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ASYMPTOTIC SOLUTIONS

OF THE TWO-DIMENSIONAL MODEL WAVE EQUATION

WITH DEGENERATING VELOCITY

AND LOCALIZED INITIAL DATA

S. YU. DOBROKHOTOV, V. E. NAZAĬKINSKĬI, AND B. TIROZZI

To Vasilĭı Mikhăılovich Babich

Abstract. The Cauchy problem is considered for the two-dimensional wave equa-
tion with velocity c =

√
x1 on the half-plane {x1 ≥ 0, x2}, with initial data localized

in a neighborhood of the point (1, 0). This problem serves as a model problem in the
theory of beach run-up of long small-amplitude surface waves excited by a spatially
localized instantaneous source. The asymptotic expansion of the solution is con-
structed with respect to a small parameter equal to the ratio of the source linear size
to the distance from the x2-axis (the shoreline). The construction involves Maslov’s
canonical operator modified to cover the case of localized initial conditions. The
relationship of the solution with the geometrical optics ray diagram corresponding
to the problem is analyzed. The behavior of the solution near the x2-axis is studied.
Simple solution formulas are written out for special initial data.

Introduction

Consider the Cauchy problem for the degenerate wave equation

(0.1)
∂2u

∂t2
− div(c2(x) gradu) = 0, c =

√
x1,

in the half-plane R
2
+ = {x = (x1, x2) ∈ R

2 : x1 > 0} with the initial conditions

(0.2) u
∣∣
t=0

= u0(x), ut

∣∣
t=0

= u1(x)

of the form

(0.3) u0(x) = V
(x− a

μ

)
, u1(x) = 0.

Here V ∈ C∞
0 (R2), μ is a small positive parameter, and a ∈ R

2
+ is the point near

which the initial perturbation is localized. In the following, we assume throughout that
a = (1, 0), which can always be achieved by a linear change of variables.

Problem (0.1)–(0.3) with a smooth nonvanishing velocity c(x) arises in the theory of
long water waves and describes the propagation of waves generated by a shock upheaval
of a relatively small area of the sea bottom (the piston model of tsunami waves [1]–
[3]). Then u = u(x, t), t ≥ 0, x ∈ R

2, is the free surface elevation, u0(x) is the initial
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perturbation (corresponding to the bottom upheaval), and the velocity c(x) depends on

the slowly varying ocean depth D(x) as c(x) =
√
gD(x), where g is the acceleration due

to gravity.
Efficient formulas for the asymptotic solution of this problem have been constructed

quite recently in [4, 5] on the basis of Maslov’s canonical operator [6] modified so as
to employ a special Lagrangian manifold for an integral representation of the initial
data [4, 7]. The solution structure is as to be expected: at the initial time, the solution
is localized in a neighborhood of a point (see Figure 2), and then it becomes localized
in a neighborhood of a time-dependent closed curve γt, referred to as the solution front.
This front is defined as follows. Consider the trajectories of the two-degrees-of-freedom
Hamiltonian system with Hamiltonian H(p, x) = |p|c(x) in the phase space with coor-
dinates (p, x) = (p1, p2, x1, x2). The endpoints of the x-components of these trajectories
form the front γt. At the beginning, γt is a smooth curve (almost a circle), and then
it may exhibit turning points (focal points), self-intersection points, etc., because c is
nonconstant. However, wave propagation can be described in this manner only in mid-
ocean (far from the coast). (Note that our paper is purely mathematical; we use some
terminology of fluid-wave theory solely for pictorial clarity.) When using a similar model
for describing beach run-up (e.g., of tsunami waves) [3], the wave equation in (0.1) is only
given in the domain bounded by the shoreline (rather than in the entire space R

2), and
the velocity vanishes on the boundary, so that the wave equation degenerates. Once the
front reaches the shoreline, the asymptotic solutions constructed in [4, 5] make no sense,
and one can ask how the solution behaves thereafter. Here, before trying to compute any
asymptotic solution, one should refine the very statement of the problem. The question
is, what (physically meaningful) conditions are needed on the boundary to make the
problem well posed? Needless to say, the answer depends on how exactly the equation
degenerates. In general, this question has been discussed by specialists in water wave
theory, and it also proves quite reasonable in the one-dimensional case.

However valuable physical considerations may be (e.g., see [2]), we present a complete
mathematical argument, which will come in handy when we subsequently define Maslov’s
canonical operator in our framework. What is important to us is an idea in the paper [8]
(where further bibliography can be found), which deals with rapidly oscillating solutions
in the one-dimensional case (x ∈ [0,∞)) under the assumption that c(x)/

√
x is a smooth

positive function. That paper indicates the possibility of obtaining a well-posed problem
by requiring the solution to have a finite energy integral. Note also that the corresponding
one-dimensional beach run-up problem, even in the nonlinear setting, has been studied
much better than the two-dimensional problem (see [3, 11, 14] and the bibliography
therein).

In the present paper, we restrict ourselves to a two-dimensional problem in which
the shoreline is straight and the depth is proportional to the distance from the shore,
which results in (0.1)–(0.3). (It can always be ensured that c(x) =

√
x1 by scaling the

variables.) The results can be explained qualitatively with the use of Figures 1 and 2.
The solution localized for t = 0 in a neighborhood of the point (1, 0) (Figure 2,

left) becomes, after some time, localized in a neighborhood of fronts varying in time in
accordance with the Hamiltonian system with Hamiltonian H(p, x) = |p|c(x) and given
by formulas (2.3). For t < 2, the asymptotic expansion of the solution is given by the
formulas in [4]. At time t = 2, the front touches the x2-axis (the shoreline) and is reflected
from it, as is the wave itself (Figure 1, middle). The wave amplitude in a neighborhood
of the point of tangency proves to be bounded, but it is of larger order of magnitude
as μ → 0 than the amplitude at the regular points of the front. Then the point of
tangency splits into two, which move along the x2-axis symmetrically, one up and one
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Figure 1. The fronts γt for various t. The formulas given in §4 corre-
spond to the figure in the middle.

Figure 2. The solution at various t. The left figure corresponds to
t = 0, while the middle and right figures describe the wave profiles
before and after the reflection in the x2-axis, respectively.

down (Figure 2, middle), and the corresponding components of the momentum at these
points turn out to be unbounded. The front arc enclosed between these points consists
of the points reflected by the x2-axis, and the wave profile in a neighborhood of these
points differs from that in a neighborhood of the points not yet reflected, because the
reflection in the x2-axis produces a jump in the Morse index. In this sense, the x2-axis
can be viewed as a space-time caustic [12], and the change in the form of the asymptotic
behavior can be treated as an analog of the “metamorphosis of discontinuity” in linear
hyperbolic systems [13]. The difference is that, in our case, the wave profile “remembers”
the shape of the original source and also depends on the front points. If the incident wave
profile has the form of a “cap”, then the reflected wave has the shape of an “N”-wave
(Figure 2, middle and right). (Here we use the terminology in [3, 11], where this process
was studied in the one-dimensional case.) After that, the trajectories “carry the front
points away into deep waters”, where the reflection occurs again, this time resulting in
“standard” space-time caustics. (The asymptotic behavior in a neighborhood of these
caustics was described in [5]; see also [15].) Then the trajectories reach the x2-axis, are
again reflected (Figure 1, right), etc.

We point out that this description of the front is related to the right choice of the
boundary condition for equation (0.1) on the x2-axis, which leads to a reasonable method
for constructing the asymptotic expansion of the solution in a neighborhood of the x2-
axis on the basis of a modification of Maslov’s canonical operator. (This is one of the
main results of the paper.)

In §1, we describe the domain of the spatial part of our wave operator, prove that the
Cauchy problem is well posed, and formulate the energy estimates. The case of localized
initial data is considered in Subsection 1.3, where we outline the method of solution of
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this problem, which is implemented in Subsections 1.2 and 1.3. As in [4], our method
involves Maslov’s canonical operator. In particular, we represent the localized initial
data in the form of an integral with respect to a parameter, by analogy with [4, 14].
Because of degeneration at the boundary, the trajectories of the Hamiltonian vector field
go to infinity in the momentum direction in finite time. Hence, the formulas for the
asymptotic solution inevitably involve the canonical operator applied to functions with
noncompact support, which renders the standard definition of the canonical operator
useless. A definition adequate to our aims is given in §2; geometrically, it is based on
a partial compactification of the Lagrangian manifold by adding some points at infinity
of the phase space. This results in a new type of charts on the Lagrangian manifold;
the canonical operator in these charts is defined by Cauchy principal value integrals
(cf. [9, 10]). The asymptotic expansion of the solution is constructed in §3, and §4
provides an example.

In the present paper, we only deal with the mathematical aspects of the problem and
say nothing concerning the extent to which the model applies to the original physical
problem. The case of more general shorelines and coordinate dependences of the depth
requires additional studies.

§1. Cauchy problem for the wave equation with degenerating velocity

Equation (0.1) and the initial conditions (0.2) do not form a well-posed problem by
themselves because of the boundary at x1 = 0, where the equation degenerates. To obtain
a well-posed problem, one should additionally specify the domain of the spatial part of
the wave operator occurring in (0.1). This is done below. Note that this description can
be interpreted as the finiteness of the energy integral [16] for the solutions in question
and that problem (0.1)–(0.2) proves to be well posed in the corresponding energy spaces.

1.1. The operator L0 and the selfadjoint extension L. Let C∞
0 (sR

2
+) be the space

of smooth functions compactly supported in the closed half-plane sR
2
+ = {x = (x1, x2) ∈

R
2 : x1 ≥ 0}. (Unlike the elements of C∞

0 (R2
+), such functions are not necessarily zero

in a neighborhood of the boundary of the half-plane.)

Proposition 1. The operator L0 defined in the Hilbert space L2(R
2
+) by the differen-

tial expression � = − ∂
∂x1

x1
∂

∂x1
− x1

∂2

∂x2
2
on the domain D0 = C∞

0 (sR
2
+) is positive and

essentially selfadjoint.

Proof. 1. Let u, v ∈ D0. Elementary integration by parts shows that (the integrated
terms at x1 = 0 are zero)

(u, �v) = (�u, v), (u, �u) =

∫
R

2
+

x1

(∣∣∣ ∂u
∂x1

∣∣∣2 + ∣∣∣ ∂u
∂x2

∣∣∣2) dx1dx2 ≥ 0,

where ( · , · ) is the inner product in L2(R
2
+). Hence, L0 is symmetric and positive.

2. We show that the deficiency indices d±(L0) of L0 are zero. Since L0 is positive, it
follows that d+(L0) = d−(L0) = dimker(L∗

0 +1), where L∗
0 is the adjoint operator of L0.

Thus, it suffices to show that the equation (L∗
0+1)v = 0 does not have nontrivial solutions.

Let v = v(x1, x2) be a solution of this equation. Then, in particular, (�+ 1)v = 0 in the
sense of distributions in R

2
+. It follows that the Fourier transform w = w(x1, p2) of v

with respect to x2 satisfies the equation

x1
d2w

dx2
1

+
dw

dx1
− x1p

2
2w − w = 0.
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The general solution of this equation has the form (see [17])

w(x1, p2) = e−|p2|x1U
( |p2|+ 1

2|p2|
, 1, 2|p2|x1

)
,

where U(α, β, z) is an arbitrary solution of the confluent hypergeometric equation zU ′′
zz+

(β−z)U ′
z−αU = 0. For β = 1, the latter has the fundamental system of solutions formed

by the Kummer function Φ(α, 1, z) and the Tricomi function Ψ(α, 1, z) (see [17, 6.1(1)
and 6.5(5)]). Thus,

w(x1, p2) = e−|p2|x1

[
c1(p2)Φ

( |p2|+ 1

2|p2|
, 1, 2|p2|x1

)
+ c2(p2)Ψ

( |p2|+ 1

2|p2|
, 1, 2|p2|x1

)]
.

The asymptotic behavior as z → +∞ of the Kummer and Tricomi functions is as follows
(see [17, 6.13(1) and 6.13(2)]): Φ(α, 1, z) = 1

Γ(α)e
zzα(1 + O(z−1)); Ψ(α, 1, z) = z−α(1 +

O(z−1)). Thus, c1(p2) = 0; otherwise, w (and hence v) would not lie in L2(R
2
+). Next,

from [17, 6.7(13)] it follows that the Tricomi function can be represented in the form

Ψ(α, 1, z) = f1(z) ln z+f2(z), where f1(z) and f2(z) are entire functions, f1(z) =
Φ(α,1,z)
Γ(α) ,

and f1(0) =
1

Γ(α) . Now an easy computation shows that if u ∈ D0, then

(L0u, v) ≡ (�u, v) =

∫ ∞

−∞

Ğc2(p2)ru(0, p2)

Γ
( |p2|+1

2|p2|
) dp2 + (u, ϕ),

where ru(x1, p2) is the Fourier transform of u with respect to the second variable, the
bar stands for complex conjugation, and ϕ is a continuous function. Since v ∈ D(L∗

0),
it follows that this expression is a continuous functional of u in the L2-norm, which is
possible only if c2(p2) ≡ 0. Thus, v = 0, and the proof of the proposition is complete. �

Let L be the closure of L0, and let D = D(L) be the domain of L. By Proposition 1,
L = L∗ = L∗

0. We want to give a convenient description of L and D(L). Consider the
differential expression

a : u �−→ −i

(√
x1

∂u
∂x1√

x1
∂u
∂x2

)

and the formally adjoint expression

a∗ :

(
u
v

)
�−→ −i

[
∂(
√
x1u)

∂x1
+

∂(
√
x1v)

∂x2

]
.

Then � = a∗a, and integration by parts shows that

(1.1) (u, �v) = (�u, v) = (au, av), u, v ∈ D0.

Let A0 be the operator defined by a on D0, and let A be the closure of A0. (The
closability of A0 is obvious, because the domain of the adjoint operator A∗

0 contains the
set C∞

0 (R2
+) ⊕ C∞

0 (R2
+), which is dense in L2(R

2
+) ⊕ L2(R

2
+) and on which A∗

0 is given
by the differential expression a∗.)

Proposition 2. We have L = A∗A. The domain D of L coincides with the set of
elements u ∈ L2(R

2
+) such that

(1.2) �u ∈ L2(R
2
+), au ∈ L2(R

2
+)⊕ L2(R

2
+),

where the derivatives are understood in the sense of distributions in R
2
+.

Proof. 1. We prove that L = A∗A. Let u ∈ D. By definition, there exists a sequence
un ∈ D0, n = 0, 1, 2, . . . , such that un → u and �un → v = Lu in L2(R

2
+) as n → ∞.

From (1.1) it follows that ‖aun‖2 = (un, �un) → (u, Lu) as n → ∞; in particular, the
sequence aun is bounded. Hence, it has a subsequence (which we again denote by aun for
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brevity) weakly convergent to some element w ∈ L2(R
2
+)⊕L2(R

2
+), aun

w→ w. Moreover,
obviously we have

(1.3) ‖w‖ ≤ lim
n→∞

‖aun‖ =
√
(u, Lu).

Next, again by (1.1), (aun, auk) = (un, �uk) → (u, Lu) as n, k → ∞, so that for each
ε > 0 there exists nε with

(1.4) |(aun, auk)| ≥ (u, Lu)− ε for n, k > nε.

Take k > nε and let n → ∞ in (1.4). Since aun
w→ w, we obtain |(w, auk)| ≥ (u, Lu)−ε for

k > nε. Next, let k → ∞. We obtain ‖w‖2 ≥ (u, Lu)−ε, whence ‖w‖2 ≥ (u, Lu), because

ε is arbitrary. By combining this with inequality (1.3), we obtain ‖w‖ =
√
(u, Lu) =

limn→∞ ‖aun‖ , which means that the sequence aun converges not only weakly but also
strongly, aun → w.

Thus, we have shown that u ∈ D(A) and Au = w. Now we prove that w ∈ D(A∗)
and A∗w = Lu. It suffices to show that (w, aξ) = (Lu, ξ), ξ ∈ D0, because A is ob-
tained from a by closure from D0. But this is obvious: (w, aξ) = limn→∞(aun, aξ) =
limn→∞(�un, ξ) = (Lu, ξ). Hence, Lu = A∗Au for u ∈ D; i.e., L ⊂ A∗A. Since both
operators are selfadjoint, we have L = A∗A, and the proof of the first claim is complete.

2. Now we prove the claim about the domain of L. First, let u ∈ D. Then, as has
already been shown above, u ∈ D(A) and relations (1.2) are valid. (This is a special
case of the general fact that if P is a differential operator in L2 and Pu = v in L2,
then Pu = v in the sense of distributions as well, because the set of smooth compactly
supported functions, which is dense in L2, is contained in the domain of the adjoint
operator.)

Now let u ∈ L2(R
2
+) satisfy (1.2). We claim that u ∈ D. Since L = L∗, it suffices

to show that the functional v �→ (u, �v), v ∈ D0, is bounded. For this, we prove that
conditions (1.2) imply the relation (u, �v) = (�u, v), where �u is understood in the sense
of distributions in R

2
+. (Thus, in particular, Lu = �u.) First, we note that (u, �v) =

(u, a∗av). Next, let ϕ(τ ) be a smooth function such that ϕ(τ ) = 0 for τ ≤ 1 and
ϕ(τ ) = 1 for τ ≥ 2. Then

ϕ(nx1)av = ϕ(nx1)

(√
x1

∂v
∂x1√

x1
∂v
∂x2

)
∈ C∞

0 (R2
+)⊕ C∞

0 (R2
+),

ϕ(nx1)av → av in L2(R
2
+)⊕ L2(R

2
+) as n → ∞,

a∗(ϕ(nx1)av) =
∂

∂x1

(
x1ϕ(nx1)

∂v

∂x1

)
+

∂

∂x2

(
x1ϕ(nx1)

∂v

∂x2

)

= ϕ(nx1)
∂

∂x1

(
x1

∂v

∂x1

)
+ ϕ(nx1)

∂

∂x2

(
x1

∂v

∂x2

)
+ nx1ϕ

′(nx1)
∂v

∂x1

= ϕ(nx1)
[ ∂

∂x1

(
x1

∂v

∂x1

)
+ x1

∂2v

∂x2
2

]
+ ψ(nx1)

∂v

∂x1

→ a∗av in L2(R
2
+) as n → ∞.

(Here ψ(τ ) = τϕ′(τ ).) Hence,

(u, �v) = (u, a∗av) = lim
n→∞

(u, a∗(ϕ(nx1)av)) = lim
n→∞

(au, ϕ(nx1)av) = (au, av),

where au is understood in the sense of distributions in R
2
+ and, by the second and third

conditions in (1.2), au ∈ L2(R
2
+)⊕ L2(R

2
+).

Next, let ε > 0 be sufficiently small, and let χε(τ ) ∈ C∞
0 (R) be a function such that

0 ≤ χε(τ ) ≤ 1, χε(τ ) = 0 for x /∈ (ε,
√
ε), and χε(τ ) = 1 for x ∈ (2ε,

√
ε/2). Let
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Cε =
∫ ∞
0

χε(τ) dτ
τ |ln τ | . We have

ln 2− ln
( |ln ε|+ ln 4

|ln ε| − ln 2

)
=

∫ √
ε/2

2ε

dτ

τ |ln τ | ≤ Cε ≤
∫ √

ε

ε

dτ

τ |ln τ | = ln 2,

whence limε→0 Cε = ln 2. Finally, set ϕε(τ ) = C−1
ε

∫ τ

0
χε(θ) dθ
θ|ln θ| , so that 0 ≤ ϕε(τ ) ≤ 1,

ϕε(τ ) = 0 for x ≤ ε, and ϕε(τ ) = 1 for x >
√
ε. Obviously, ϕε(x1)v → v in L2(R

2
+) as

ε → 0. Next,

aϕε(x1)v = ϕε(x1)av +

(√
x1ϕ

′
ε(x1)v
0

)
.

On the other hand,

‖√x1ϕ
′
ε(x1)v‖2 =

∫
R

2
+

x1(ϕ
′
ε(x1))

2|v(x1, x2)|2 dx1dx2 ≤ CC−2
ε

∫ √
ε

ε

dτ

τ (ln τ )2
=

CC−2
ε

2|ln ε| ,

where the constant C depends on the maximum of the modulus of v and the diameter
of the support of v. Since limε→0 Cε = ln 2, it follows that the last expression tends
to zero, and we see that aϕε(x1)v → av in L2(R

2
+) ⊕ L2(R

2
+) as ε → 0. Now we can

write (au, av) = limε→0(au, aϕε(x1)v) = limε→0(a
∗au, ϕε(x1)v) = (a∗au, v) = (�u, v), as

desired. The proof of the proposition is complete. �

Remark 1. The operator L = A∗A is strictly positive, i.e., L ≥ 0 and kerL = kerA = {0}.
(The latter is obvious; indeed, the equation Au = 0 implies that ux1

= ux2
= 0, so that

u is a constant, which is necessarily zero because u ∈ L2(R
2
+).)

1.2. Statement of the Cauchy problem and its well-posedness. Now the state-
ment of a well-posed problem for the degenerate wave equation (0.1) is obvious. Namely,
consider the abstract hyperbolic problem

d2u(t)

dt2
+ Lu(t) = 0, t ∈ [0, T ],(1.5)

u(t)
∣∣
t=0

= u0,
du(t)

dt

∣∣∣
t=0

= u1(1.6)

in L2(R
2
+), where L is the selfadjoint operator constructed in the preceding subsec-

tion. A strong solution of problem (1.5), (1.6) on the interval [0, T ] is a function
u ∈ C2([0, T ], L2(R

2
+)) such that the initial conditions (1.6) are satisfied, u(t) ∈ D(L)

for t ∈ [0, T ], and equation (1.5) is satisfied for all t ∈ [0, T ].

Theorem 1. For any u0 ∈ D(L) and u1 ∈ D(A), the Cauchy problem (1.5), (1.6) has a
unique strong solution, and the energy conservation law

(1.7) J2(t) = J2(0), t ∈ [0, T ],

holds, where

(1.8) J2(t) =
1

2

( ∥∥∥∥du(t)dt

∥∥∥∥
2

+ ‖Au(t)‖2
)

≡ 1

2

∫
R

2
+

[∣∣∣∂u(x, t)
∂t

∣∣∣2 + x1

∣∣∣∂u(x, t)
∂x

∣∣∣2
]
dx1dx2

is the energy integral.

Proof. By [18, p. 78 of the Russian edition, Lemma 1], we have D(L1/2) = D(A). It
remains to apply [18, p. 184 of the Russian edition, Theorems 5 and 6]. �

We also write down the energy relation for the case where the right-hand side of the
equation is nonzero. (We shall need this in what follows when constructing asymptotic
expansions.)
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Proposition 3 (cf. [16, p. 480 of the Russian edition, equation (4)]). Let u(t) be a strong

solution of the equation d2u(t)
dt2 +Lu(t) = F (t), t ∈ [0, T ], where F (t) ∈ C([0, T ], L2(R

2
+)).

Then

(1.9) J2(t) = J2(0) +

∫ t

0

(
F (t),

du(t)

dt

)
dt, t ∈ [0, T ],

where ( · , · ) is the inner product in L2(R
2
+).

We omit the trivial proof of this proposition.

Corollary 1 (Energy estimates). If the assumptions of Proposition 3 are satisfied, then

(1.10)

‖u(t)‖ ≤ ‖u(0)‖+ C
(
J(0) + sup

τ∈[0,T ]

‖F (τ )‖
)
,

J(t) ≤ C
(
J(0) + sup

τ∈[0,T ]

‖F (τ )‖
)
,

t ∈ [0, T ],

with some constant C = C(T ).

Proof. Relation (1.9) and definition (1.8) of the energy integral imply that

J2(t) ≤ J2(0) +

∫ t

0

‖F (τ )‖
∥∥∥∥dudt (τ )

∥∥∥∥ dτ ≤ J2(0) +
√
2

∫ t

0

‖F (τ )‖J(τ ) dτ,

and consequently,

J2
∗ ≤ J2(0) +

√
2TF∗J∗, where J∗ = sup

τ∈[0,T ]

J(t), F∗ = sup
τ∈[0,T ]

‖F (t)‖ .

Hence,

J∗ ≤
√
2TF∗ +

√
2T 2F 2

∗ + 4J2(0)

2
≤ C1(F∗ + J(0)),

‖u(t)− u(0)‖ ≤
∫ t

0

∥∥∥∥dudt (τ )
∥∥∥∥ dτ ≤ TJ∗ ≤ C1T (F∗ + J(0)),

and it remains to set C = C1 max{1, T}. �

1.3. Problem with localized initial data: outline of the asymptotic analysis.
Consider the Cauchy problem for equation (1.5) with the special initial data (0.2)–(0.3):

(1.11)
d2u(t)

dt2
+ Lu(t) = 0, u

∣∣
t=0

= V

(
x− a

μ

)
, ut

∣∣
t=0

= 0.

Our aim is to construct the asymptotic expansion of the solution of problem (1.11)
as μ → 0. The general outline of our construction is as follows. First, we express
the initial condition in the form of an integral of a rapidly oscillating function (given
by Maslov’s canonical operator on a special Lagrangian manifold) with respect to a
parameter. Then, for each parameter value, we obtain an asymptotic solution of the cor-
responding Cauchy problem by the canonical operator method, so that the asymptotic
solution of problem (1.11) will be expressed as the integral of these solutions with respect
to the parameter. Finally, we use the energy estimates to prove that the resulting asymp-
totic solution gives indeed the asymptotic expansion of the solution of problem (1.11).
We present a more detailed outline of each of these stages.
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1.3.1. Representation of the initial data. In [7, 4] it was shown that a rapidly
decaying function of the form V ((x− a)/μ) admits the integral representation

(1.12) V

(
x− a

μ

)
=

√
μ

2πi

∫ ∞

0

K
μ/ρ

Λ2
0

[√
ρ rV (ρn(ψ))e(α)

]
dρ+O(μ),

where n(ψ) = (cosψ, sinψ), Kh
Λ2

0
is Maslov’s canonical operator on the two-dimensional

Lagrangian manifold Λ2
0 = {p = n(ψ), x = a+ αn(ψ)}, rV (p) is the Fourier transform of

the function V (y), and e(α) is a cutoff function supported on a neighborhood of zero. We
also use a similar representation in which Λ2

0 is replaced by the Lagrangian manifold Λ
that passes through the circle {p = n(ψ), x = a} and, in addition, is invariant with respect
to the Hamiltonian vector field corresponding to the Hamiltonian H(x, p) =

√
x1|p| of

our problem. This new Lagrangian manifold has the advantage that the solution is
represented by the canonical operator on the same manifold for each t, which simplifies
the study dramatically. This representation of the initial condition will be derived in
Subsection 3.1.

1.3.2. Construction of the asymptotic solution. The main difficulty in the con-
struction of the asymptotic solution by the canonical operator method is that, owing
to the degeneracy of the problem, the trajectories of the Hamiltonian vector field go to
infinity (with respect to the variable p1) in finite time. Accordingly, the support of the
amplitude (i.e., the function to which the canonical operator should be applied) becomes
noncompact, and the traditional definition of the canonical operator (see, e.g., [6]) does
not work in this situation. If, nevertheless, we formally write out this definition, then
the integrals with respect to p1 occurring in this definition become improper, and the
standard regularization of these integrals as oscillatory integrals gives a function with
a logarithmic singularity in the variable x1. This function does not lie in the domain
of L. A similar difficulty was encountered in the one-dimensional case (see [8, 14]): it
was observed that, to regularize the integral properly, say, as p → ∞, one should use
the second branch of the Lagrangian manifold, on which p → −∞. (This results in an
integral in the sense of the Cauchy principal value.)

The computations in the one-dimensional case are rather simple, and they were readily
carried out in the cited papers without explicitly indicating their geometrical meaning.
In the present paper, we point out the following simple and important geometric fact: the
invariant Lagrangian manifold Λ can (and should!) be treated as a smooth submanifold of
the “extended” phase space obtained by the replacement of the line Rp1

of the momentum
variable p1 by the circle R̄p1

= Rp1
∪ {∞}. (With this interpretation, the support of the

amplitude is compact for all t.) Then, in addition to canonical charts used in the standard
construction of the canonical operator, a new type of canonical charts arises (namely,
the charts containing points at infinity), and the canonical operator should be defined
in these charts in such a way that, being applied to the amplitude, it gives a function
lying in the domain of L. This is achieved with the use of Cauchy type integrals, and the
condition that the resulting function should belong to D(L) leads to the appearance of
a phase factor in the passage through the point at infinity. This phase factor is similar
to Maslov’s index, which arises in the passage across the cycle of singularities.

The geometry of the Lagrangian manifold and the construction of the canonical oper-
ator are described in detail in §2. Note that only the symplectic form and the Jacobians
have singularities at the points at infinity in this construction, while the action, the am-
plitudes, and the coefficients in the transport equations are smooth. Apparently, the
situation is the same in the more general case where the velocity in the wave equation is
proportional to the square root of the distance from the shore with a smooth nonvanishing
coefficient of proportionality.
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1.3.3. Asymptotic solution and the asymptotic expansion of the solution. The
asymptotic solution is constructed in Subsection 3.2 by the above method and is a linear

combination of functions of the form u(t, μ) =
√
μ

∫ ∞
μ

K
μ/ρ
Λ [ϕρ(t, μ/ρ)] dρ (we omit the

argument x of u), where ϕρ(t, h) is a compactly supported function on Λ such that it
smoothly depends on the parameters ρ and t, is a polynomial of degree N in h, and,
together with all derivatives, rapidly decays as ρ → ∞. Let us substitute this solution
into the equation in problem (1.11). How small can we make the discrepancy between
the left- and right-hand sides? If the discrepancy resulting from the substitution of the
function Kh

Λ[ϕρ(t, h)] into the equation is O(hN), N > 1, uniformly with respect to ρ,
then the discrepancy r(t, μ) given by the function u(t, μ) itself satisfies

‖r(t, μ)‖L2(R2
+) ≤ C

√
μ

∫ ∞

μ

(
μ

ρ

)N

dρ =
Cμ3/2

N − 1
.

In other words, we cannot achieve an estimate better than O(μ3/2) regardless of how
many terms of the asymptotic expansion we take. This is a well-known phenomenon
related to the fact that the asymptotic solution does not take the contribution of long-
wave harmonics into account. Nevertheless, long expansions permit improving estimates
for the derivatives. Indeed, the standard estimates of derivatives of rapidly oscillating
functions have the form

f(x, h) = O(hN)
def⇐⇒

∥∥∥∥∂
βf

∂xβ

∥∥∥∥
L2(R2

+)

= O(hN−|β|),

whence ∥∥∥∥∂
βr(t, μ)

∂xβ

∥∥∥∥
L2(R2

+)

≤ C
√
μ

∫ ∞

μ

(
μ

ρ

)N−β

dρ =
Cμ3/2

N − β − 1

provided that N > β + 1. Thus, if we take N terms of the expansion, then the discrep-
ancy, together with the derivatives of order not exceeding N − 2, is O(μ3/2). Next, in
Subsection 3.1 it is shown that the discrepancy in the initial conditions can be forced
to satisfy the same estimates provided that sufficiently many terms of the expansion are
taken. This permits one to estimate the energy norm of the difference between the as-
ymptotic solution and the exact solution by using Corollary 1. (The additional factor x1

in the integrals defining the energy norm does not affect the estimate, because the func-
tions given by the canonical operator decay rapidly as x → ∞ and are O(h∞) outside
the projections of the supports of the amplitudes onto the x-plane.) Moreover, for N > 4
we see that the same estimate (O(μ3/2)) remains valid if we apply the operator L to the
difference between the asymptotic and the exact solution.

Now embedding theorems permit us to conclude that, for arbitrary fixed ε > 0, the
difference between the asymptotic and the exact solution is small (O(μ3/2)) in the sup-
norm in the domain x1 ≥ ε, where the energy norm is equivalent to the conventional
Sobolev norm. In the nonsingular chart, this conclusion remains valid (with O(μ3/2)
replaced by O(μ)) even if we take only the leading term of the asymptotic expansion in
the canonical operator, because the contribution of all other terms is O(μ).

We proceed to a more detailed exposition of some parts of our construction.

§2. Invariant Lagrangian manifold and the canonical operator

2.1. Phase space and the Lagrangian manifold Λ. We define the phase space Φ of
the problem in question as follows:

(2.1) Φ = sRp1
× R

3
p2,x1,x2

≡ S
1 × R

3,
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where sRp1
= R ∩ {∞} � S

1 is the extended real line of the variable p1, diffeomorphic to
a circle. (We use q = 1/p1 as a coordinate on this line in a neighborhood of the point
at infinity.) The phase space Φ is equipped with the symplectic form ω2 = dp1 ∧ dx1 +
dp2 ∧ dx2, which has a singularity on the set Γ = {∞} × R

3 of points at infinity; in a

neighborhood of this set, the form can be written as ω2 = dx1∧dq
q2 + dp2 ∧ dx2.

We construct a Lagrangian manifold Λ in Φ passing through the circle Λ0 = {(x, p) ∈
R

4 : x = a, |p| = 1}, a = (1, 0), and invariant with respect to the Hamiltonian vector field
with Hamiltonian H(x, p) =

√
x1|p|. We parametrize the manifold Λ0 by the variable

ψ ∈ S
1 = R mod 2π by setting p = n(ψ) ≡ (cosψ, sinψ). The Hamiltonian system has

the form

(2.2) ẋj =
pj
|p|

√
x1, j = 1, 2, ṗ1 = − |p|

2
√
x1

, ṗ2 = 0.

Its solution with initial conditions on Λ0 is described by the formulas

(2.3)
X1(ψ, τ ) =

sin2 φ

sin2 ψ
, X2(ψ, τ ) =

τ

2 sinψ
+

sin 2ψ − sin 2φ

2 sin2 ψ
,

P1(ψ, τ ) = sinψ cotφ, P2(ψ, τ ) = sinψ

for ψ �= 0, π, where τ is the time along the trajectories of the Hamiltonian system (proper
time) and

(2.4) φ = ψ +
τ sinψ

2
,

and by the formulas

(2.5) X1(ψ, τ ) =
(
1± τ

2

)2

, P1(ψ, τ ) =
(
1± τ

2

)−1

, X2(ψ, τ ) = P2(ψ, τ ) = 0

for ψ = 0, π. (The upper sign corresponds to ψ = 0, and the lower sign corresponds
to ψ = π.) The functions (2.3)–(2.5) are everywhere smooth except for the function
P1(ψ, τ ), which is infinite on the curves

(2.6) τk = τk(ψ)
2(πk − ψ)

sinψ
, k = 0,±1,±2, . . . .

However, the following proposition shows that these functions specify an everywhere
smooth mapping into the phase space Φ. Note also that, for each fixed τ , these functions
determine the solution fronts in the phase space, and their x-components determine the
solution fronts in the half-plane x1 ≥ 0.

Proposition 4. The functions (2.3)–(2.5) specify a smooth immersion of the infinite
cylinder S

1 × R in Φ.

Proof. First, we prove that the mapping in question is smooth. Near the curves (2.6),
we can use the variable q instead of p1 and verify that the resulting function q = q(ψ, τ )
is smooth; this can be done by a straightforward computation. However, we give an
alternative, more geometric argument, which can readily be generalized to the case where
the velocity is proportional to

√
x1 with a smooth nonconstant coefficient. We make the

change of variables p1 = 1/q in the Hamiltonian system (2.2) and take into account the
fact that the Hamiltonian is constant on the trajectories of the Hamiltonian system (and
is equal to unity, precisely as on the original manifold Λ0). Then the system acquires the
form

(2.7) ẋ1 =
q

1 + q2p22
, ẋ2 = p2x1, q̇ =

1

2
(1 + q2p22), ṗ2 = 0.
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This system has smooth right-hand sides, so that the smooth dependence of the solutions
on the parameters (ψ, τ ) readily follows from the main theorems of the theory of ordinary
differential equations solved for the derivative. The Hamiltonian vector field vanishes
nowhere on these trajectories and is not tangent to the initial manifold, whence it follows
that the mapping in question has full rank. �

2.2. Canonical charts, action, and Jacobians on Λ. Here we introduce some ob-
jects needed in the definition of the canonical operator. We define the (nonsingular)
action function S(ψ, τ ) on the Lagrangian manifold Λ by the conditions

(2.8) S
∣∣
Λ0

= 0, dS = p dx ≡ p1 dx1 + p2 dx2.

One can compute S by integrating the form p dx along trajectories of the Hamiltonian
vector field. Since the Hamiltonian H(x, p) is homogeneous of degree 1, the Euler identity
shows that pẋ = H(x, p) = 1 on these trajectories, and we finally obtain S(ψ, τ ) = τ .
Now we cover Λ by canonical charts and introduce phase functions and Jacobians in
these charts. By the lemma on local coordinates (see, e.g., [19]), the set Λ \ Γ can be
covered by canonical charts of various types with coordinates (x1, x2), (p1, x2), (x1, p2),
or (p1, p2). The phase functions and Jacobians in these charts are defined in the standard
way. It remains to define canonical charts in neighborhoods of points of the set Γ.

Lemma 1. An arbitrary point in Γ has a neighborhood where either (q, x2) or (q, p2) can
be taken for coordinates on Λ.

Proof. This can be proved by a straightforward computation on the basis of formulas (2.3)
and (2.5). We prefer to give a more geometric proof similar to that of the lemma on local
coordinates in [19]. In a neighborhood of Γ, the condition that Λ is Lagrangian can be
written in the form dq ∧ dx1 − q2 dp2 ∧ dx2 = 0. Note that q̇ = 1

2 on Γ, so that dq �= 0.
On the other hand, the Lagrangian property degenerates on Γ into dq ∧ dx1 = 0, so

that dq and dx1 are linearly dependent there. Since Λ is immersed in Φ, it follows that
at least one of the differentials dp2 and dx2 is linearly independent of dq, and the proof
of the lemma is complete. �

Thus, the set Γ ∈ Λ can be covered by charts with coordinates (q, x2) or (q, p2). We
consider both cases.

2.2.1. Charts with coordinates (q, x2). We define the phase function in these charts
by the formula S(q, x2) = τ − p1x1. Since the Hamiltonian is equal to unity on the
trajectories in question, we have S(q, x2) = τ − p1

p2 = τ − 1
1+qp2

2
. Thus, the phase function

is smooth.
We introduce the Jacobian J(q, x2) = det ∂(p1,x2)

∂(ψ,τ) . We have

J(q, x2) =
∂p1
∂q

det
∂(q, x2)

∂(ψ, τ )
= − 1

q2
det

∂(q, x2)

∂(ψ, τ )
.

Since the second factor is smooth and does not vanish on the chart, we see that J(q, x2)
has a singularity of type 1/q2 on Γ.

2.2.2. Charts with coordinates (q, p2). We define the phase function in these charts
by the formula S(q, p2) = τ−p1x1−p2x2. Then, by analogy with the preceding argument,
S(q, p2) = τ− p1

p2 −p2x2 = τ− 1
1+qp2

2
−p2x2. Thus, the phase function is also smooth in this

case. Next, for the Jacobian J(q, p2) = det ∂(p1,x2)
∂(ψ,p) we have J(q, p2) =

∂p1

∂q det ∂(q,p2)
∂(ψ,τ) =

− 1
q2 det

∂(q,p2)
∂(ψ,τ) . Thus, J(q, x2) has a singularity of type 1/q2 on Γ in this case as well.
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2.3. Definition of the canonical operator on Λ. Now we are in a position to define
the canonical operator on Λ. Consider a locally finite cover of Λ by canonical charts Uj .
The canonical operatorKh

λ acts on a compactly supported function ϕ on Λ by the formula
Kh

λϕ =
∑

j K
h
j ϕ, where K

h
j is the local canonical operator in the chart Uj . The definition

of local canonical operators in the charts that do not meet Γ is standard (see, e.g., [6]).
Therefore, we only dwell on the definitions for the charts of the two above-mentioned
types in neighborhoods of points of Γ.

2.3.1. Charts with coordinates (q, x2). We define the local canonical operator in
such a chart by the formula

(2.9) [Kh
j ϕ](x, h) =

√
i

2πh

∫
e

i
h

(
x1
q +S(q,x2)

)
ϕ(q, x2)√
J(q, x2)

dq

q2
,

where ϕ = ϕ(q, x2) is a smooth function on Λ compactly supported in the chart and
expressed via the local coordinates of the chart; we assume that arg i = π

2 , and, when
computing the square root, the argument of the Jacobian is chosen as follows. Note that
the Jacobian does not change its sign in the passage through the point q = 0 (at the
point itself, the Jacobian is infinite), because it is proportional to 1/q2 with a nonzero
coefficient. We fix the argument of the Jacobian somehow for q < 0 and define it for
q > 0 by the rule

(2.10) arg J(q, x2)|q>0 = arg J(q, x2)|q<0 + 2π.

Then it turns out that the integrand has a singularity of type 1/q with a smooth coefficient
at the point q = 0. A straightforward computation proves the following lemma.

Lemma 2. The integral (2.9) treated as a singular integral in the sense of the Cauchy
principal value determines a function [Kh

j ϕ](x, h) smooth up to the boundary x1 = 0 in
the half-plane x1 ≥ 0. In particular, this function lies in the domain of the operator L.

The increment (2.10) of the argument gives rise to a contribution to the Maslov index
on Λ caused by the “reflection” of solutions in the boundary x1 = 0.

2.3.2. Charts with coordinates (q, p2). In this case, the situation is completely
similar. The local canonical operator has the form

(2.11) [Kh
j ϕ](x, h) =

i

2πh

∫∫
e

i
h

(
x1
q +x2p2+S(q,p2)

)
ϕ(q, p2)√
J(q, p2)

dq dp2
q2

;

i.e., it differs from (2.9) in that there is an additional integration variable p2. Lemma 2
remains valid in this case.

§3. Construction of the asymptotic expansion of the solution

3.1. Representation of the initial data via the canonical operator. Let Kh
Λ

be the above-constructed Maslov canonical operator [6] with small parameter h on the
Lagrangian manifold Λ.

Theorem 2. There exists a smooth compactly supported function φμρ = φμρ(τ, ψ) on Λ
smoothly depending on the parameters ρ ∈ [0,∞) and μ ∈ [0, 1) and possessing the
following properties:

(1) together with all its derivatives, φμρ decays rapidly as ρ → ∞;

(2) φ0ρ(α, ψ) = ρrV (ρn(ψ))χ(τ ), where rV is the Fourier transform of the func-
tion V (y) and χ(τ ) is a smooth compactly supported cutoff function equal to
unity in a neighborhood of zero;
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(3) we have the representation

(3.1) V
(x

μ

)
=

(−i

2π

)1/2
∫ ∞

μ

√
μ

ρ
K

μ/ρ
Λ (φμρ) dρ+Rμ(x1, x2),

where the remainder Rμ(x1, x2) satisfies the estimates

‖Rμ(x1, x2)‖Hs(R2) ≤ Csμ
3/2, s = 0, 1, 2, . . . .

Proof. The proof relies on Taylor series expansions and is rather cumbersome, and we
omit it for lack of space. �

3.2. Solution of problem (1.11). Now problem (1.11) can be solved as follows. We
represent the initial condition in the form of an integral with respect to the parameter ρ
by Theorem 2. For each value of ρ, we construct the solution of the corresponding
problem with rapidly oscillating initial data by using the canonical operator defined in
§2 on the manifold Λt = Λ with coordinates τt = τ + t, ψ. Finally, we integrate with
respect to ρ. The argument in Subsection 1.3.3, combined with the constructions in [4],
implies the following theorem.

Theorem 3. The construction described above provides the solution of the Cauchy prob-

lem (1.11) in the form
(−i
2π

)1/2 ∫ ∞
μ

√
μ
ρK

μ/ρ
Λt

(rV (ρn(ψ))) dρ modulo O(μ3/2) both in the

scale of energy spaces and (in any half-plane of the form x1 > ε > 0) in the uniform
norm.

§4. Example

We consider an example of an initial perturbation V (see [20, 21, 22, 5]) such that
the asymptotic expansion of the solution in a neighborhood of the x2-axis and the meta-
morphosis of the wave profile can be described by elementary algebraic functions. The
argument in this section is only physically rigorous. We have already mentioned that the
asymptotic expansion constructed here for the solution is localized in a neighborhood of
the solution front, which is determined by formulas (2.3) (see Figure 1). We restrict our-
selves to the case shown in Figure 1 in the middle and present the asymptotic expansion
of the solution in a neighborhood of the point x+ = (x1 = 0, x2 = x+

2 (τ ) = X2(τ, ψ
+(τ ))),

where the front is tangent to the half-line {x2 > 0}. Take the chart with coordinates
(x1, p2). Then the general form of the solution of our Cauchy problem, together with
formula (2.9) rewritten in these coordinates, results in the formula

(4.1) u ≈ −Re

(
i

π

∫ ∞

0

dρ

( ∫ ∞

−∞

ρrV (ρn(ψ)) exp iρ(τ+p1(x1−X1(τ+t)))
μ√

J(τ + t, ψ)
et(τ, ψ) dp1

))
.

Here et is a cutoff function, (τ (t, p1, x2), ψ(t, p1, x2)) is a solution of the system of equa-
tions P1(τ + t, ψ) = p1, X1(τ + t, ψ) = x1, the Jacobian is given by the formula

(4.2) J(τ, ψ) = det
∂(P1,X2)

∂(τ, ψ)
=

4(2 + τ cosψ) sinψ + cosψ(−6 sin 2Φ + sin 4Φ)

8 sinψ sin2 Φ
,

and the square root of the Jacobian is taken as indicated in §2. Clearly, by setting
τ ′ = τ + t we can pass from the variable τ to τ ′ and, omitting the primes, rewrite
formula (4.1) as

(4.3) u ≈ −Re

(
i

π

∫ ∞

0

dρ

( ∫ ∞

−∞

ρrV (ρn(ψ)) exp iρ(τ−t+p1(x1−X1(τ)))
μ et(τ, ψ)√

J(τ, ψ)
dp1

))
,
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where et(τ, ψ) is a cutoff function equal to 1 in some neighborhood of the point (τ, ψ) =
(t, ψ+) and zero outside a larger neighborhood and (τ (p1, x2), ψ(p1, x2)) is the solution
of the system of equations

(4.4) P1(τ, ψ) = p1, X2(τ, ψ) = x2.

Let V be a source with elliptic cross section rotated by an angle θ:

V (y) = V 0(T (θ)y), T (θ) =

(
cos θ sin θ
− sin θ cos θ

)
, V 0(y) =

1

(1 + ( y1

b1
)2 + ( y2

b2
)2)3/2

;

then rV = b1b2 exp(−ρβ(ψ − θ)) and β(φ) =
√
b21 cos

2 φ+ b22 sin
2 φ. The function V (y)

is not compactly supported, and to make the argument rigorous one should multiply
V (x−a

μ ) by a cutoff function e(x−a). However, V (x−a
μ ) decays rapidly, and omitting the

corresponding “tail” when computing the Fourier transform gives only a small correction
to the asymptotic solution. Having this in mind, changing the order of integration
in (4.3), and integrating with respect to ρ, we obtain

(4.5) u ≈ μb1b2
π

Re

(
i

∫
et(τ − t, ψ)

(τ − t+ p1(x1 −X1(τ, ψ)) + iμβ)2
√
J(τ, ψ)

dp1

)
.

From the last integral it is seen that the asymptotic behavior of u as μ → +0 is
determined by a neighborhood of the points p1 corresponding to the zeros of the function
τ (p1, x2)− t+p1(x1−X1(τ (p1, x2), ψ(p1, x2))). Since we are interested in points (x1, x2)
lying near the front points close to the x2-axis, which means that x1 and X1(τ (p1, x2))
are small and τ (p1, x2)− t is bounded, it follows that the corresponding values of p1 are
large. Let us study the behavior of solutions of system (4.4) for large p1. We rewrite (4.4)
and the formula determining Φ (see (2.3)) in the form

(4.6) tanφ =
sinψ

p1
, τ = 2x2 sinψ − 2

sinψ

(
sinψ cosψ − tanφ

1 + tan2 φ

)
, τ =

2(φ− ψ)

sinψ
.

From this, we obtain one equation for the function ψ(p1, x2) and a formula for τ :

ψ = π − x2 sin
2 ψ + cosψ sinψ + arctan(sinψ/p1)−

p1 sinψ

p21 + sin2 ψ
,

τ =
2π + 2arctan(sinψ/p1)− 2ψ

sinψ
,

where the principal value of arctan z is used, which corresponds to the neighborhood in
question of singular points. Perturbation theory gives

(4.7) ψ = ψ0(x2) +O
( 1

p21

)
, τ = τ0(x2) +

2

p1
+O

( 1

p21

)
,

where ψ0(x2) ∈ (π, 2π) is the solution of the equation ψ = π−x2 sin
2 ψ+cosψ sinψ and

τ0(x2) =
2π−2ψ0

sinψ0 . Next,

(τ − t+ p1(x1 −X1(τ, ψ))) + iμβ = p1x1 + τ − t− p1

p21 + sin2 ψ
+ iμβ(ψ),

J =
p21

2 sin2 ψ
(1 + τ cosψ − cotψ) + 1 +

τ cosψ

2
− cotψ.

Thus, the integral (4.5) acquires the form

(4.8)
μb1b2
π

Re

(
i

∫ ∞

−∞

et(τ − t, ψ)

(p1x1 + τ − t− p1

p2
1+sin2 ψ

+ iμβ(ψ − θ))2
√
J
dp1

)
.
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Note that the value p1 = 0 lies outside the support of the function et(τ, ψ). Now
we take into account the fact that μ is a small parameter and make the change of
variables z = x1p1 in the integral (4.8) and the expansions (4.7). Then, clearly, the main
contribution to the integral is from those p1 for which the expression p1x1 + τ − t is
small. Since x1 is small, we see that p1 is sufficiently large. Note that if we make the
change of variables z = p1x1/μ and use the expansions (4.7), then the integrands can
be expanded in powers of the variable x1/(zμ). Hence, we can use the expansions (4.7)
in the integrand, which essentially means that we deal with an asymptotic expansion
in powers of x/μ. We can also omit the cutoff function and understand the resulting
integrals as integrals in the sense of the Cauchy principal value. By retaining quite a
few summands, we enlarge the domain of the variables (x1, x2) where the asymptotic
expansion of the integral to be studied can be used. It should also be kept in mind
that an extra term should be retained in the denominator of the integrand, because this
denominator involves the important small term iμβ.

A more detailed analysis of this argument, close to the ideas contained in the mono-
graphs [9, 10], shows that, in order to find the leading term of the asymptotic expansion
in the domain x1 = O(

√
μ), one should retain the O(1/p1) terms in the first factor in

the denominator of the integrand and the O(1) terms in the integrand. Then, up to in-
finitesimals of higher order with respect to the parameter μ, we can rewrite the integral
in the form

(4.9)

√
2 sinψ0

1 + τ0 cosψ0 − cotψ0
p.v.

∫ ∞

−∞

1

p1(p1x1 + τ0 − t+ iμβ0 + 1/p1)2
dp1,

where β0 = β(ψ0− θ). We also assume that t ranges in a neighborhood of τ0(x2). Apart

from the pole p01 = 1
2x1

(t− τ0 − iβ0μ−
√
(t− τ0 − iβ0μ)2 − 4x1), all other poles of the

integrand give an O(1) contribution to the integral, and we do not take them into account
(they can arise artificially in the passage from (4.8) to (4.9)), and the contribution of the

pole p01 is
(τ0−t+iβ0μ)

(−4x1+(τ0−t+iβ0μ)2)3/2
. Finally, we have the following asymptotic representation

of the solution of the original problem in a neighborhood of the point (x1, x2) = (0, X2(t))
of tangency of the front:

u ≈ 2μ
√
2b1b2 sinψ

0

1 + τ0 cosψ0 − cotψ0
Re

e3iπ/4
(
τ0(x2)− t+ iμβ(ψ0(x2)− θ)

)
(−4x1 + (τ0(x2)− t+ iμβ(ψ0(x2)− θ))2)3/2

,

where the argument of the continuous function in the denominator lies on the interval
(−π/2, π/2). For each x2, this function coincides (up to a factor) with the (exact)
solution obtained in [14] for the one-dimensional wave equation with velocity c =

√
x.

The analysis of this function results in the pictures shown in Figure 2.
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