∫ (x−xj)h
−1

−∞
Vj(t) dt dx = 0, i �= j.

By (5.11)–(5.13), it follows that

kε =
1

2
μ−2h2

Å∫ ∞

−∞

Å∫ x

−∞
W (t) dt

ã2

dx

ã
+O(μ−2h3 + μ−3h3),

and it remains to refer to Proposition 1. Theorem 1.2 is proved. �

Proof of Theorem 1.3. In the case in question, we have

Vh[1] = V
(x

h

)
+ hW (x), suppV ⊂ (−c0, c0), suppW = [p1, p2],

and formula (5.11) takes the form

rκV,W =

∫ ∞

−∞

Å∫ xh−1

−∞
V (t) dt+

∫ x

−∞
W (t) dt

ã2

dx.

First, we consider the case where p2 < 0. Then
∫ ∞

−∞

Å∫ xh−1

−∞
V (t) dt+

∫ x

−∞
W (t) dt

ã2

dx

=

∫ p2

p1

Å∫ x

p1

W (t) dt

ã2

dx− (p2 + hc0)〈W 〉2 +
∫ c0h

−c0h

Å∫ xh−1

−∞
V (t) dt+ 〈W 〉

ã2

dx

=

∫
suppW

Å∫ x

p

W (t) dt

ã2

dx+ q〈W 〉2 +O(h).

Using (5.11), (5.12), and the above identity, we get

kε =
1

2
μ−2h2

Å ∫
suppW

Å∫ x

p

W (t) dt

ã2

dx+ q〈W 〉2
ã
+O(μ−2h3 + μ−3h3).
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In turn, the latter identity and Proposition 1 imply the claim of the theorem in the case
where p2 < 0.

The case of p1 > 0 reduces to the above by the change of x by −x.
Now, we pass to the case where 0 ∈ suppW . Since 〈V 〉 = −〈W 〉, we have∫ ∞

−∞

Å∫ x
h

−∞
V (t) dt+

∫ x

−∞
W (t) dt

ã2

dx

=

∫ −c0h

−∞

Å ∫ x

−∞
W (t) dt

ã2

dx+

∫ c0h

−c0h

Å∫ xh−1

−∞
V (t) dt+

∫ x

−∞
W (t) dt

ã2

dx

+

∫ ∞

c0h

Å
〈V 〉+

∫ x

−∞
W (t) dt

ã2

dx

=

∫ 0

−∞

Å∫ x

−∞
W (t) dt

ã2

dx+

∫ ∞

0

Å ∫ ∞

x

W (t) dt

ã2

dx+O(h).

Now, (5.11) and (5.12) show that

kε =
1

2
μ−2h2

Å∫ 0

−∞

Å ∫ x

−∞
W (t) dt

ã2

dx+

∫ ∞

0

Å∫ ∞

x

W (t) dt

ã2

dx

ã

+O(μ−2h3 + μ−3h3).

Combining this with Proposition 1, we see that the theorem is valid in the case where
0 ∈ suppW . Theorem 1.3 is proved completely. �
Proof of Theorem 1.4. In the case under consideration, formula (5.11) takes the form

(5.14) rκV,W =

∫ ∞

−∞

Å∫ (x−x1)h
−1

−∞
V (t) dt−

∫ (x−x2)h
−1

−∞
V (t) dt

ã2

dx.

Since∫ ∞

−∞

Å ∫ (x−x1)h
−1

−∞
V (t) dt−

∫ (x−x2)h
−1

−∞
V (t) dt

ã2

dx =

∫ x2

x1

Å∫ x

−∞
V (t) dt

ã2

dx+O(h),

we have

kε =
1

2
μ−2h2

Å∫ x2

x1

Å ∫ x

−∞
V (t)dt

ã2

dx

ã
+O

(
μ−2h3 + μ−3h3

)

by (5.14) and (5.12). Applying Proposition 1, we complete the proof. �
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[9] V. P. Mikhǎılov, Partial differential equations, Nauka, Moscow, 1976. (Russian) MR0481380
(58:1497)

Bashkir State Pedagogical University, Ul. Oktyabrskoi Revolyutsii 3a, Ufa 450000, Russia

E-mail address: gadylshin@yandex.ru

Bashkir State Pedagogical University, Ul. Oktyabrskoi Revolyutsii 3a, Ufa 450000, Russia

E-mail address: khusnullini@yandex.ru

Received 11/JUL/2010

Translated by B. M. BEKKER

http://www.ams.org/mathscinet-getitem?mr=2761705
http://www.ams.org/mathscinet-getitem?mr=0481380
http://www.ams.org/mathscinet-getitem?mr=0481380

	Introduction
	1. Statement of main results
	2. Preliminary information
	3. Reduction of the operator H^{𝜇,h} to the operator H_{𝜖}
	4. Proof of Theorem 1.1
	5. Proof of Theorems 1.2–1.4
	References

