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Abstract. A second order elliptic equation with a small parameter at one of the
highest order derivatives is considered in a three-dimensional domain. The limit-
ing equation is a collection of two-dimensional elliptic equations in two-dimensional
domains depending on one parameter. By the method of matching of asymptotic
expansions, a uniform asymptotic approximation of the solution of a boundary-value
problem is constructed and justified up to an arbitrary power of a small parameter.

§1. Introduction

Problems for elliptic equations with small parameters at highest order derivatives are
the subject of intense studies. We mention only the earliest papers [1]–[4] on this subject
and the extensive survey [5]. To treat more complicated problems of this type, we need
to exploit the method of matching of asymptotic expansions, also called the matching
method. In [6]–[8] and [10] this method was developed and applied to various problems,
including elliptic equations.

In the majority of papers on elliptic equations with small parameters at highest deriva-
tives, the reduction of order is applied, in which the limiting equation has an order smaller
than the perturbed equation. In particular, this was the reason for the singularity of the
problem. At the same time, it turns out that even if the order reduction is not used, the
problem often continues to be singular, and more involved methods are necessary for its
solution.

Some cases in which the limiting equation is an ordinary differential equation were
considered in the recent papers [11]–[13].

In the present paper, we also assume that the limiting equation is a second order
elliptic equation but with a smaller number of independent variables. We consider the
perturbed equation in a three-dimensional domain. The limiting equation is a collection
of two-dimensional equations in domains depending on one parameter. The asymptotic
behavior of a solution of a boundary-value problem depends substantially on the structure
of the domain at singular points related to the degeneration type of the operator. In this
regard, the situation is similar to the case where degeneration causes order reduction.
In general, our method is close to that used in the above-mentioned cases. However,
the auxiliary problems that arise in passing require other methods. Sometimes, they are
more involved. Even the formal asymptotic expansion is not constructed in all cases of
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general position. Here, we study in detail the case where, in a neighborhood of a singular
point, the domain of the perturbed problem lies on one side of the tangent plane and the
limiting problems are considered in two-dimensional contracting domains.

§2. Statement of the problem and external

expansion of the solution

We consider the first boundary-value problem for the equation

Mεu = εuzz + Lu = f(x, y, z),(1)

u(x, y, z) = 0, (x, y, z) ∈ ∂D,(2)

in a bounded domain D ⊂ R
3. Here, L is an elliptic operator,

Lu = a11(x, y, z)
∂2u

∂x2
+ 2a12(x, y, z)

∂2u

∂x∂y
+ a22(x, y, z)

∂2u

∂y2

+ b1(x, y, z)
∂u

∂x
+ b2(x, y, z)

∂u

∂y
+ c(x, y, z)u.

We assume that ε > 0, c(x, y, z) ≤ 0, and all coefficients of equation (1) and the right-
hand side are infinitely differentiable.

It is well known that, under these assumptions, there exists a bounded solution of
problem (1), (2), which we denote by uε(x, y, z), satisfying the estimate |uε(x, y, z)| ≤
M max(x,y,z)∈D |f(x, y, z)|, where the constant M does not depend on ε.

We assume that ∂D (the boundary of D) is infinitely differentiable. For simplicity, we
assume that the domain D is convex and the planes z = const are tangent to ∂D only
at two points P0 and P1, where P0 is the origin and P1 = (x1, y1, z1), z1 > 0.

To describe the results obtained, we introduce some notation. We denote by Ωz the
intersection of D with the plane z = const and by ∂Ωz the boundary of this intersection.

We shall construct the standard external expansion of the solution uε(x, y, z) as ε → 0
in the form

(3) uε(x, y, z) = U(x, y, z, ε) =

∞∑
k=0

εkuk(x, y, z).

Substituting (3) into (1) and equating coefficients at the same powers of ε, we obtain the
recurrence relations

Lu0 = f(x, y, z), (x, y) ∈ Ωz,

Luk = −∂2uk−1

∂z2
, k ≥ 1, (x, y) ∈ Ωz.

(4)

By the boundary condition (2) of our problem, we obtain the following boundary
conditions for the functions uk(x, y, z) at a fixed point z on the boundary of the plane
domain Ωz:

(5) uk(x, y, z) = 0, k ≥ 0, (x, y) ∈ ∂Ωz.

Thus, for every fixed z, the functions uk(x, y, z) are solutions of the two-dimensional
recurrence problems (4) and (5) in the domain Ωz lying in planes parallel to the plane
(x0y), and the size of the domain Ωz tends to zero as z → +0 and z → z1 − 0. The
domains Ωz “shrink” to the points P0 and P1.

The variable z in the function uk(x, y, z) is regarded as a parameter, and it turns
out that, in general, these functions have singularities at the points Pi, the order of a
singularity increases with k, and, thus, the external expansion (3) becomes useless in
neighborhoods of these points. In neighborhoods of Pi, we construct another asymptotic
expansion. For this, we use the matching method [10]. In more detail, we study the
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behavior of the solution in a neighborhood of the origin. The case of a neighborhood of
the point P1 is studied similarly. The situation depends crucially on the structure of the
boundary in a neighborhood of the point at which the boundary touches the plane. It
turns out that if the curvature of the surface at this point is nonzero, then the coefficients
of the external expansion have no singularities. Not dwelling on this here (see the remark
at the end of the paper), we consider in detail the case where the problem is bisingular,
i.e., the coefficients uk(x, y, z) have growing singularities as z → +0. We assume that
the equation of the boundary ∂Ωz has the form z = x4 + y4 for z ≤ δ, where δ > 0 is a
fixed number.

Let Dδ = {(x, y, z) ∈ D, 0 < z < δ}. In this fixed neighborhood of the origin, we
construct an asymptotic expansion of the solution uε as ε → +0.

To study the asymptotics of the coefficients uk(x, y, z) as z → +0, i.e., in a neigh-
borhood of the origin, we expand the right-hand side f(x, y, z) and the coefficients of
the operator L in Taylor series. Taking into account the structure of the domain in
a neighborhood of the origin, we group the terms of the Taylor series into generalized
homogeneous polynomials, setting the degree of the variable z equal to four times the
degrees of the variables x and y. For a smooth function v(x, y, z), such a representation
has the form

(6)

{
v(x, y, z) =

∑∞
k=0 Pk(x, y, z),

Pk(x, y, z) =
∑[ k4 ]

j=0 qk−4j(x, y)z
j ,

and qm(x, y) are homogeneous polynomials in x and y of degree m.
We change the variables x and y, putting

(7) ξ = xz−
1
4 , η = yz−

1
4 .

In the new variables the polynomials Pk(x, y, z) have the form

(8) Pk(x, y, z) = z
k
4

[ k4 ]∑
j=0

qk−4j(ξ, η) ≡ z
k
4 Rk(ξ, η).

In the operator L, we replace the functions aij(x, y, z) by series of the form (6), (8),
obtaining

(9)

⎧⎪⎨⎪⎩
aij(x, y, z) = aij(0, 0, 0) +

∑∞
k=1 z

k
4 Ak,ij(ξ, η),

bj(x, y, z) =
∑∞

k=0 z
k
4 Bk,j(ξ, η),

c(x, y, z) =
∑∞

k=0 z
k
4 Ck(ξ, η).

Now, we pass from the variables x and y to the variables ξ and η. Denote

L0 = a11(0, 0, 0)
∂2

∂ξ2
+ 2a12(0, 0, 0)

∂2

∂ξ∂η
+ a22(0, 0, 0)

∂2

∂η2
,

Lm = Am,11(ξ, η)
∂2

∂ξ2
+ 2Am,12(ξ, η)

∂2

∂ξ∂η
+Am,22(ξ, η)

∂2

∂η2

+Bm−1,1(ξ, η)
∂

∂ξ
+Bm−1,2(ξ, η)

∂

∂η
+ Cm−2(ξ, η), m > 0,

(10)

where C−1 ≡ 0.
We represent the operator L in the form

(11) L = z−
1
2L0 +

∞∑
j=1

z
j−2
4 Lj .
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Theorem 1. There exist unique solutions uk(x, y, z) of problems (4), (5) that are infin-
itely differentiable in x and y. As z → +0, we have the following asymptotic expansions
for uk(x, y, z):

(12) uk(x, y, z) =

∞∑
j=2−6k

z
j
4 ukj(xz

− 1
4 , yz−

1
4 ),

where the functions ukj(ξ, η) (ξ = xz−
1
4 , η = yz−

1
4 ) are infinitely differentiable in the

domain ξ4 + η4 ≤ 1. Relation (12) admits termwise differentiation with respect to the
parameter z.

Proof. Consider the function u0(x, y, z). Relations (4) and (5) show that this function
solves the problem

Lu0 = f(x, y, z), (x, y, z) ∈ Ωz, 0 < z < δ;(13)

u0(x, y, z) = 0, (x, y, z) ∈ ∂Ωz, 0 < z < δ.(14)

We construct an asymptotic representation of the function u0(x, y, z) in the form of
the series (12), i.e.,

(15) u0(x, y, z) =
∞∑
j=2

z
j
4 u0j(ξ, η).

Also, we represent the Taylor series of f(x, y, z) in a form similar to (9),

(16) f(x, y, z) =

∞∑
k=0

P̃k(x, y, z) =

∞∑
k=0

z
k
4 q̃k(ξ, η).

Using relation (16) and formula (11) for the operator L, we substitute the asymptotic
expansion under consideration in equation (13). Equating the terms with the same
powers of z, we obtain recurrence relations for the required functions u0j(ξ, η),

(17)

⎧⎪⎨⎪⎩
L0u02 = q̃0(ξ, η),

L0u03 = −L1u02 + q̃1(ξ, η),

L0u0m = −
∑m−2

j=1 Lju0,m−j + q̃m−2(ξ, η), m > 3.

The boundary condition (14) for the series (15) takes the form

(18) u0j(ξ, η) = 0

for ξ4 + η4 = 1.
Thus, we define the functions u0j(ξ, η) as the solutions of problems (17) and (18).

It is well known (see, e.g., [14, 15]) that the solutions of these problems exist and are
infinitely differentiable in ξ and η.

To justify the asymptotic formula (15), we proceed in the standard way. We consider
a partial sum

SN (x, y, z) =
N∑
j=2

z
j
4u0,j(ξ, η),

where N is a sufficiently large number. By construction, we have

L(u0(x, y, z)− SN (x, y, z)) = O(z
N−1

4 ), (x, y, z) ∈ Ωz,

u0(x, y, z)− SN (x, y, z) = 0, (x, y, z) ∈ ∂Ωz.

Consequently, since c(x, y, z) ≤ 0, we obtain

|(u0(x, y, z)− SN (x, y, z))| ≤ Mz
N−1

4 , (x, y, z) ∈ Ωz.
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The fact that formula (12) admits termwise differentiation with respect to the parameter
z follows from the well-known internal estimates for the derivatives of solutions of elliptic
equations and from estimates for these derivatives in the vicinity of the smooth boundary;
see [14]. Although the boundary of the domain itself depends on the parameter z, it turns
into the domain ξ4 + η4 < 1 after the change of variables (7). The function f(x, y, z)

turns into the function f̃(ξz
1
4 , ηz

1
4 , z). The function u0(x, y, z) changes in a similar way.

By construction, the difference between the derivative of u0(x, y, z) and the derivative of
the partial sum SN (x, y, z) satisfies an equation the right-hand side of which is small for
small z. Since we have proved that the difference itself is small for small z, the above-
mentioned estimates for derivatives imply that the absolute value of the difference of the
corresponding derivatives also does not exceed a high power of z if the partial sum is
sufficiently long, regardless of what variables we use, (x, y, z) or (ξ, η, z), to calculate the
derivative.

Applying the same argument to the higher derivatives, we see that the series admits
termwise differentiation of an arbitrary order. This proves the claim of Theorem 1 for
the function u0(x, y, z).

Now, we consider the function u1(x, y, z). It satisfies the equation

Lu1 = −∂2u0

∂z2
= F1(x, y, z), (x, y, z) ∈ Ωz,

and vanishes on the boundary ωz of Ωz.
As has been proved above, the function F1(x, y, z) has the asymptotic expansion

F1(x, y, z) =

∞∑
j=−6

z
j
4 fj(ξ, η).

It is easy to obtain explicit expressions for fj(ξ, η) in terms of the function u0,j+8(ξ, η)
and its first and second order derivatives.

As in the study of the function u0(x, y, z), first we construct a formal asymptotic
expansion (12) for the function u1(x, y, z). The functions u1j(ξ, η) are found as solutions
of problems of the form (17), (18),⎧⎪⎨⎪⎩

L0u1,−4 = f−6(ξ, η),

L0u1,−3 = −L1u1,−4 + f−5(ξ, η),

L0u1,m = −
∑m+4

j=1 Lju1,m−j + fm−2(ξ, η), m > −3,

u0j(ξ, η) = 0 for ξ4 + η4 = 1.
The further details are the same as those for the function u0(x, y, z); thus, the claim

is proved for the function u1(x, y, z).
The asymptotic expansions (12) as z → +0 for the functions uk(x, y, z), k ≥ 2, are

constructed and justified similarly. �

Obviously, the functions uk(x, y, z) have singularities as z → +0, and the order of
these singularities grows with k. Therefore, the asymptotic expansion (3) is certainly
invalid for small z. In a neighborhood of zero, we must seek a different form of the
asymptotic expansion for the solution of problem (1), (2).

§3. Internal expansion

In a neighborhood of the origin, we pass to the new, internal variables

(19) σ = xε−
1
6 , τ = yε−

1
6 , ζ = zε−

2
3
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and construct an internal asymptotic expansion of the solution uε(x, y, z) in the form

(20) uε(x, y, z) = V (x, y, z, ε) =
∞∑
i=2

ε
i
6 vi(σ, τ, ζ).

As in the case of the external expansion, we group the terms of the Taylor series for
the coefficients of the equation and for the right-hand side into generalized homogeneous
polynomials, setting the degree of the variable z equal to four times the degrees of the
variables x and y. For a smooth function v(x, y, z), such a representation is given by
formulas (6) with the subsequent change of variables (19). Continuing formula (8), we
obtain

Pk(x, y, z) = Pk(σε
1
6 , τε

1
6 , ζε

2
3 ) = ε

k
6 Zk(σ, τ, ζ).

After these transformations, we represent the operator Mε in the form

Mε = ε−
1
3

(
M0 +

∞∑
j=1

ε
j
6Mj

)
,

where

M0 =
∂2

∂ζ2
+ a11(0, 0, 0)

∂2

∂σ2
+ 2a12(0, 0, 0)

∂2

∂σ∂τ
+ a22(0, 0, 0)

∂2

∂τ2
,

Mm = αm,11(σ, τ, ζ)
∂2

∂σ2
+ 2αm,12(σ, τ, ζ)

∂2

∂σ∂τ
+ αm,22(σ, τ, ζ)

∂2

∂τ2

+ βm−1,1(σ, τ, ζ)
∂

∂σ
+ βm−1,2(σ, τ, ζ)

∂

∂τ
+ γm−2(σ, τ, ζ), m > 0.

We also represent the right-hand side of equation (1) in the form

f(x, y, z) =
∞∑
k=0

P̃k(x, y, z) =
∞∑
k=0

ε
k
6 Qk(σ, τ, ζ),

where Qk(σ, τ, ζ) = O(ζ
k
4 ).

Using the above representation of f(x, y, z) and the operator Mε, we can transform
(1) into the equation

ε−
1
3

(
M0 +

∞∑
j=1

ε
j
6Mj

)
uε =

∞∑
k=0

ε
k
6 Qk(σ, τ, ζ).

Substituting the series (20) into this equation and comparing the coefficients of the
same powers of ε, we obtain the following system of recurrence relations for the functions
vk(σ, τ, ζ):

(21)

⎧⎪⎨⎪⎩
M0v2 = Q0(σ, τ, ζ),

M0v3 = −M1v2 +Q1(σ, τ, ζ),

M0vm = −
∑m−2

j=1 Mjvm−j +Qm−2(σ, τ, ζ), m > 3.

In the variables σ, τ, and ζ, the boundary condition (2) takes the form

(22) vk(σ, τ, ζ) = 0,

where ζ = σ4 + τ4.
Before constructing the functions vk(σ, τ, ζ), we find an appropriate form for their

asymptotic expansions as ζ → ∞.
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In what follows, it is convenient to have a special notation for a partial sum of an
asymptotic expansion. For example, for series (3), we put

AN,x,y,zU =

N∑
j=0

εkuk(x, y, z),

where N is a sufficiently large positive integer. Thus, the result of the application of the
operator AN,x,y,z to a series U is the sum of terms of U for which the exponent k does
not exceed N. It is essential that the coefficients of the series depend on x, y, and z.

Now we replace the functions uk(x, y, z) by their asymptotic expansions (12) as z →
+0, obtaining

AN,x,y,zU =

N∑
k=0

εk
[ ∞∑
j=2−6k

z
j
4 ukj(xz

− 1
4 , yz−

1
4 )

]
.

Writing the right-hand side of this relation in terms of the variables σ, τ , and ζ and
taking into account formulas (19) and the relations xz−

1
4 = σζ−

1
4 and yz−

1
4 = τζ−

1
4 , we

get

AN,x,y,zU =

N∑
k=0

εk
[ ∞∑
j=2−6k

ζ
j
4 ε

j
6ukj(σζ

− 1
4 , τζ−

1
4 )

]
.

We apply the operator Am,σ,τ,ζ defined above once again, with the only difference that
now the coefficients of the series depend on σ, τ , and ζ. This yields

Am,σ,τ,ζAN,x,y,zU =

6m∑
i=2

ε
i
6

[ N∑
k=0

ζ
i−6k

4 uk,i−6k(σζ
− 1

4 , τζ−
1
4 )

]
.

It is clear that the internal sums on the right-hand side of this formula must coincide
with the partial sums of the asymptotic series of the required functions vi(σ, t, ζ) as
ζ → ∞.

Let

vi,N (σ, τ, ζ) =

N∑
k=0

ζ
i−6k

4 uk,i−6k(σζ
− 1

4 , τζ−
1
4 ),

and let ṽi(σ, t, ζ) be a temporary notation for the formal series

(23) ṽi(σ, τ, ζ) =
∞∑
k=0

ζ
i−6k

4 uk,i−6k(σζ
− 1

4 , τζ−
1
4 ) as ζ → ∞.

Now we denote by Ṽ (x, y, z, ε) the formal series

Ṽ (x, y, z, ε) =
∞∑
i=2

ε
i
6 ṽi(σ, τ, ζ).

Then, by construction, the following important relation is valid for all sufficiently large
positive integers N :

(24) Am,σ,τ,ζAN,x,y,zU = AN,x,y,zAm,σ,τ,ζ Ṽ .

To complete the construction and justification of the asymptotic expansion of the
solution uε(x, y, z), it remains to prove that there exist functions vi(σ, τ, ζ) that satisfy
system (21) and have the asymptotic expansions (23) as ζ → ∞.

Theorem 2. There exist solutions vi(σ, τ, ζ) of problems (21), (22) in the domain σ4 +
τ4 ≤ ζ. These functions admit the asymptotic expansions (23) as ζ → ∞, and these
expansions can be differentiated termwise with respect to all variables.
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Proof. First, we verify that the series (23) are asymptotic solutions of system (21), i.e.,
for large ζ, the partial sums of these series satisfy system (21) approximately. Although
this statement seems almost obvious, a rigorous proof of it is, unfortunately, very cumber-
some. A natural way of proving this starts with writing MεAm,σ,τ,ζAN,x,y,zU − f(x, y, z)
in different variables. Since this value is small in some sense, from (24) it follows that

MεAN,x,y,zAm,σ,τ,ζ Ṽ − f(x, y, z) is also small. This implies that the series ṽi(σ, τ, ζ) are
asymptotic solutions of system (21).

We proceed to realizing this, unfortunately, very cumbersome and unpleasant plan.
We have

MεAN,x,y,zU − f(x, y, z) = Mε

( N∑
k=0

εkuk(x, y, z)

)
− f(x, y, z) = εN+1 ∂

2uN

∂z2
.

Let Γp(ξ, η, z) and Γpq(ξ, η, z) denote bounded functions that are smooth for z > 0

and have asymptotic expansions in positive integral powers of z
1
4 as z → +0. Thus,

(25) MεAN,x,y,zU − f(x, y, z) = εN+1z
−3N−3

2 Γ00(ξ, η, z) = ζ
−3N−3

2 Γ00(ξ, η, z).

For brevity, we denote by Bm,N the finite sums Am,σ,τ,ζAN,x,y,zU and AN,x,y,zAm,σ,τ,ζ Ṽ ,
which are equal by (24). Consequently,

MεBm,N − f(x, y, z) = MεAN,x,y,zU − f(x, y, z) +Mε(Bm,N − AN,x,y,zU)

= ζ
−3N−3

2 Γ00(ξ, η, z) +Mε(Bm,N − AN,x,y,zU).

Next, we transform the last term:

Mε(Bm,N − AN,x,y,zU) = Mε

( N∑
k=0

εk
[ ∞∑
j=6m−6k+1

z
j
4 ukj(σζ

− 1
4 , τζ−

1
4 )

])

=

N∑
k=0

εkMε

[
z

6m−6k+1
4

∞∑
j=0

z
j
4uk,6m−6k+j+1(ξ, η)

]

=

N∑
k=0

εk
[
z

6m−6k−1
4 Γk,1(ξ, η, z) + εz

6m−6k+1
4 −2Γk,2(ξ, η, z)

]
.

Finally, we obtain

(26) MεBm,N − f(x, y, z) = ζ
−3N−3

2 Γ00(ξ, η, z) +
N∑

k=0

εm− 1
6 ζ

3
2 (m−k)− 1

4Γk,3(ξ, η, z).

We take into account the fact that

Bm,N =
6m∑
i=2

ε
i
6 vi,N (σ, t, ζ)

and represent the operator Mε in the variables σ, t, and ζ; then relation (26) shows
that the functions vi,N (σ, t, ζ) satisfy system (21) approximately. This means that the
following relations are valid:

(27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M0v2,N = Q0(σ, τ, ζ) +O(ζ−

6N+1
4 ),

M0v3,N = −M1v2,N +Q1(σ, τ, ζ) +O(ζ−
6N+2

4 ),

. . .

M0vm,N = −
∑m−2

j=1 Mjvm−j,N +Qm−2(σ, τ, ζ) +O(ζ−
6N+m−1

4 ).

Now, it remains to prove the existence of the above-mentioned functions vi(σ, τ, ζ).
This follows from the next lemma.
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Lemma. Let Ω = {(σ, τ, ζ) : σ4 + τ4 ≤ ζ}, wi(σ, τ, ζ) ∈ C∞(Ω), wi(σ, η, σ
4 + η4) = 0,

and wi(σ, τ, ζ) = O(ζq−
i
6 ) as ζ → ∞. (Here, q is a fixed number.) Suppose Φ(σ, τ, ζ) ∈

C∞(Ω), and let all derivatives of Φ(σ, τ, ζ) be functions of slow growth as ζ → ∞. Let
the series W ∗ =

∑∞
i=0 wi(σ, τ, ζ) be an asymptotic solution of the equation M0W

∗ =
Φ(σ, τ, ζ) in the domain Ω in the sense that for all positive integers N we have

M0

( N∑
i=0

wi(σ, τ, ζ)

)
− Φ(σ, τ, ζ) = O(ζq−

N+4
6 )

as ζ → ∞. Then the equation M0W = Φ(σ, τ, ζ) admits a solution W (σ, τ, ζ) ∈ C∞(Ω)
for which W ∗ is an asymptotic series as ζ → ∞.

Proof. Let Ωr be the subset of Ω defined by the inequality ζ ≤ r, and let Wr(σ, τ, ζ)
be a solution of the equation M0Wr = Φ(σ, τ, ζ) that is zero on the boundary of this
domain. By the assumptions of the lemma, there exist numbers h > 0 and K > 0 such
that |Φ(σ, τ, ζ)| < K(1 + ζh).

First, we find a uniform estimate for the solutions Wr(σ, τ, ζ) in Ω. We consider the
function

H(σ, τ, ζ) = (2
√
ζ + α− σ2 − τ2) exp(

√
ζ + α), α > 0,

positive in the domain Ω. Since for a sufficiently large fixed α we have

M0(H) <
( 1

ζ + α
+

1

2
√
ζ + α

− 2a11(0, 0, 0)− 2a22(0, 0, 0)
)
exp(

√
ζ + α)

< −γ exp(
√
ζ + α), γ > 0,

we see that

M0(CH(σ, τ, ζ)±Wr(σ, τ, ζ)) < 0

for some positive C.
The maximum principle shows that |Wr(σ, τ, ζ)| < CH(σ, τ, ζ). Consequently, the

functions Wr(σ, τ, ζ) are uniformly bounded on each compact subset of Ω. From the well-
known estimates [14, 15] for the derivatives of solutions of elliptic equations, it follows
that the derivatives of these solutions are uniformly bounded on any fixed compact set.
Choosing a subsequence of solutions Wr(σ, τ, ζ) that converges on this compact set, we
obtain a solution of the equation M0Wr = Φ(σ, τ, ζ) on the same compact set. Next,
extending the compact set and choosing a diagonal sequence in a standard way, we obtain
a solution W (σ, τ, ζ) of the equation in question in the entire domain Ω. For this solution,
we have the estimate |W (σ, τ, ζ)| < CH(σ, τ, ζ).

Now, we must verify that the solution constructed above has the asymptotic expansion∑∞
i=0 wi(σ, τ, ζ) as ζ → ∞.

For this, we consider the difference gN =
∑N

i=0 wi(σ, τ, ζ) − W (σ, τ, ζ). By the as-

sumptions of the lemma, we have |M0gN | < γ(1 + ζ)−
N+4

6 in Ω. As above, we can use

the barrier function (2
√
ζ + α− σ2 − τ2)(1 + ζ)−

N+4
6 to show that gN = O(1 + ζ)−

N+4
6 .

(We note that the maximum principle is valid in the unbounded domain Ω. This can be
proved with the help of the same function H(σ, τ, ζ), because we have an estimate for
the function W (σ, τ, ζ) and the wi(σ, τ, ζ) are functions of slow growth.) The lemma is
proved. �

Now, we can finish the proof of Theorem 2 by applying the above lemma to systems
(21) and (27). We start with the first equations of the systems. The lemma cannot be
applied to the function v2,N directly, because, in general, the terms of its partial sum (23)
have singularities as ζ → 0. However, this does not play any essential role because the
functions uk,i−6k(σζ

− 1
4 , τζ−

1
4 ) can be replaced by the same functions multiplied by a fixed
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smooth cutoff function equal to zero in a neighborhood of zero and equal to 1 for ζ > 1.
This change does not affect the asymptotic properties as ζ → ∞. Therefore, the lemma
implies the existence of a solution v2(σ, τ, ζ) with an asymptotic expansion ṽ2(σ, τ, ζ) of
the form (23). Next, we must pass to the functions v3(σ, τ, ζ) and ṽ3(σ, τ, ζ). Applying
the lemma to the equations for these functions in systems (21) and (27), we arrive at
the required solution v3(σ, τ, ζ). Proceeding by induction, we obtain the conclusion of
Theorem 2.

Thus, we have constructed an external expansion (3) in the domain D and an internal
expansion (20) in a neighborhood of the point P0 = (0, 0, 0). We assume that in a
neighborhood of the other singular point P1 = (x1, y1, z1), z1 > 0, the boundary has an
equation of a similar form z1 − z = (x− x1)

4 +(y− y1)
4 and construct a similar internal

expansion, which we denote by V ∗, in a neighborhood of this point.

Theorem 3. As ε → 0 and for ε
1
3 ≤ z ≤ z1 − ε

1
3 , the solution of problem (1), (2)

admits the asymptotic expansion (3). This solution can be expanded into the uniform

asymptotic series (20) for 0 ≤ z ≤ ε
1
3 and into the uniform asymptotic series V ∗ for

z1 − ε
1
3 ≤ z ≤ z1.

Proof. By the construction of the series (3) and formula (25), the function AN,x,y,zU

satisfies the boundary condition (2) and equation (1) up to ε
N
2 for z ≥ ε

1
3 . On the

other hand, by the construction of the series (20), the function Am,σ,τ,ζV satisfies the

boundary condition (2) and equation (1) up to ε
m
2 for z ≤ ε

1
3 . Moreover, the form of

the asymptotic series (12) shows that

(28)
∣∣AN,x,y,zU − Bm,N

∣∣ < Kε
N
2

whenever z ≤ ε
1
3 , and the form of the asymptotic series (23) shows that

(29)
∣∣Am,σ,τ,ζV − Bm,N

∣∣ < Kε
N
2

whenever z ≥ ε
1
3 .

Thus, the function

Emn = AN,x,y,zU + Am,σ,τ,ζV − Bm,N

satisfies the equation approximately for 0 < z < δ, where δ is a fixed small positive
number. Indeed, for ε

1
3 ≤ z < δ, we have∣∣MεEmn − f(x, y, z)

∣∣ = ∣∣MεAN,x,y,zU − f(x, y, z) +Mε[Am,σ,τ,ζV − Bm,N ]
∣∣

< K1(ε
N
2 + ε

m
2 ).

On the other hand, if z ≤ ε
1
3 , then∣∣MεEmn − f(x, y, z)

∣∣ = ∣∣MεAm,σ,τ,ζV − f(x, y, z) +Mε[AN,x,y,zU − Bm,N ]
∣∣

< K2(ε
m
2 + ε

N
2 ). �

As was noted above, in a neighborhood of the point P1 = (x1, y1, z1) we construct an
internal expansion V ∗. As in the case of the point P0 = (0, 0, 0), we define B

∗
m,N as the

common part of the asymptotic expansions of the series (3) and V ∗. For these series we
have the same estimates as for the series in a neighborhood of the point P0.

The terms of the series V and V ∗ are defined only in neighborhoods of the points P0

and P1. Therefore, to finish the proof rigorously, we must multiply the terms of these
series by smooth cutoff functions. One of the functions is identically 1 for z ≤ δ and zero
for z ≥ 2δ. The other function is constructed similarly for z ≤ z1. To avoid superfluous
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notation, we preserve the old notation for the new functions. It is obvious that the
asymptotic properties of the functions vk(σ, τ, ζ) and ṽk(σ, τ, ζ) will not change.

Thus, the function

E
∗
mn = AN,x,y,zU + Am,σ,τ,ζV + Am,σ,τ,ζV

∗ − Bm,N − B
∗
m,N

is defined everywhere in the domain D and satisfies the boundary condition (2) and the
estimate ∣∣Mε

(
E
∗
mN − uε(x, y, z)

)∣∣ < K3

(
ε

m
2 + ε

N
2

)
.

Consequently, ∣∣(E∗
mN − uε(x, y, z)

)∣∣ < K4(ε
m
2 + ε

N
2 ).

Now, the claim of Theorem 3 follows from the above estimate and inequalities (28)
and (29). �

Remark 1. For simplicity, the boundaries of the neighborhoods under consideration were
chosen to be z = ε

1
3 and z = z1 − ε

1
3 . Without any serious changes in the above proof,

we can replace them by z = εα and z = z1 − εα provided that 0 < α < 2
3 .

Remark 2. Here we point out an interesting specific feature of the problem in question.
We assumed above that, in a neighborhood of the origin, the boundary has the equation
z = x4+y4, and, in this case, the asymptotic expansion is invalid in a small neighborhood
of the origin. The coefficients of it have growing singularities as z → +0. It is easy to
verify that the same is true if the curvature of the boundary is zero at the points where
the boundary touches the plane z = const. At the same time, if the curvature is nonzero,
then the coefficients of the external asymptotic expansion have no singularities. Thus,
the problem remains singular but not bisingular.

As an example, we consider the specific case of problem (1), (2) in which, for z < δ,
the domain D coincides with the interior of the paraboloid of revolution z = x2+y2 and,
in a neighborhood of the origin, the principal part of the operator L coincides with the

Laplace operator, i.e., L0 = ∂2

∂ξ2 + ∂2

∂η2 in formula (10).

Now, we state some auxiliary results. We denote by U
(j)
k (x, y), j = 1, 2, the harmonic

polynomials (in the variables x and y)

U
(1)
k (x, y) = rk sin kφ, U

(2)
k (x, y) = rk cos kφ,

where r and φ are polar coordinates in the plane (x, y). It is easy to verify the relations

xU
(1)
k =

1

2
U

(1)
k+1 +

1

2
r2U

(1)
k−1, k ≥ 2, xU

(2)
k =

1

2
U

(2)
k+1 +

1

2
r2U

(2)
k−1, k ≥ 1,

yU
(1)
k =

1

2
r2U

(2)
k−1 −

1

2
U

(2)
k+1, k ≥ 1, yU

(2)
k =

1

2
U

(1)
k+1 +

1

2
r2U

(1)
k−1, k ≥ 2,

whence it follows that the function xmypU
(j)
k is a linear combination of the functions

U
(j)
k+m+p−2sr

2s, 0 ≤ s ≤ k+m+p
2 , for all m, p ≥ 0.

Consequently (since U
(2)
0 = 1, U

(2)
1 = x, and U

(1)
1 = y), every polynomial Q(x, y) can

be represented as a linear combination of functions of the form r2qU
(j)
k .

It is also easily seen that

Δ(rαU
(j)
k ) = [α(α− 1) + 2αk + α] rα−2U

(j)
k = α(α+ 2k)rα−2U

(j)
k

for all α. Therefore, the function

w(x, y) =
1

(2n+ 2)(2n+ 2 + 2k)
r2n+2U

(j)
k ,
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which is a homogeneous polynomial of degree 2n+ k + 2, is a solution of the nonhomo-
geneous equation

Δxyw = r2nU
(j)
k .

On the boundary of the disk Ωz (for r =
√
z), the function constructed above coincides

with the harmonic polynomial U
(j)
k (x, y) up to the factor zn+1[(2n+ 2)(2n+2+ 2k)]−1.

Therefore, the function

w̃(x, y, z) =
1

(2n+ 2)(2n+ 2 + 2k)

[
r2n+2 − zn+1

]
U

(j)
k

is a unique bounded solution of the problem

Δxyw = r2nU
(j)
k , r <

√
z; w(

√
z, φ) = 0.

By construction, this solution is a polynomial in all three variables x, y, and z.
Using the above constructions, the structure of the operator L in a neighborhood of

the origin, and also the form of the right-hand sides of relations (4), we can easily show
that, for z ≤ x2 + y2, the asymptotic expansions of the solutions uk(x, y, z) as z → 0
are series, the terms of which are polynomials of an appropriate structure in all three
variables x, y, z.

Consequently, in this particular case, the coefficients of the external expansion (3) have
no singularities, there is no need to introduce the external extension, and the series (3)
provides the uniform asymptotic approximation of the solution uε(x, y, z) as ε → 0.
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