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THE SPECTRUM ASYMPTOTICS FOR THE DIRICHLET PROBLEM

IN THE CASE OF THE BIHARMONIC OPERATOR

IN A DOMAIN WITH HIGHLY INDENTED BOUNDARY

V. A. KOZLOV AND S. A. NAZAROV

Dedicated to Vasilĭı Mikhăılovich Babich

Abstract. Asymptotic expansions are constructed for the eigenvalues of the Dirich-

let problem for the biharmonic operator in a domain with highly indented and rapidly
oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic construc-
tions depend heavily on the quantity γ that describes the depth O(εγ) of irregularity
(ε is the oscillation period). The resulting formulas relate the eigenvalues in domains
with close irregular boundaries and make it possible, in particular, to control the
order of perturbation and to find conditions ensuring the validity (or violation) of
the classical Hadamard formula.

§1. Introduction

1. Setting of problems. Let a domain Ω on the plane R
2 be bounded by a simple,

closed, and smooth (of class C∞) contour Γ = ∂Ω. By scaling, we make the length of
Γ equal to 1. In a neighborhood V of Γ we introduce a system of natural curvilinear
coordinates (n, s), where n is the distance to Γ, taken with the minus sign inside of Ω,
and s is the arclength on Γ. The rapidly oscillating boundary Γε of the perturbed domain
Ωε (see Figure 1) is defined by the formula

(1.1) Γε = {x ∈ V : s ∈ Γ, n = εγH(ε−1s, s)},
where ε = 1/N is a small parameter, N ∈ N is a large integer, γ is a quantity measuring
the “irregularity” of the boundary (the greater is γ, the smaller is the perturbation
irregularity), and H is a profile function that is smooth relative to both variables, the
“slow” variable s and the “fast” variable η = ε−1s, and 1-periodic relative to η. Note
that, somewhat loosely, in our notation we do not distinguish between a point s ∈ Γ and
its coordinate. For the role of V it is convenient to take the �-neighborhood V� with an
appropriate � > 0.

Concerning the nonregular perturbation of the boundary (see Figure 2), we assume
that

(1.2) Γ ∈ Lip, � (Ω,Ωε) := (Ω \ Ωε) ∪ (Ωε \ Ω) ⊂ Vε.

In all other respects, the perturbation of Ω is arbitrary. To avoid numerous duplication
of formulas, we keep the notation Ω and Ωε also in §4. It should be emphasized that
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Figure 1. A domain with rapidly oscillating boundary. The initial
domain is tinted.

the calculations and arguments of §4 remain valid for multidimensional domains, but the
authors know of no physical model involving a fourth-order differential equation in R

d,
d ≥ 3, so that we pay no attention to this possibility.

2. The problem in a domain with rapidly oscillating boundary. We return to
discussing the locally periodic boundary (1.1). In the domain Ωε we consider the spectral
problem1

Δ2
xu

ε(x) = λεuε(x), x ∈ Ωε,(1.3)

uε(x) = 0, ∂nεuε(x) = 0, x ∈ Γε.(1.4)

Here Δx is the Laplace operator in the Cartesian coordinates x = (x1, x2), λ
ε is the

spectral parameter, and ∂nε stands for the derivative along the outward normal to the
boundary Γε = ∂Ωε of the perturbed domain Ωε. The variational setting of problem
(1.3), (1.4) involves the integral identity [1]

(1.5) (Δxu
ε,Δxv

ε)Ωε = λε(uε, vε)Ωε , vε ∈ H̊2(Ωε),

in which ( , )Ωε is the natural scalar product in the Lebesgue space L2(Ω
ε), and H̊2(Ωε)

denotes the subspace of the Sobolev space H2(Ωε) formed by the functions satisfying the
boundary conditions (1.4). The second and first basic inequalities (see [1, Chapter 2])
imply the relation

(1.6) ‖uε;H2(Ωε)‖ ≤ c‖Δxu
ε;L2(Ω

ε)‖, uε ∈ H̊2(Ωε),

and the constant c can be taken to serve all ε ∈ (0, ε0] (the function uε can be extended
by zero to a larger fixed domain). The left-hand side of (1.5) is a scalar product in the

Hilbert space H̊2(Ωε), and thus, by [2, Theorems 10.1.5 and 10.2.2], the spectrum of
problem (1.5) is discrete, and the eigenvalues form an unbounded monotone sequence

(1.7) 0 < λε
1 ≤ λε

2 ≤ · · · ≤ λε
p ≤ · · · → +∞,

in which they are counted with regard to multiplicity, and the corresponding eigenfunc-
tions uε

1, u
ε
2, . . ., u

ε
p, . . . ∈ H̊2(Ωε) can be taken to obey the orthogonality and normaliza-

tion conditions

(1.8) (uε
p, u

ε
q)Ωε = δp,q, p, q ∈ N.

Here δp,q is the Kronecker symbol. The boundary-value problem (1.3), (1.4) is known
as the Kirchhoff model of the bending oscillations of a thin plate with a clamped edge

1In fact, we deal with a family of problems parametrized by the quantity ε = 1/N , but it is convenient
to assume the parameter to be small but fixed and name the accompanying objects in the singular.
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Figure 2. A domain with irregularly perturbed boundary.

(see [3, §30] and [4, Chapter 4]), and equation (1.3) is named after Sophie Germain.2

Besides the flat roofs of modern arenas and other sizable buildings, this problem de-
scribes deformations of the ice covers of water bodies with a highly indented coastline,
for example, of Norwegian fiords, which do not freeze up at the present time, but can
lose this advantageous property due to changes in the Gulf Stream parameters, as some
unfavorable predictions of geophysicists and meteorologists say.

In the homogenization theory, as applied to the boundary-value problem in the domain
Ωε bounded by the contour (1.1), a main goal is to characterize the behavior of the
eigenvalues λε

p as ε → +0 in dependence of the exponent γ in (1.1) (Theorem 3.1) and to
describe the “smooth picture” of the rapidly oscillating boundary Γε (see Subsection 3
in §5).

If the boundary perturbation is periodic, then the following simple claim about con-
vergence provides the “limiting” problem

Δ2
xu(x) = λu(x), x ∈ Ω,(1.9)

u(x) = ∂nu(x) = 0, x ∈ Γ,(1.10)

or, more precisely, its variational formulation

(1.11) (Δxu,Δxv)Ω = λ(u, v)Ω, v ∈ H̊2(Ω).

Lemma 1.1. The limit λ0
q = limλε

q as ε → +0 along, possibly, some infinitesimally
small sequence, belongs to the collection

(1.12) 0 < λ1 ≤ λ2 ≤ · · · ≤ λp ≤ · · · → +∞

of eigenvalues of problem (1.11). The corresponding eigenfunctions, extended by zero

outside of Ωε, converge in L2(R
2) to some eigenfunction u0

q ∈ H̊2(Ω) of problem (1.5),

and ‖u0
q ;L2(Ω)‖ = 1.

On its own, the limiting problem (1.9), (1.10) carries no information on the degree of
irregularity of Γε; therefore, a key role is played by the correction term in the eigenvalue’s
asymptotic expansion. If the boundary is perturbed regularly (the profile H is indepen-
dent of the fast variable; see Subsection 1 in §2 and Figure 3), for the simple eigenvalue

2In 1815, for the deduction of the equation for eigenoscillations of plates, mademoiselle Sophie Ger-
main was awarded a prize of French Academy. Afterwords, S. Poisson found a mistake in her calculations
and published corrections in 1829. A complete theory of plate bending, based on an empiric asymptotic
analysis, was created by Kirchhoff in 1850–1859.
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Figure 3. A domain with a regularly perturbed boundary.

λp the asymptotic formula, whose proper name should be the Hadamard formula [5],
takes the form

(1.13) λε
p = λp + εγ

∫
Γ

H(s)|∂2
nup(0, s)|2 ds+ rλε

p.

Note that when using curvilinear coordinates, we write up(n, s) as before. We have
∂2
nup(0, s) = Δxup(0, s) by the boundary conditions on Γ, because

(1.14) Δx = J(n, s)−1(∂nJ(n, s)∂n + ∂sJ(n, s)
−1∂s),

where J(n, s) = 1 + nκ(s) is the Jacobian, and κ(s) is the curvature of Γ at the point

s. Finally, the remainder term rλε
p in (1.13) is an infinitesimally small quantity of order

of ε2γ .
If γ > 1, i.e., the boundary perturbation remains slanting, then the Hadamard formula

(1.13) keeps its form, but the factor H(s) in the integrand should be replaced with the
mean value

(1.15) sH(s) =

∫ 1

0

H(η, s) dη,

and the estimate for the remainder term needs modification.
In the case of γ ≤ 1, where the boundary becomes highly indented, the structure of the

asymptotic behavior changes substantially: the phenomenon of a boundary layer arises,
and the weight factor in the integral in (1.13) acquires a radically different meaning;
namely, it can be expressed in terms of some coefficients in asymptotic expansions at
infinity of certain special solutions of auxiliary boundary-value problems in a half-strip
with curvilinear edge or in a strip with a semi-infinite cut. In this case, the size O(εγ)
of the perturbation, proportional to the depth of the hollows and (or) the height of the
ridges, always remains unchanged, with one exception: if γ < 1 and

(1.16) H0(s) = min
η∈[0,1)

H(η, s) = 0,

then the correction term is of order of ε, rather than εγ , as the Hadamard formula
predicts.

3. Summary of results on nonregular perturbation of the boundary. Consider
the spectral problems (1.11) and (1.5) in the domains Ω and Ωε satisfying (1.2). Let λp

be an eigenvalue of (1.11) of multiplicity κp, i.e., in (1.12) we have

(1.17) λp−1 < λp = · · · = λp+κp−1 < λp+κp
.
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The corresponding eigenspace Xp is spanned by the eigenfunctions up, . . . , up+κp−1. It is
known (see, e.g., [6, 7], and compare to Lemma 1.1) that for small ε > 0 on the interval

(1.18)
(1
2
(λp−1 + λp),

1

2
(λp + λp+κp

)
)

there are precisely the eigenvalues λε
p, . . . , λ

ε
p+κp−1 of problem (1.5).

In what follows we shall see that these eigenvalues satisfy

(1.19) (λε
q)

−1 = λ−1
p + ϑε

q +O(ε1+δ), q = p, . . . , p+ κp − 1,

where δ is a positive quantity depending on Ω, and ϑε
p, . . . , ϑ

ε
p+κp−1 are eigenvalues of

the algebraic problem (posed on a finite-dimensional subspace)

λ−1
p

(
(ΔxΨ

ε
ϕ,ΔxΨ

ε
ψ)Ωε − (ΔxΦ

ε
ϕ,ΔxΦ

ε
ψ)Ωε − (Δxϕ,Δxψ)Ω\Ωε

)
= ϑ(Δxϕ,Δxψ)Ω, ψ ∈ Xp,

(1.20)

for ϕ ∈ Xp. Here, Φε
ϕ is the solution of the boundary-value problem (without spectral

parameter) in Ωε, formulated as the integral identity

(1.21) (ΔxΦ
ε
ϕ,Δxv)Ωε = 0, v ∈ H̊2(Ωε),

and also Φε
ϕ + ϕ ∈ H̊2(Ωε). The function Ψε

ϕ ∈ H̊2(Ωε) obeys another integral identity

(ΔxΨ
ε
ϕ,Δxv)Ωε = (Δxϕ,Δxv)Ωε − λp(ϕ, v)Ωε , v ∈ H̊2(Ωε).(1.22)

Note that if uq ∈ H̊4(Ω) (e.g., Γ is smooth), then the right-hand side of (1.22) is equal
to the surface integral (Δxϕ, ∂nv)Γ − (∂νΔxϕ, v)Γ.

Now we state yet another result obtained in §4. Suppose that the boundary Γ of the
domain Ω is a surface of Hölder class C1,α, α ∈ (0, 1). On Γ, we introduce the function
hε equal to the distance to Γε along the normal −→n at the point s. In Subsection 7 of §4
we shall show that under the restriction

(1.23)

∫
Γ

|∇sh
ε(s)|2 ds = o(1), ε → +0,

we have the formula

(1.24) (λε
q)

−1 = λ−1
p + θq + o(ε), q = p, . . . , p+ κp − 1,

where θp, . . . , θp+κp−1 are eigenvalues of the following problem algebraic on the subspace
Xp:

(1.25) λ−1
p (hΔxϕ,Δxψ)Γ = θ(Δxϕ,Δxψ)Ω, ψ ∈ Xp

(cf. problem (1.20)).
Relation (1.24) can be understood as a generalization of the Hadamard formula; in

particular, for a simple eigenvalue, i.e., for κp = 1, it is not hard to reshape (1.24) to
(1.13) with γ = 1. It should be emphasized that now we do not deal with any periodicity
of the boundary perturbation whatever.

In Subsection 8 of §4, for a 2-dimensional domain Ωε ⊂ Ω with corner points on the
boundary, we show that if one of the angles exceeds π, so that Ω cannot be convex,
then the Hadamard formula fails. However, relation (1.24) remains valid provided that
θq, . . . , θp+κp−1 are found from the spectral problem

(1.26) λ−1
p (Δxϕ,Δxψ)Ω\Ωε = θ(Δxϕ,Δxψ)Ω, ψ ∈ Xp,

rather than from (1.25). Note that on the left in (1.26) we have a volume integral, while
in (1.25) we have a surface one; if Γ is smooth, then these integrals coincide up to O(ε).
From this viewpoint, the method of writing the Hadamard formula via volume integrals,
as suggested in [7], appears more unified and universal.
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4. Plan of the paper and a brief review of publications. In the next section we
are focused on the formal asymptotic analysis of the spectral problem (1.3), (1.4) in a
domain with a rapidly oscillating boundary (1.1) (see Figure 1). We apply the methods
of composite and matching asymptotic expansions (see, e.g., [9] and [10], respectively).
The formulas obtained are justified in §3.

There are numerous publications devoted to the study of various boundary-value prob-
lems in domains with locally periodic boundaries (see, e.g., [11, §7.5] and [12]–[15] for
scalar equations, [16]–[18] for the Stokes system, and [19]–[21] for the elasticity theory
system); however, the results pertain largely to the case of γ = 1, where the period, the
depth of the hollows, and the height of the ridges are of one and the same order. The
papers that address the case of γ = 0 (we do not consider this case in the present paper;
cf. Remark 5.1) deal with the Neumann boundary conditions, for which the structure of
the spectrum is very specific.

Usually, the “support” boundary Γ is assumed to be smooth, and there are only
several publications [26]–[30] where the impact of the boundary peculiarities was taken
into account, namely, of the presence of corner points on Γ, which results in the arising
of a 2-dimensional boundary layer.

In a more general situation where the initial and perturbed boundaries are
Lipschitzian, some formulas that enable one to compare the eigenvalues of the Dirichlet
problems for the Laplace operators in two domains were obtained in [7] on the basis of
a general abstract method; see [7, 8] (for other approaches to studying the spectra of
these two scalar problems, see the books [34, 33] and the references therein). In §4, the
approach of [7] is applied to the investigation of the Dirichlet problem for the biharmonic
operator. As could be expected in the setting of arbitrary perturbations, the final for-
mulas (1.19) and (1.20) turn out to be not so explicit, requiring a further elaboration in
concrete situations, but in Subsections 7 and 8 of §4 and in Subsection 1 of §5 we show
that under some higher smoothness assumptions this formula leads to the same results
as in §3.

In §5 we discuss possible generalizations of our asymptotic procedures.
The general results of [7] allow us to simplify the justification of the asymptotic

procedure, because formulas (1.19) and (1.20) deal with solutions Φε
ϕ and Ψε

ϕ of the
boundary-value problems (1.21) and (1.22) that are free of the spectral parameter, i.e.,
admit simpler asymptotic analysis. In general, justification of the asymptotic methods
for fourth-order equations in domains with rapidly oscillating boundary, as presented in
§3, is more intricate compared to the case of an equation or a system of order two. The
reason is that, in construction of the global asymptotic approximation (Subsection 3 of
§3), the first boundary condition (1.4) is often fulfilled automatically, but the second
boundary condition gives rise to a discrepancy that must be compensated.

The asymptotic formulas obtained turn out to be useful also in the theory of opti-
mization of shapes (see [33]–[36] and elsewhere). We note that the absolute majority of
issues, studied fully in the case of the Dirichlet problem for the Laplace operator, remain
open for problem (1.3), (1.4) (see [37]–[39]).

Also, it should be noted that the biharmonic equation with simple support boundary
conditions (see [40, 3]) in a domain with a singularly perturbed boundary gives rise to
“unexpected” asymptotic formulas known as the paradoxes of the theory of plates (see,
e.g., [41]–[43]).

In the paper, we separate two approaches to finding the asymptotic expansions of
eigenvalues. Therefore, the reader interested in results traditional in homogenization
theory can skip §4 and Subsection 1 of §5 (precisely in order to ensure this possibility,
in Subsection 2 of §3 we present the proof of the simple Lemma 1.1, which follows from
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the general results; see Subsection 3 of §1). On the other hand, the description of the
function theory approach is concentrated in §4, and in Subsection 1 of §5 we discuss its
relationship with the asymptotic approach.

Throughout, the letter c denotes a factor in majorants independent of the parameter
ε ∈ (0, ε0]; this c can vary from line to line even in one formula. The upper bound ε0 is
also not fixed, remaining always positive.

§2. Formal asymptotic analysis in the case of a

periodic boundary perturbation

1. Asymptotic analysis in the case of a slanting boundary perturbation.
First, we suppose that the profile function H in formula (1.1) does not depend on the
fast variable η = ε−1s. Taking an eigenvalue λp of the limiting problem (1.9), (1.10), we
denote by κp its multiplicity; then (1.17) is valid. We assume the following asymptotic
Ansatz for the solutions of the perturbed problem (1.3), (1.4):

λε
q = λp + εγλ′

q +
rλε
q,(2.1)

uε
q(x) = u0

q(x) + εγu′
q(x) + ruε

q(x);(2.2)

here q = p, . . . , p+κp−1, and u0
q is a linear combination of eigenfunctions up, . . . , up+κp−1

of problem (1.9), (1.10) that correspond to the eigenvalue λp. In other words,

(2.3) u0
q =

p+κp−1∑
m=p

aqmum,

p+κp−1∑
m=p

|aqm|2 = 1,

and, if necessary (i.e., if Ωε \ sΩ �= ∅), the um are assumed to be smoothly extended
outside Ω. Of course, as in (1.8), the eigenfunctions are subject to the orthogonality and
normalization conditions

(2.4) (uj , uk)Ω = δj,k, j, k ∈ N.

We write the leading asymptotic term u0
q in curvilinear coordinates and apply the

Taylor formula; using the boundary conditions (1.10), we get

u0
q(n, s) =

1
2n

2∂2
nu

0
q(0, s) +O(n3).

Thus, the discrepancy of the function u0
q in the first identity in (1.4),

(2.5) uε(εγH(ε−1s, s), s) = 0, s ∈ Γ,

is O(ε2γ), so that the order of it is higher than that of the correction terms in (2.1) and
(2.2).

Now we calculate discrepancies in the second boundary condition

(2.6) ∂nεuε(εγH(ε−1s, s), s) = 0, s ∈ Γ;

recall that ∂nε denotes the derivative along the outward normal to the oscillating bound-
ary Γε. In the neighborhood V , the gradient operator can be written as

∇x = e(n)∂n + J(n, s)−1e(s)∂s,

where e(n) and e(s) are the unit vectors of the axes n and s, and J(n, s) is the Jacobian
(see (1.14)). Consequently, the normal and the derivative along it take the form

nε(s) = (1 +Nε(s)2)−1/2(e(n) −Nε(s)e(s)),(2.7)

∂nε = (1 +Nε(s)2)−1/2(∂n −Nε(s)Jε(s)−1∂s),(2.8)
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and

Jε(s) = 1 + εγH(ε−1s, s)κ(s),(2.9)

Nε(s) = εγJε(s)(∂sH(η, s) + ε−1∂ηH(η, s))
∣∣
η=ε−1s

.(2.10)

If H is independent of the fast variable, then Jε(s) = 1 + O(εγ) and Nε(s) = O(εγ),
so that the derivatives ∂nε and ∂n differ little. As a result, to compensate the leading
term of the discrepancy in relation (2.6), we can take a function u′

q satisfying

(2.11) u′
q(0, s) = 0, ∂nu

′
q(0, s) = −H(s)∂2

nu
0
q(0, s), s ∈ Γ.

Now we plug (2.1) and (2.2) into the differential equation (1.3); collecting the factors
of εγ , we get

(2.12) Δ2
xu

′
q(x)− λpu

′
q(x) = λ′

qu
0
q(x), x ∈ Ω.

Since λp is an eigenvalue of problem (1.9), (1.10) with multiplicity, the resulting bounda-
ry-value problem (2.12), (2.11) has a solution if and only if the following κp solvability
conditions are fulfilled:

λ′
q(u

0
q, uj)Ω = (Δ2

xu
0
q − λpu

0
q , uj)Ω = (∂nu

′
q,Δxuj)Γ

= −(H∂2
nu

0
q ,Δxuj)Γ, j = p, . . . , p+ κp − 1.

(2.13)

Formula (2.4) with the Jacobian J(n, s) = 1 + nκ(s), which is equal to 1 on Γ, and
the boundary conditions (1.10) show that Δxuj(0, s) = ∂2

nuj(0, s). Therefore, by (1.14),
relations (2.13) can be rewritten as the system

(2.14) Tpaq = λ′
qa

q

of κp algebraic equations, where aq = (aq1, . . . , a
q
κp

) is the column of coefficients occurring

in (2.3), and Tp is the symmetric (κp × κp)-matrix with the elements

(2.15) Tp
jk = −

∫
Γ

h(s)∂2
nuj(0, s)∂

2
nuk(0, s) ds, j, k = p, . . . , p+ κp − 1,

and in the case under consideration we have h(s) = H(s). The eigenvalues of the matrix
Tp will be enumerated in the nondecreasing order, i.e.,

(2.16) λ′
p ≤ · · · ≤ λ′

p+κp−1,

and the eigenvectors will satisfy the conditions of normalization (the second formula in
(2.3)) and orthogonality

p+κp−1∑
j=p

aqja
m
j = 0, q �= m.

The eigenvalues λ′
p, . . . , λ

′
p+κp−1 of Tp and the eigenvectors ap, . . . , ap+κp−1 of unit

length corresponding to them complete the expansions (2.1) and (2.2), but the solu-
tion u′

q of problem (2.12), (2.11) still has freedom, namely, the linear combination of
up, . . . , up+κp−1.

We return to the case of a rapidly oscillating boundary (1.1); i.e., we recover the
dependence of the profile function H on the first argument. The quantity (2.10) is
O(εγ−1), so that the conclusion is that it is small and the subsequent calculations remain
valid in the case where γ > 1, which corresponds, as before, to a slanting perturbation
of the boundary. It is not hard to check the following estimate, which is widely used in
homogenization theory:

(2.17)

∣∣∣∣
∫
Γ

(H(ε−1s, s)− sH(s))Y (s) ds

∣∣∣∣ ≤ cε‖Y ;C1(Γ)‖ max
s∈Γ,η∈[0,1)

|H(η, s)|,
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Figure 4. The half-strip Π with curvilinear edge �.

where sH is the averaged profile function (1.15). Therefore, the final formulas (2.14) and
(2.15) require no change, but the role of the weight factor is played by the averaged
profile function (1.15), i.e.,

(2.18) h(s) = sH(s).

2. The boundary layer and asymptotic expansions for γ = 1. There are many
publications devoted to the study of solutions of boundary-value problems in domains
with rapidly oscillating boundaries such that the oscillation period and the erosion depth
have the same order of smallness (see, e.g., [11, 12, 15]). The resulting asymptotic
formulas are characterized, first of all, by the boundary layer phenomenon described in
terms of the dilated coordinates

(2.19) ξ = (ξ1, ξ2), ξ1 = ε−1n, ξ2 = ε−1s.

This boundary layer is constructed from 1-periodic (in ξ2) solutions of boundary-value
problems in a half-strip Π(s) with curvilinear edge �(s) (see Figure 4). In accordance
with (1.1) and (2.19), we have

(2.20) Π(s) = {ξ : ξ2 ∈ (0, 1), ξ1 < H(ξ2, s)}, �(s) = {ξ : ξ2 ∈ (0, 1), ξ1 = H(ξ2, s)}.

The problem for the boundary layer type terms looks like this:

Δ2
ξw(ξ; s) = 0, ξ ∈ Π(s),(2.21)

w(ξ; s) = g0(ξ; s), ∂νw(ξ; s) = g1(ξ; s), ξ ∈ �(s),(2.22)

w(ξ1, 0; s) = w(ξ1, 1; s), ∂2w(ξ1, 0; s) = ∂2w(ξ1, 1; s), ξ1 < H(0, s).(2.23)

Here ∂j = ∂/∂ξj , j = 1, 2. The origin of the boundary conditions (2.22) is clear: in
their right-hand sides we have the discrepancies left by the asymptotic term (2.3) of
regular type. The biharmonic equation (2.21) arises as a result of the coordinate changes
x �→ (n, s) �→ ξ and formula (1.14) for the Laplace operator in curvilinear coordinates.
Finally, the periodicity conditions (2.23) on the lateral sides of the half-strip (the dash-
dot lines in Figure 4) are determined by the construction itself of the boundary layer
that occurs in the modified (compared to (2.2)) representation of the eigenfunction

(2.24) uε
q(x) = u0

q(x) + χ(x)ε2wq(ε
−1n, ε−1s; s) + εu′

q(x) + ruε
q(x).

Here χ is a smooth cutoff function supported on the neighborhood V and equal to 1 near
Γ. The data of problem (2.21)–(2.23) depend on the parameter s ∈ Γ, but we shall not
indicate this in what follows if there is no danger of confusion.

The next claim is a specialization of the general results obtained in [44, §4] on the
basis of the theory of elliptic boundary-value problems in domains with cylindrical exits
to infinity (see the key papers [45, 46, 47, 48], and also, e.g., the books [49, 50]).

Proposition 2.1. 1) Any solution of the homogeneous (g0 = g1 = 0) problem (2.21)–
(2.23) with at most polynomial growth at infinity is a linear combination of two solutions
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determined by the asymptotic expansions

W0(ξ; s) =
1

2
ξ21 − P00(s)ξ1 − P01(s) +O(exp(δξ1)),

W1(ξ; s) =
1

6
ξ31 − P10(s)ξ1 − P11(s) +O(exp(δξ1)),

(2.25)

where the Pil(s) and δ > 0 are some numbers. The quantities Wi(ξ; s) and Pil(s) depend
smoothly on s ∈ Γ.

2) Problem (2.21)–(2.23) with smooth periodic right-hand sides g0 and g1 admits a
solution w decaying exponentially as ξ1 → −∞ if and only if the following two solvability
conditions are satisfied:∫

�(s)

g0(ξ)∂νΔξWi(ξ) dsξ −
∫
�(s)

g1(ξ)ΔξWi(ξ) dsξ = 0, i = 0, 1.

Such a solution w is unique and inherits smoothness relative to s from the right-hand
sides g0 and g1.

In the sequel, our asymptotic constructions will involve only the solution W0, and
the coefficient P00, denoted simply by P , arises in a formula of the type (1.13) for
eigenvalues. The periodicity conditions (2.23) and the smoothness of the data show that
the representations (2.25) admit termwise differentiation, with preservation of the rate
of decay of the remainder term.

Proposition 2.2. If H(η, s) = H(s) is constant, then P (s) := P00(s) = H(s). If the
profile function η �→ H(η, s) is nonconstant, then we have the inequalities

(2.26) H0(s) := min
η∈[0,1)

H(η, s) < P (s) <

∫ 1

0

H(η, s) dη.

Proof. If H(η) = H, then W0(ξ) =
1
2 (ξ1 −H)2, so that the first claim is obvious.

Let the function H be nonconstant; we put xW0(ξ) = W0(ξ)− 1
2ξ

2
1 and apply the Green

formula in the truncated half-strip ΠR = {ξ ∈ Π : −R < ξ1}:

1

2

∫
�

(
ξ21∂νΔξW0(ξ)− ∂νξ

2
1ΔξW0(ξ)

)
dsξ

= −
∫
�

Ä
xW0(ξ)∂νΔξW0(ξ)− ∂νxW0(ξ)ΔξW0(ξ)

ä
dsξ

=

∫ 1

0

(
W0(ξ)∂1Δξ

xW0(ξ)− ∂1W0(ξ)Δξ
xW0(ξ)

+ ΔξW0(ξ)∂1xW0(ξ)− ∂1ΔξW0(ξ)xW0(ξ)
)∣∣∣

ξ1=−R
dξ2.

(2.27)

Letting R → +∞, we replace W0(ξ) and xW0(ξ) by the polynomial terms in the corre-
sponding asymptotics (the other terms vanish in the limit). This shows that expression
(2.27) is equal to −P . On the other hand, the first integral in (2.27) can be written as

− 1

4

∫
�

∂νξ
2
1Δξξ

2
1 dsξ −

∫
�

Ä
xW0(ξ)∂νΔξ

xW0(ξ)− ∂νxW0(ξ)Δξ
xW0(ξ)

ä
dξ

= −
∫ 1

0

H(ξ2) dξ2 +

∫
Π

∣∣∣Δξ
xW0(ξ)

∣∣∣2 dξ.

(2.28)
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This justifies the right inequality in (2.26), because the last-written integral is positive.
To check the left inequality in (2.26), we use the function

(2.29) W�
0 (ξ) =

®
W0(ξ1)− 1

2 (ξ1 −H0)
2, ξ1 < H0,

W0(ξ1), ξ1 ≥ H0;

here H0 is the quantity occurring in (1.16) and (2.26). The function W�
0 is still periodic

and continuous. Also, it satisfies the homogeneous conditions (2.22) on � and equation
(2.21) in the union of the truncated half-strip Π0 = (−∞, H0)× (0, 1) and the set Π� =

Π \ sΠ0, but the second derivative of W�
0 with respect to ξ1 has a jump at ξ1 = H0 (the

other derivatives are continuous). We have
∫ 1

0

∂1W0(H0, ξ2) dξ2 =
∑
±

±
∫ 1

0

(
W�

0 (H0 ± 0, ξ2)∂1ΔξW
�
0 (H0 ± 0, ξ2)

− ∂1W
�
0 (H0 ± 0, ξs)ΔξW

�
0 (H0 ± 0, ξ2)

)
dξ2

= −
∫
Π0

∣∣∣ΔξW
�
0 (ξ)

∣∣∣2 dξ −
∫
Π�

∣∣∣ΔξW
�
0 (ξ)

∣∣∣2 dξ.

(2.30)

On the other hand, as in (2.27), we find that the first integral in (2.30) is equal to

∑
±

±
∫ 1

0

(
W0(H0, ξ2)∂1ΔξW

�
0 (H0 ± 0, ξ2)− ∂1W0(H0, ξ2)ΔξW

�
0 (H0 ± 0, ξ2)

+ ΔξW0(H0, ξ2)∂1W
�
0 (H0 ± 0, ξ2)− ∂1ΔξW0(H0, ξ2)W

�
0 (H0 ± 0, ξ2)

)
dξ2

=

∫ 1

0

(
W0(ξ)∂1ΔξW

�
0 (ξ)− ∂1W0(ξ)ΔξW

�
0 (ξ)

+ ΔξW0(ξ)∂1W
�
0 (ξ)− ∂1ΔξW0(ξ)W

�
0 (ξ)

)
dξ

=

∫ 1

0

Δξ

(1
2
ξ21 − Pξ1 − P01

)
∂1

(
− Pξ1 − P01 +H0ξ1 −

1

2
H2

0

)
dξ2 = H0 − P.

This makes the left inequality in (2.26) obvious. �

Observe that, by Proposition 2.1, the expression

wq(ξ; s) = ∂2
nu

0
q(0, s)

(
W0(ξ; s)−

1

2
ξ21 + P (s)ξ1 + P01(s)

)

decays exponentially as ξ1 → −∞, and, therefore, can serve as a boundary layer. We
show that this wq(ξ; s) compensates for the discrepancies in the boundary condition (2.6)
left by the sum u0

q(x)+ εu′
q(x) of the regular type terms in the Ansatz (2.24) (recall that

the discrepancy of these terms in the Dirichlet conditions (2.5) is known to be small). By
formulas (2.19) and (2.8)–(2.12), the derivative ∂nε along the normal to Γ differs little
from the derivative3

ε−1∂ν = ε−1(1 + |∂2H(ξ2, s)|2)1/2(∂1 − ∂2H(ξ2, s)∂2)

along the normal to the edge �(s) of the half-strip Π(s) (see the definition (2.20)).
Consequently, after freezing the slow variable s, the leading part of the discrepancy of
the sum u0

q + εu′
q in relation (2.6) takes the form

ε−1∂ν
(
1
2n

2∂2u0
q(0, s) + εn∂nu

′
q(0, s)

)
= ε∂ν

(
1
2ξ

2
1∂

2
nu

0
q(0, s) + ξ1∂nu

′
q(0, s)

)
.

3The factor ε−1 corresponds to dilation of the coordinates n and s.
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The identity

ε−1∂ν
(
ε2wq(ξ; s)

)
= ε∂ν

(
− 1

2ξ
2
1∂

2
nu

0
q(0, s) + ξ1∂

2
nu

0
q(0, s)

)
,

coming from formula (2.25) with the solution W0 of the homogeneous problem (2.21)–
(2.23), shows that it remains to subordinate the correction term u′

q to the boundary
conditions

(2.31) u′
q(0, s) = 0, ∂nu

′
q(0, s) = −P (s)∂2

nu
0
q(0, s), s ∈ Γ.

The solvability of problem (2.12), (2.31) is ensured by the κp relations (2.13), in which
the weight factor H is replaced with the factor P (s) = P00(s) (see (2.25)). As a result,
the ingredients aq = (aq1, . . . , a

q
κp

) and λ′
q of the asymptotic formulas (2.24), (2.3), and

(2.1) can be determined from system (2.14) with the matrix Tq whose entries are given
by formulas (2.15) and

(2.32) h(s) = −P (s).

This completes the formal asymptotic analysis in the case where γ = 1.

Remark 2.1. We have used the method of compound expansions (see, e.g., [9]); an al-
ternative is the method of matching expansions, which deals with two expansions, the
outer expansion

(2.33) uε
q(x) ∼ u0

q(x) + εu′
q(x),

valid far from the perturbed boundary Γε, and the inner expansion

(2.34) uε
q(x) ∼ εγwε

q(x) = εγ∂2
nu

0
q(0, s)W0(ξ; s),

valid in the vicinity of Γε. The boundary conditions (2.31) arise when we match these
expansions. In the next subsection it will be convenient to employ precisely the method
of matching expansions.

Remark 2.2. If Ωε ⊂ Ω (or Ωε ⊃ Ω), i.e., H(s, η) ≤ 0 (or H(s, η) ≥ 0), then, clearly, λε
j ≥

λj (or λ
ε
j ≤ λj). This observation is in agreement with the asymptotic formula (2.1): the

matrix Tp is positive (or negative) and its eigenvalues λ′
p, . . . , λ

′
p+κp−1 are nonnegative

(or nonpositive). For a slanting (γ > 1) perturbation of the boundary the claim is

obvious, and for γ = 1 it is ensured by inequalities (2.26). If sH(s) =
∫ 1

0
H(η, s) dη > 0

(this does not require that the profile function be positive), then the fact that the matrix
Tp is nonsingular means that λ′

q < 0, so that λε
q < λq, q = p, . . . , p+ κp − 1, even if the

inclusion Ωε ⊂ Ω fails, but only for sufficiently small ε > 0.

3. The boundary layer and asymptotic expansions for γ < 1. Assume that, for
all s ∈ Γ, the function [0, 1) � η �→ H(η, s) attains its global minimum H0(s) at a unique
point η0(s), and this is a strict minimum, i.e.,

(2.35) H(η, s) = A(s)(η − η0(s))
2 +O(|η − η0(s)|3), A(s) > 0

(cf. formula (1.16); see also Remarks 2.3 and 3.2 below). We freeze the variable s = s0
and introduce the dilated coordinates

(2.36) ξ = (ξ1, ξ2) = (ε−1n− εγ−1H0(s0), ε
−1s).

They differ from the previous coordinates (2.19) by an additional shift along the first
axis. Then the arc n = εγH(ε−1s, s0) takes the form

(2.37) ξ1 = εγ−1(H(s0, ξ2)−H0(s0)).
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Figure 5. Transformation of a strip with strongly curvilinear edge into
a strip with a semi-infinite cut.

Since γ − 1 < 0 and H(ξ2, s0) > H0(s0) whenever ξ2 �= η0(s0), a formal passage to the
limit as ε → +0 transforms the two branches of the arc (2.37) (see Figure 5) into the two
shores of the semi-infinite cut Υ±(s0),

(2.38) Υ(s0) = {ξ : ξ2 = η0(s0), ξ1 ≥ 0}.

As a result, for the description of the boundary layer we obtain the domain Σ(s0) =
Σ0 \Υ(s0), i.e., the strip Σ0 = R× (0, 1) with the cut (2.38).

As in Subsection 2 of §2, we are interested in the ξ2-periodic (with period 1) functions
Wi that satisfy the biharmonic equation in Σ(s0), vanish together with the derivatives
on the shores of the cut, and admit expansions (2.25) as ξ1 → −∞. In other words, we
seek special solutions of the homogeneous problem

Δ2
ξw(ξ) = 0, ξ ∈ Σ, w(ξ) = ∂2w(ξ) = 0, ξ ∈ Υ±,

w(ξ1, 0) = w(ξ1, 1), ∂2w(ξ1, 0) = ∂2w(ξ1, 1), ξ1 ∈ R.
(2.39)

The existence of the required solutions is also ensured by the results of [44] (see com-
ments on Proposition 2.1). Due to the Dirichlet conditions, the functions Wi decay
exponentially as ξ1 → +∞; i.e., for some positive δ we have

(2.40) Wi(ξ; s) = O(exp(−δ1ξ1)), ξ1 → +∞, i = 0, 1.

The location of the cut is irrelevant, i.e., the quantities Wi(ξ1, ξ2 − η0(s); s) (and, with
them, the coefficients Pil(s)) do not depend on s, by periodicity. Repeating with minor
changes the final part of the proof of Proposition 2.2 (starting with formula (2.29), where
we temporarily put H0 = 0), we see that

(2.41) P = P00 = lim
ξ→−∞

(∂1W0(ξ1, ξ2)− ξ1) > 0.

In §3 we shall need the following expansion of the solution Wi(ξ) near the vertex of
the cut:

(2.42) Wi(ξ) = Kiρ
3/2

(
3 cos

φ

2
+ cos

3φ

2

)
+O(ρ2), ρ → +0

(see [51, 46]); here ρ = |ξ| and φ ∈ (−π, π) are the polar coordinates, and Ki is some
number (the intensity coefficient). Relation (2.42) admits termwise differentiation if we
agree that ∇xO(ρΛ) = O(ρΛ−1).
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Figure 6. A strip with several semi-infinite cuts.

Now we proceed to the matching of the outer expansion (2.33) and the inner expansion;
as the latter, we take

ε2wε
q(x) = ∂2

nu
0
q(0, s)W0(ε

−1(n− εγH0(s)), ε
−1s− η0(s))

= ε2∂2
nu

0
q(0, s)

(
1
2ε

−2(n− ε−2H0(s))
2 − Pε−1(n− εγH0(s))− P01 + . . .

)
= ∂2

nu
0
q(0, s)

(
1
2n

2 − εγnH0(s) + . . .
)
.

(2.43)

Here the dots mean the lower asymptotic terms, which are irrelevant to the formal as-
ymptotic analysis in question. The same leading terms appear also in the outer expansion

u0
q(x) + εγu′

q(x) =
1
2n

2∂2
nu

0
q(0, s) + εγn∂nu

′
q(0, s) +O(n2(n+ εγ)),

provided that the correction u′
q satisfies the boundary conditions (2.11) with the replace-

ment H(s) �→ H0(s).
All subsequent arguments that lead to system (2.14) and the matrix Tp with the

entries (2.15), where

(2.44) h(s) = H0(s),

need no modification. Note that the resulting formula for the eigenvalues becomes mean-
ingful only if the function H0 is not equal to 0 identically on Γ.

4. The case where γ < 1, H0 �≡ 0. Assume identity (1.16). Then relation (2.43) takes
the form

ε2wε
q(x) = ∂2

nu
0
q(0, s)

(
1
2n

2 − Pεn+ · · ·
)
,

and the procedure of matching with the outer expansion (2.33) leads to the boundary
conditions (2.31) with the constant factor (2.41), and also allows us to repeat what was
said after formula (2.41), applying the arguments to the case under consideration.

Remark 2.3. If the profile function [0, 1) � η �→ H(s, η) attains its minimal value at
several points η0(s), . . . , ηN (s), and the number N stays constant for all s ∈ Γ, then
our asymptotic construction needs no essential modification: in this case the role of the
domain Σ(s) is played by a strip with several half-infinite cuts whose ends have one and
the same abscissa (see Figure 6, where N = 3). Difficulties arise if at least two points
merge. The authors do not know the structure of the asymptotics in question in the
latter case.
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§3. Justification of asymptotic formulas

for periodic perturbation of the boundary

1. Abstract formulation of the problem. We denote by Hε the Hilbert space
H̊2(Ωε) with the scalar product

(3.1) 〈uε, vε〉ε = (Δxu
ε,Δxv

ε)Ωε .

On that space, we introduce the operator Kε by the formula

(3.2) 〈Kεuε, vε〉ε = (uε, vε)Ωε , uε, vε ∈ Hε.

This operator is continuous and symmetric; hence, it is selfadjoint. Also, it is positive
and compact. The variational problem (1.5) is equivalent to the abstract equation

(3.3) Kεuε = μεuε in Hε

with the new spectral parameter

(3.4) με = 1/λε.

By [2, Theorems 10.1.5 and 10.2.2], the spectrum of Kε consists of the essential spectrum
{μ = 0} and the discrete spectrum forming a positive infinitesimally small sequence of
eigenvalues

(3.5) με
1 ≥ με

2 ≥ · · · ≥ με
p ≥ · · · → +0.

Now, as eigenvectors we take Uε
p = (λε

p)
−1/2uε

p; they obey the natural orthogonality and
normalization condition

(3.6) 〈Uε
p , U

ε
q 〉ε = δp,q, p, q ∈ N.

The next statement is known as the lemma about “near eigenvalues and eigenvectors”
(see [52], and also [2, Chapter 6]).

Lemma 3.1. Suppose Uε ∈ Hε, ‖Uε;Hε‖ = 1, Mε > 0, and

(3.7) δε = ‖KεUε −MεUε;Hε‖ < Mε.

Then the segment [Mε − δε,Mε + δε] contains at least one eigenvalue of the operator
Kε. Moreover, for any �ε∈ (δε,Mε), there exist coefficients Aε

j such that

(3.8)
∥∥∥Uε −

P ε+Xε−1∑
j=P ε

Aε
jU

ε
j ;H

ε
∥∥∥ ≤ 2

δε

�ε
,

P ε+Xε−1∑
j=P ε

|Aε
j |2 = 1,

where it is assumed that με
P ε , . . . , με

P ε+Xε−1 form the complete list of the elements in
(3.5) that fall into the segment [Mε− �ε,Mε+ �ε].

2. Plan of the proof and statement of the theorem on asymptotic formulas.
In the next subsection we shall choose approximate “eigenvalues”

(3.9) Mε
q = (λp + εγ0λ′

q)
−1, q = p, . . . , p+ κp − 1,

and the corresponding approximate “eigenfunctions”

Uε
p , . . . ,Uε

p+κp−1

of the operator Kε. Then we shall show that the resulting quantities (3.7) satisfy

(3.10) δεq ≤ cpε
γ1 .
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The exponents in (3.9) and (3.10) are determined as follows :

(3.11) γ0 =

⎧⎪⎨
⎪⎩
γ if γ ≥ 1,

γ if γ < 1, H0 �≡ 0,

1 if γ < 1, H0 ≡ 0,

γ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2γ − 1/2 if γ < 1,

3/2 if γ = 1,

(1 + γ)/2 if γ < 1, H0 �≡ 0,

1 + γ/2 if γ < 1, H0 ≡ 0.

Next, from estimate (3.10) and Lemma 3.1 we shall deduce that for each p (see (1.17))
in the sequence (3.5) we can find κp distinct elements με

j(p), . . . , μ
ε
j(p+κp−1) such that

(3.12) |με
j(q) −Mε

q| ≤ cpε
γ1 ⇒ |λε

j(q) − λp − εγ0λ′
q| ≤ Cpε

γ1

for ε ∈ (0, εp]; here εp > 0 and q = p, . . . , p+ κp − 1. The implication (3.12) is ensured
by the following simple observation:

(3.13)
∣∣∣1
a
− 1

b

∣∣∣ ≤ cε ⇒
®
|a− b| ≤ cabε

a ≤ (1− cbε)−1b
⇒ |a− b| ≤ cb2

1− cbε
ε.

Thus, it remains to check that in (3.12) we have j(q) = q. This is done with the help
of Lemma 1.1, which we are now going to prove. First, we note that, by the minimax
principle (see [2, Theorem 10.2.2]), we have λε

q ≤ λ�
q , q ∈ N, where the λ�

q are the
eigenvalues of problem (1.11) in a fixed domain Ω� included in Ωε for any ε ∈ (0, ε0];

here ε0 > 0. Thus, λ
ε(m)
q → λ0

q as m → +∞, along a certain infinitesimally small
sequence {ε(m)}. Extending the eigenfunctions uε

q to a domain Ω� containing Ωε for any

ε ∈ (0, ε�], we see that the norms ‖uε
q;H

2(Ω�)‖ are bounded, because of inequality (1.6),

the normalization conditions (1.8), and the formula ‖Δxu
ε
q;L2(Ω

ε)‖2 = λε
q‖uε

q;L2Ω
ε)‖2,

implied by (1.5). As a result, rarefying the sequence {ε(m)} if necessary, we see that

u
ε(m)
q → u0

q weakly in H̊2(Ω�) and strongly in L2(Ω
�),

and that ‖u0
q ;L2(Ω

�)‖ = 1. Since the supports of u
ε(m)
q contract to the set Ω, we have

u0
q ∈ H̊2(Ω).
Finally, we fix some smooth function v with compact support in Ω. By (1.1), this

function lies in H̊2(Ωε) for sufficiently small ε. Plugging v into (1.5) and passing to the
limit, we see that the limits λ0

q and u0
q satisfy (1.11). Now, Lemma 1.1 became obvious,

because u0
q �= 0.

We turn to the identities j(q) = q; it suffices to show that j(p+κp − 1) = p+κp − 1.
The latter number will be denoted by P . The relation j(P ) < P is impossible because
for each eigenvalue λk with k ∈ {1, . . . , P} we have an eigenvalue λε

j(k) of problem (1.5)

and j(k) �= j(m) whenever k �= m. If j(m) > m, then there is an eigenfunction uε
P (ε)

that corresponds to an eigenvalue λε
P (ε) ≤ λP +cpε

γ0 and is orthogonal in L2(Ω
ε) to each

of the eigenfunctions uε
j(1), . . . , u

ε
j(P ). Repeating the proof of Lemma 1.1 and observing

that the orthogonality conditions survive after the limit passage as ε(m) → 0, we see the
following: the dimension of the subspace corresponding to the eigenvalues of the limiting
problem (1.11) that lie on the segment [0, λP ] is strictly greater than P , a contradiction.

Now we state a result to be proved in what follows.

Theorem 3.1. 1) Let λp be an eigenvalue of multiplicity κp for the limiting problem
(1.9), (1.10) (or (1.11) in the variational setting), and let up, . . . , up+κp−1 be the corre-
sponding eigenfunctions subject to the orthogonality and normalization conditions (2.4).
There exist positive numbers εp and cp, Cp such that, for ε ∈ (0, εp], the eigenvalues
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λε
p, . . . , λ

ε
p+κp−1 of the singularly perturbed problem (1.3), (1.4) (or (1.5) in the varia-

tional setting) satisfy the inequalities

|λε
q − λp − εγ0λ′

q| ≤ cpε
γ1 , q = p, . . . , p+ κp − 1,

where γ0 and γ1 are the exponents (3.11), λ′
p, . . . , λ

′
p+κp−1 are the eigenvalues (2.16) of

the matrix T of size κp × κp with the entries defined by formula (2.15) with

(3.14) T (s) =

®
sH(s) if γ > 1,

P (s) if γ = 1,

and for γ < 1,

(3.15) T (s) =

®
H0(s) if H0 �≡ 0 on Γ,

P if H0 ≡ 0 on Γ.

Here sH is the mean value (1.15), H0 is the minimal value (see (1.16)) of the profile
function H that describes the rapidly oscillating boundary (1.1), and P (s) and P are
the coefficients in the expansions (2.25) of the special solutions W0 of the homogeneous
problem (2.21)–(2.23) in the half-strip (2.20) with a curvilinear edge and of problem
(2.39) in the unit strip Σ0 with the cut (2.38).

2) There are coefficient columns bεq = (bεq,p, . . . , b
ε
q,p+κp−1) forming an orthogonal

(κp × κp)-matrix such that for the eigenfunctions uε
p, . . . , u

ε
p+κp−1 of problem (1.5), or-

thonormalized as in (1.8), we have the asymptotic formulas

∥∥∥uε
q −

p+κp−1∑
j=p

bεq,juj ;H
2(Ωε)

∥∥∥ ≤ Cpε
γ/2.

The eigenfunctions up, . . . , up+κp−1 of problem (1.11) obey the orthogonality and nor-
malization conditions (2.4) and are extended by zero outside the limiting domain Ω.

3. Global asymptotic approximation. Suppose γ ≤ 1 (the case where γ > 1 is
much simpler and will be considered in passing in Subsection 6 of §3). We operate
with the eigenvectors ap, . . . , ap+κp−1 of the matrix Tp to form κp global asymptotic
approximations to the eigenfunctions of problem (1.3), (1.4):

Uε
q(x) = Xε(x)(u

0
q(x) + εγ0u′

q(x)) + χ(x)ε2∂2
nu

0
q(0, s)W0(ξ; s)

−Xε(x)χ(x)
(
1
2n

2∂2
nu

0
q(0, s) + εγ0n∂nu

′
q(0, s)

)
+Wε

q (x).
(3.16)

This formula needs an explanation. By u0
q we mean the linear combination (2.3), and

u′
q is the solution of the differential equation of (2.12) with the boundary conditions

(2.11) or (2.31) in which the weight factor of ∂2
nu

0
q(0, s) is chosen in accordance with

the asymptotic constructions of Subsections 4 and 5 of §2 (see (3.14) and (3.15)), and
solvability is ensured by conditions of the form (2.13). The cutoff functions Xε and χ are
defined by the formulas

(3.17) χ(x) =

®
χ0(n), x ∈ V ,
0, x ∈ Ωε \ V ,

Xε(x) =

®
1− χ0(ε

−γ0n), x ∈ V ,
1, x ∈ Ωε \ V ,

where χ0 ∈ C∞(R), χ0(n) = 1 if |n| < d/2, χ0(n) = 0 if |n| > d, and 0 ≤ χ ≤ 1; the
parameter d is chosen so that the functions (3.17) are smooth and Xε = 0 on Γε. The
boundary layer involves the special solution W0 of the homogeneous problem (2.21)–
(2.23) for γ = 1 and of problem (2.39) for γ < 1. The dilated coordinates ξ are given
by (2.19) for γ0 = 1 and by (2.36) for γ < 1, H0 �≡ 0. Finally, Wε

q is an additional

term ensuring that Uε
q ∈ H̊2(Ω), i.e., compensating for the small discrepancy in the
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boundary condition (2.6) for the third summand (see explanations below), and subject
to the estimate

(3.18) ‖Wε
q ; H̊(Ωε)‖ ≤ cεγ2 , γ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2γ − 3/2 if γ > 1,

3/2 if γ = 1,

(γ + 1)/2 if γ < 1, H0 �≡ 0,

1 if γ < 1, H0 ≡ 0.

It should be noted that we employ an asymptotic construction with “overlapping”
cutoff functions (3.17) (see [53] and also [9, Chapter 2]): in the third summand on the
right in (3.16) we collected all terms that have undergone the matching procedure (cf.
Remark 2.1). These terms occur in the first and the second summand, but duplication
is eliminated by the subtrahend. When commuting the Laplace operator with cutoff
functions (we need this for estimating the remainder terms), we shall append this sub-
trahend to one or the other summand, in order that the differences decay in the zone
under consideration. We illustrate the corresponding calculations.

The definition (3.17) of our cutoff functions (more precisely, the location of their
supports) shows that

(3.19) χ[Δx,Xε] = [Δx,Xε], Xε[Δx, χ] = [Δx, χ];

here [Δx, χ]v = 2∇xv ·∇xχ+vΔxχ. Now, we write the right-hand side of (3.16) without
the last term Wε

q as the algebraic sum

XεS
ε
o + χSε

i −XεχS
ε
m,

and perform commutation accompanied with a rearrangement of terms as indicated
above. As a result, we get

Δx(XεS
ε
o + χSε

i −XεχS
ε
m) = XεΔxS

ε
o + χΔxS

ε
i + χΔxS

ε
i −XεχS

ε
m

+ [Δx,Xε](S
ε
o − Sε

m) + [Δx, χ](S
ε
i − Sε

m).
(3.20)

Since |∇k
xXε(x)| ≤ ckε

−kγ0 and the coefficients of the differential operator [Δx,Xε] vanish
for |n| ≥ cεγ0 , we see that∣∣[Δx,Xε](S

ε
o(x)− Sε

m(x))
∣∣

=
∣∣[Δx,Xε](u

0
q(x)− 1

2n
2∂2

nu
0
q(0, s) + εγ0(u′

q(x)− n∂nu
′
q(0, s))

∣∣
≤ c(ε−γ0(n2 + ε−γ0 |n|) + ε−2γ0(|n|3 + εγ0n2)) ≤ cεγ0 .

(3.21)

Consider the last term in (3.20). First, let γ0 = 1, i.e., either γ = 1, or γ < 1, but
H0 ≡ 0. Then (2.25) and the second boundary condition in (2.31) imply that

(3.22) Sε
i (x)− Sε

m(x) = ε2∂2
nu

0
q(0, s)

Ä
ĂW0(ε

−1n, ε−1s; s)− P01(s)
ä
,

and the quantity

(3.23) ĂW0(ξ; s) = W0(ξ; s)− 1
2ξ

2
1 + P (s)ξ1 + P01(s)

decays exponentially as ξ1 → −∞; here the free term P01(s) in the first expansion in
(2.25) is a smooth function of s ∈ Γ. Thus, expression (3.22) is written as the sum of
two terms: a smooth function multiplied by ε2 and a quantity that is exponentially small
on the set supp |∇xχ|, i.e., on the support of the coefficients of the commutator [Δx, χ],
where ξ1 = ε−1n < cχε

−1, cχ > 0. Therefore,
∥∥[Δx,Xε](S

ε
o − Sε

m);L2(Ω
ε)
∥∥2 ≤ cε2γ0εγ0 ,∥∥[Δx, χ](S

ε
i − Sε

m);L2(Ω
ε)
∥∥2 ≤ c(ε2 + exp(−δχε

−1)), δχ > 0.
(3.24)
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In the first line in (3.24), one of the factors εγ0 arose because of integration over the
boundary strip of width O(εγ0) on which the support of the function on the left in (3.21)
is located. For similar reasons,

(3.25)
∥∥χΔxS

ε
i −XεχΔxS

ε
m;L2(Ω

ε)
∥∥2 ≤ cεγ0 .

Indeed, the factor ε2 of the second term on the right in (3.16) suppresses the large factors
ε−2 and ε−1 coming from differentiation (at most two-fold) with respect to the fast
variables (2.19), and the expression on the left in (3.25) without the smooth subtrahend
P01(s), for which the required estimate is obvious, decays exponentially as ξ1 = ε−1n →
−∞. This means that, in essence, in (3.25) it remains to consider the integral

C

∫
Γ

∫ c+ε

−c−

exp(2δε−1n) dn ds,

which is O(εγ0) (recall that γ0 = 1). Finally, supp(XεΔxS
ε
0) ⊂ Ω and

(3.26)
∥∥XεΔxS

ε
o −Δxu

0
q ;L2(Ω)

∥∥2 ≤ cεγ0 .

Formulas (3.24)–(3.26) and (3.18) show that

(3.27)
∣∣(ΔxU

ε
q,ΔxU

ε
l )Ωε − (Δxu

0
q,Δxu

0
l )Ω

∣∣ ≤ cεγ0/2.

In particular, using (2.4) and (1.11), we obtain

(3.28) 1− cεγ0/2 ≤ ‖Uε
q;H

ε‖ − λq ≤ 1 + cεγ0/2.

If γ0 < 1, i.e., γ < 1, but H0 �≡ 0, then the calculations remain largely the same. The
only point that is worth attention is a modification of the last factor in formulas similar
to (3.22) and (3.23):

Sε
i (x)− Sε

m(x) = ε2∂2
nu

0
q(0, s)W

•
0 (ε

−1n− εε−1H0(s), ε
−1s; s),

W •
0 (ξ; s) = W0(ξ; s)− ε−2 1

2n
2 − ε−2+γH0(s)n

= W0(ξ; s)− 1
2ξ

2
1 − 1

2ε
2γ−2H0(s)

2
ĂW0(ξ, s)

− P (s)ξ1 − P01(s)− 1
2ε

2γ−2H0(s)
2.

We have used the definition (2.36) of the fast variable ξ1. The linear growth of W •
0 (ξ, s)

does not impede the deduction of estimates, though it enlarges the majorant, which,
however, is irrelevant because γ < 1. Indeed, for two-fold differentiation the estimate

survives because of the presence of ε2 and the exponential decay of ĂW0, while for one-fold
differentiation or for differentiation only in the slow variable s, a similar role is played by
the remaining factors ε or ε2, respectively. The norm in (3.25) can be treated similarly.

Thus, formulas (3.27) and (3.28) are valid also for γ0 = γ < 1.

4. Discrepancy estimate for γ = 1. First, we find the correction term Wε
q in (3.16).

Due to the cutoff function Xε, the first and third terms on the right in (3.16) satisfy
the boundary conditions (1.4). Since W 0 is a solution of the homogeneous problem
(2.21)–(2.23), W 0 also satisfies the first boundary condition, so that we should put

(3.29) Wε
q (x) = 0, s ∈ Γε.

On the other hand, the derivative along the normal to the boundary (1.1),

∂nε(∂2
nu

0
q(0, s)W0(ε

−1n, ε−1s, s))

= (1+Nε(s)2)−1/2 1

ε

( ∂

∂ξ1
−Nε(s)Jε(s)−1

(
ε
∂

∂s
+

∂

∂ξ2

))(
∂2
nu

0
q(0, s)W0(ξ, s)

)∣∣∣
ξ=ε−1(n,s)

,
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Figure 7. Periodic boundary layer and a cell of the covering.

found by formulas (2.7) and (2.8), differs from the derivative along the normal to the
edge �(s) of the half-strip Π(s) (see (2.20)) for s fixed:

1

ε

(
1 +

∣∣∣∂H
∂ξ2

(ξs, s)
∣∣∣2
)−1/2 1

ε

( ∂

∂ξ1
− ∂H

∂ξ2
(ξ2, s)

∂

∂ξ2

)(
∂2
nu

0
q(0, s)W0(ξ, s)

)∣∣∣
ξ=ε−1(n,s)

.

Formulas (2.9) and (2.10) show that the difference is O(ε0). As a result, taking the factor
ε2 into account, we obtain

(3.30) ∂nεWε
q (x) = ε2P1(ε, ε

−1s, s), x = s ∈ Γ.

Here P1 is a smooth function of the variables ε ∈ [0, 1], η = ε−1s ∈ [0, 1], and s ∈ Γ,
periodic relative to η.

The set

Θε =
{
x ∈ Ωε : n > ε

(
1 + min

{
H0(η, s)

∣∣ η ∈ [0, 1], s ∈ Γ
})}

(it is shadowed in Figure 7; cf. Figure 1) can be covered by the cells

θεj = {x ∈ Θε : s ∈ (εj − ε/2, εj + 3ε/2)}, j = 1, . . . , N

(one of these cells is deeply shadowed in Figure 7). We recall that ε = 1/N . Each
of the cells “differs little” from the other cells (one is taken to another by a smooth
diffeomorphism). We choose an appropriate partition of unity {ζεj }Nj=1 on the contour Γ,
with elements ζεj ∈ C∞

c (εj − ε/4, εj +5ε/4). We construct functions Wε
qj ∈ C∞

c (θεj ∪ϑε
j)

such that

(3.31) Wε
qj = 0, ∂nεWε

qj = ε2ζεjP1 on ϑε
j = ∂θεj ∩ Γε

and put

(3.32) Wε
q =

N∑
j=1

pζεjWε
qj ,

where pζεj ∈ C∞
c (εj − ε/2, εj + 3ε/2) and pζεj ζ

ε
j = ζεj . This finishes the construction of the

required function; it remains to estimate its Sobolev norms. The consideration of the
data (3.31) is done conveniently in terms of coordinates that are ε−1 times dilated relative
to the mass center of θεj . This operation of dilation will be denoted by the symbol �. The

norm of the function ε3(ζεjP1)� in the Sobolev–Slobodetskĭı space H1/2 is O(ε3) (the

additional factor ε is due to the coordinate dilation). Therefore, the H2-norm of the
function

(
Wε

qj

)
�
does not exceed cε3, and c can be taken to be one and the same for all

cells because the cells differ little from one another (see above). Upon returning to the
initial coordinates, the square of the H2-norm acquires the factor ε2(ε−2)2 = ε−2; hence,
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after summing as in (3.32) and recalling that N = 1/ε, we obtain the majorant cε6−2−1

for the sum in question, together with the desired estimate (3.18) with the exponent
γ2 = 3/2 for the norm itself of the function (3.32).

We turn to handling the quantity (3.7) that occurs in Lemma 3.1 concerning near
eigenvalues and eigenvectors; as an approximate eigenvalue Mε

q in that lemma, we take
the expression (3.9), and the role of an approximate eigenfunction will be played by

Uε
q = ‖Uε

q;H
ε‖−1Uε

q,

where Uε
q is the asymptotic construction (3.17). By the definitions (3.1) and (3.2), we

have

δεq = ‖KεUε
q −Mε

qUε
q ;H

ε‖
= ‖Uε

q;H
ε‖−1Mε

q sup
∣∣(λp + εγ0λ′

q)(U
ε
q, V

ε)Ωε − (ΔxU
ε
q,ΔxV

ε)Ωε

∣∣
≤ c sup

∣∣(Δ2
xU

ε
q − (λp + εγ0λ′

q)U
ε
q, V

ε)Ωε

∣∣.
(3.33)

Here the supremum is taken over all V ε ∈ Hε such that ‖V ε;Hε‖ = 1, and in the last
line in (3.33) we used the fact that, by (3.9) and (3.28), the quantity ‖Uε

q;H
ε‖−1Mε

q is
uniformly bounded for ε ∈ (0, εp] with εp > 0. Observe that, by the inequalities (1.6)
and (4.12), we have

(3.34) ‖ρ−2
ε V ε;L2(Ω

ε)‖+ ‖ρ−1
ε ∇xV

ε;L2(Ω
ε)‖+ ‖∇2

xV
ε;L2(Ω

ε)‖ ≤ c.

Estimate (3.18) shows that the correction term Wε
q can be excluded from further consid-

eration, because

(3.35)
∣∣(λp + εγ0λ′

q)(Wε
q , V

ε)Ωε − (ΔxWε
q ,ΔxV

ε)Ωε | ≤ cεγ2 .

We perform transformations similar to (3.20):

Δ2
x(XεS

ε
o + χSε

i −XεχS
ε
m)− (λp + εγ0λ′

q)(XεS
ε
o + χSε

i −XεχS
ε
m)

= Xε(Δ
2
xS

ε
o − (λp + εγ0λ′

q)S
ε
o) + [Δ2

x,Xε](S
ε
0 − Sε

m)

+ χ(Δ2
xS

ε
i −XεΔ

2
xS

ε
m)− (λp + εγ0λ′

q)χ(S
ε
i −XεS

ε
m) + [Δ2

x, χ](S
ε
i − Sε

m)

=: XεΣ
ε
o +Σε

om + χΣε
im − χΣε

λ +Σε
χ.

(3.36)

Here, we encounter commutators of the biharmonic operator with the cutoff functions
(3.17), but formulas similar to (3.19) remain valid. The commutator [Δ2

x, χ] is a third-
order differential operator with smooth coefficients, the supports of which are O(d)-
distant from the boundary Γε. The coefficients of the derivatives of order p = 0, 1, 2, 3
in the commutator [Δ2

x;Xε] are O(ε−4+p), and their supports are located in the dε-
neighborhood of Γ. We shall use these properties in the further calculations.

Recalling equations (1.9) and (2.12), we see that

Σε
o = (Δ2

xu
0
q − λpu

0
q) + εγ0(Δ2

xu
′
q − λpu

′
q − λ′

qu
0
q)− ε2γ0λ′

qu
0
q = −ε2γ0λ′

qu
0
q ,

i.e.,

(3.37)
∣∣(X εΣε

o, V
ε)Ωε

∣∣ ≤ cε2γ0 .

We repeat the transformations (3.21) with obvious modifications and use the weight
inequality (3.34) and what was said above about the commutator [Δ2

x,Xε] to show that
(3.38)

∣∣(Σε
om, V ε)Ωε

∣∣ ≤ c
∥∥ρ−2

ε Vε;L2(Ω
ε)
∥∥Å∫ 0

dε

(|n|+ ε)4(|n|3−p + ε|n|(2−p)+)2 dn

ã1/2

≤ cε3/2;

here (t)+ = (|t|+ t)/2 is the positive part of t ∈ R.
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Now we consider the terms that arose in (3.36) because of the internal expansion
(2.34). We begin with the simpler, the last, term. Since the difference (3.22) is bounded
with respect to ξ1 and involves the factor ε2, we have

(3.39)
∣∣(χΣε

λ, V
ε)Ωε

∣∣ ≤ cε2‖V ε;L2(Ω
ε)‖ ≤ cε2.

Formula (1.14) for the Laplacian allows us to rewrite the biharmonic operator in the
curvilinear coordinates: Δ2

x = L(n, s, ∂n, ∂s). Also, note that

(3.40) ∂sW0(ε
−1n, ε−1s, s) =

Å
∂W0

∂s
(ξ, s) +

1

ε

∂W0

∂ξ2
(ξ, s)

ã∣∣∣∣
ξ=ε−1(n,s)

.

Thus, we can write

L(n, s, ∂n, ∂s)W0(ε
−1n, ε−1s, s)

= (ε−4ΔξW0(ξ, s) + rLε(n, s,∇(n,s),∇ξ)W0(ξ, s))
∣∣
ξ=ε−1(n,s)

,

where rLε is a fourth-order operator for which the coefficients of the derivatives ∇4
ξ are

O(ε−4|n|), and those of the derivatives ∇j
(n,s)∇k

ξ are O(ε−k); here j = 0, . . . , 4, k =

0, . . . , 3, and j + k ≤ 4.
We agree to use the slow and fast variables simultaneously, which is customary in

homogenization theory (cf. relations (3.40)). Also, we assume that in the expression
Sε
m the coordinate n is replaced with the dilated coordinate ξ1 = ε−1n, i.e., Sε

m(x) =
ε2∂2

nu
0
q(0, s)(

1
2ξ

2
1 + P (s)ξ1). Then for both terms we obtain Δ2

ξS
ε
i = 0 and Δ2

ξS
ε
m = 0.

In the difference Sε(x) − Sε
m(x), the quadratic terms O(ξ21), as well as the linear terms

O(|ξ1|), mutually cancel, and the constant term P01(s) (cf. (3.22)) gives rise to a smooth
function x �→ ε2χ(x)Δ2

x∂nu
0
q(0, s)P01(s), for which the required estimate is obvious due

to the factor ε2. As a result, since the remainder term (3.23) decays exponentially (see
Proposition 2.1), we conclude that∣∣(χΣε

im, V ε)Ωε

∣∣ ≤ cε2‖ρ−2
ε V ε;L2(Ω

ε)‖

×
Å
1 +

4∑
k=0

ε−2k

∫ cε

−d

(|n|+ ε)4n2δk,4 exp
(
2δ

n

ε

)
dn

ã1/2

≤ cε3/2.
(3.41)

It remains to consider the summand Σε
χ with the commutator [Δ2

x, χ]. Much as in the
proof of the second relation in (3.24), we arrive at the following result:

(3.42)
∣∣(Σε

x, V
ε)Ωε

∣∣ ≤ cε2.

Now, combining formula (3.33) with estimates (3.35), (3.37)–(3.39) and (3.41), (3.42)
for the terms in (3.36), we see that δεq ≤ cε3/2. Thus, the first part of Lemma 3.1 ensures
the existence of an eigenvalue in the sequence (3.5) for which

(3.43) |με
j(q) − (λp + ελ′

q)
−1| ≤ cpε

3/2.

Suppose the eigenvalue λp is simple, i.e., κp = 1, or all the eigenvalues of the matrix
Tp are simple, i.e., all inequalities in (2.16) are strict, and hence, the segments on which,
in accordance with (3.43), the numbers με

j(p), . . ., μ
ε
j(p+κp−1) lie, are disjoint. Then we

have κp eigenvalues of the operator Kε that satisfy (3.12), so that the arguments of
Subsection 2 in §3 lead to the required theorem on asymptotic formulas. However, in the
case of a multiple eigenvalue,

λ′
l−1 < λ′

l = · · · = λ′
l+�l−1 < λ′

l+�l

(cf. formula (1.17)), we also need to verify that there exist �l > 1 distinct eigenvalues of
Kε that satisfy (3.43) for q = l, . . . , l + �l − 1.
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Let με
Lε , . . . , με

Lε+Nε−1 be all the eigenvalues of the operator Kε on the segment

(3.44) Iεl (β) =
î
(λp + ελ′

l)
−1 − βcpε

3/2, (λp + ελ′
l)

−1 + βcpε
3/2

ó
,

where β is a (generally speaking, large) number to be chosen later, and ε is so small that
the segment (3.44) does not intersect any other such segment Iεq (α) with q �= l, . . . , l +

�l − 1. In Lemma 3.1, put �ε
l= αcpε

3/2. Then there exist coefficient columns Aε
(m) =

(Aε
m,l, . . . , A

ε
m,l+τl−1) of unit height (see the second formula in (3.8)) such that

(3.45)

∥∥∥∥Uε
m −

Lε+T ε−1∑
j=Lε

Aε
m,jU

ε
j ;H

ε

∥∥∥∥ ≤ 2
δεm
�ε

m

≤ 2

β
.

For m �= n, with the help of (3.27) and (1.11) we get

|〈Uε
m,Uε

n〉| = ‖Uε
m;Hε‖−1‖Uε

n;H
ε‖−1|〈Uε

m,Uε
n〉| ≤ cεγ0/2.

On the other hand, by the orthogonality and normalization conditions (3.6), we have

∣∣∣∣
Lε+T ε−1∑

j=Lε

Aε
m,jA

ε
n,j

∣∣∣∣ =
∣∣∣∣
〈 Lε+T ε−1∑

j=Lε

Aε
m,jU

ε
j ,

Lε+T ε−1∑
j=Lε

Aε
n,jU

ε
j

〉∣∣∣∣
=

∣∣〈Σε
m,Σε

n〉
∣∣ = ∣∣〈Σε

m − Uε
m,Σε

m〉+ 〈Uε
m,Σε

n − Uε
n〉+ 〈Uε

m,Uε
n〉
∣∣

≤ 2β−1 + 2β−1 + cεγ0/2.

Here Σε
m is the sum under the norm sign in (3.45). Recalling the second formula in (3.8),

we see that, for large β and sufficiently small ε, the columns Aε
l+�l−1 ∈ R

T ε

are “almost
orthonormalized”, which is possible only if �l ≤ T ε.

This establishes the required claim; hence, Theorem 3.1 is proved in the case where
γ = 1.

Remark 3.1. The resulting estimate for rλ ε
q turns out to be asymptotically sharp: the rule

of “the first discarded term” works. Namely, in the Ansatz (2.24), and then also in the
construction (3.16), the term χ(x)ε3w′′(ε−1, ε−1s, s) of the boundary layer type was not
taken into account, and the norm of this term in the space H2(Ωε) is precisely O(ε3/2).

5. Discrepancy estimate for γ < 1. In essence, the only difficulty is to estimate
the correction term Wε in (3.16), at least because now the boundary condition (3.29)
becomes nonhomogeneous, and the right-hand sides of (3.29) and (3.30) are calculated
in accordance with the expansions (2.42) near the vertex of the check (2.38).

Remark 3.2. Due to the assumption (2.35), the leading terms of equation (2.37) of
the boundary take the form ξ1 = εγ−1A(s0)(ξ2 − η0(s0))

2. Therefore, passage to the
“superfast” variables

(3.46) pξ = (pξ1, pξ2) = (εγ−1ξ1, ε
γ−1(ξ2 − η0(s0))

transforms the domain Ωε inside a small neighborhood of the point (s0, ε
γH(s0, η0(s0)))

to the exterior of the parabola pξ1 = A(s0)(pξ2)
2. As a result, the phenomenon of a “deep”

boundary layer arises, described in [54] for a second-order elliptic equation. We shall not
need such a boundary layer for justifying the leading terms of the asymptotic expansion.
In the case of a nonstrict minimum, if we replace (2.35) by the condition

H(η, s0) = A(s0)(η − η0(s0))
2m +O(|η − η0(s0))|2m+1),

A(s) > 0, m ∈ N, m > 1,

then εγ−1 appears in place of the dilatation coefficient ε(γ−1)/(2m−1).
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Let s ∈ (ε(j − 1), εj) for some j = 1, . . . , N . Since the profile function is smooth
in both arguments, the points (εγH0(η0(s), s), s) ran over an arc of length O(ε1+γ) (cf.
(1.16)). We introduce a cutoff function χ0

ε1+γ with support in the 2cε1+γ-neighborhood
of that arc and equal to 1 in the cε1+γ-neighborhood. It is not hard to ensure the relation
|∇�

xχ
0
ε1+γ (x)| ≥ c�ε

−�(1+γ); hence, by (2.42), we have

‖χ0
ε1+γε2∂nu

0
qW0;H

2(Ωε)‖2

≤ cε4
∫ ε1+γ

0

(
ε−4(1+γ)(εγ + ε−1r)3 + ε−4(εγ + ε−1r)−1

)
r dr ≤ cε2+γ .

(3.47)

In other words, near the points of minimum of the profile function, for the role of the
correction Wε

q we can take the sum Wε
q,min of the functions occurring under the norm

sign on the left in (3.47). We have N = 1/ε such functions, whence

‖Wε
q,min;H

2(Ωε)‖2 ≤ c(Nε2+γ)1/2 = cε(1+γ)/2.

Relations (2.42) and (2.40) yield the following estimates in the strip R× (0, 1):

|W0(ξ)| ≤ cρ3/2|ρ−1ξ2|2 exp(−δ1ξ1) = cρ−1/2|ξ2|2 exp(−δ1ξ1),

|∇ξW0(ξ)| ≤ cρ−1/2|ξ2| exp(−δ1ξ1),

|∇2
ξW0(ξ)| ≤ cρ−1/2 exp(−δ1ξ1).

(3.48)

Note that the factor |ρ−1ξ2|2 ∼ (|φ| − π)2 has arisen because of the double zero of the
angular part 3 sin(φ/2) + sin(3φ/2) at the points φ = ±π, i.e., on the shores of the cut
Υ = {ξ : ξ2 = 0, ξ ≥ 0}. The presence of an exponential factor on the right-hand sides of
(3.48) allows us to use the sum Wε

q,max of the products ε2∂nu
0
qW0 multiplied by 1−χ0

ε1+γ

for the role of Wε
q on the fragments {x ∈ Γε : n > H0(s) + cε1+γ} (“offcuts of petals”).

Then
‖Wε

q,max;H
2(Ωε)‖2 ≤ c exp(−δ2ε

−γ), δ2 ∈ (0, δ1).

As a result, we arrive at the required estimate (3.18). In essence, the remaining part of
the proof repeats the arguments of the preceding subsection; the necessary but insignif-
icant modifications were already discussed in Subsection 3 of §4. Thus, we assume that
Theorem 3.1, 1), is proved for γ < 1, H0 �≡ 0.

6. The remaining two cases. In the case of a slanting (γ > 1) perturbation of the
boundary, the term of the boundary layer type can be excluded from the construction of
the asymptotic approximation (3.16); this formula becomes

Uε
q(x) = u0

q(x) + εγu′
q(x) +Wε

q (x).

The functions u0
q and u′

q are defined by formulas (2.3) and (2.12), (2.11), and the bound-

ary condition for u′
q involves the mean value sH(s) of the profile function. The small

correction term Wε
q must compensate for the smooth type discrepancies in the boundary

conditions (2.5) and (2.6). Recalling that u0
q and u′

q are extended smoothly outside of Ω,
we arrive at the relation

u0
q(ε

γH(ε−1s, s), s) + εγu′
q((ε

γH(ε−1s, s), s)

= ε2γ
(1
2
H(ε−1s, s)2∂2

nu
0
q(0, s) +H(ε−1s, s)u′

q(0, s)
)
+O(ε3γ).

(3.49)

If we act as in Subsection 4 of §3, and choose any function Wε
q ∈ H2(Ωε) that takes the

value opposite to (3.49) on the boundary Γε, then it will satisfy estimate (3.18) with the
exponent γ2 = 2γ − 3/2 > 0. This estimate suffices for proving the auxiliary formulas
such as (3.27) and (3.28) with infinitesimally small majorants, but it is unsuitable for
proving Theorem 3.1, because the exponent γ1 = 2γ − 1/2 in the second formula in
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(3.11) turns out to be greater than the γ2 obtained. Looking through what was said
in Subsection 4 of §3 once again, we find that relation (3.18) was employed to deduce
inequality (3.35), and that this inequality (and only it) leads to an inadmissible enlarging
of the majorant for the quantity (3.33) in Lemma 3.1.

This situation can be remedied by imitation of the boundary layer phenomenon as
follows. We compensate for the averages over the fast variable ξ2 = ε−1s of the right-
hand sides in (3.49) and in a similar identity for ∂nε(u0

q+εγu′
q) with the help of a function

depending on the slow variables, and the remainder will be compensated for with the
help of the solution of problem (2.21)–(2.23) in the half-strip Π− with the rectangular
edge � = {ξ : ξ1 = 0, ξ2 ∈ (0, 1)}. Since in this special case we have W0(ξ) = ξ21/2 and
W0(ξ) = ξ31/6, Proposition 2.1, 2) shows that the resulting Ersatz of the boundary layer
decays exponentially, because the right-hand sides g0 and g1 have zero mean. Now, by
repeating the calculations that led in Subsection 4 of §3 to inequality (3.38), we see that
δεq ≤ cε2γ−1/2 (cf. formula (3.11)).

Similar modifications are needed in the case where γ < 1, H0 ≡ 0, because relation
(3.11) does not provide the required majorant in (3.35). What is needed is the “deep”
boundary layer employing the superfast variables (3.46) and described in Remark 3.2.
With such a boundary layer in the construction of the correction term Wε

q , we get the

desired relation δεq ≤ cε1+γ/2.
In the last two cases, the resulting estimates turn out to be asymptotically sharp in

the sense of Remark 3.1. However, the estimate found in the case of γ < 1, H0 �≡ 0 (see
Subsection 5 of §3) fails to possess this property, again because the deep boundary layer
was not taken into account in the correction term Wε

q .

7. Some words about the asymptotic approximations of eigenfunctions. The
standard approach (see, e.g., [52, 9, 4]) allows us to use the second part of Lemma 3.1
on “near eigenvalues and eigenvectors” for justifying the asymptotic formulas (2.2) and
(2.24) for uε

p, . . . , u
ε
p+κp−1. Naturally, some loss of accuracy occurs: recall that a smooth

type correction term is not unique, being determined only up to a linear combination
of the “limiting eigenfunctions” up, . . . , up+κp−1, which are unknown at that stage of
the asymptotic procedure. In Theorem 3.1, we presented a simpler result, in which the
boundary layer is neglected, so that the majorant is somewhat enlarged additionally.

§4. Nonregular perturbation of the boundary

1. On the notation. In accordance with [7], the content of this section is closely re-
lated to the abstract setting (3.3) of problem (1.5), dealing with the eigenvalues (3.5)
of the operator Kε. Therefore, all asymptotic expansions are formulated for the eigen-
values με

p = 1/λε
p. Of course, such formulas can easily be reshaped into asymptotic

representations of the eigenvalues λε
p themselves; see (3.13) (cf. Subsection 1 of §5).

2. An abstract theorem. The proof of the results mentioned in Subsection 3 of §1
is based on an application of [7, Theorem 1], which makes it possible to compare the
eigenvalues of two compact operators acting in different Hilbert spaces. The first pair
space/operator that we need was already determined in Subsection 1 of §3: the space

Hε = H̊2(Ωε) with the scalar product (3.1) and the operator Kε given by (3.2). Clear
modifications of the definitions provide the space H = H0, the scalar product 〈 , 〉 = 〈 , 〉0
and the operator K = K0 with the same properties as Kε, i.e., K is compact, positive,
and selfadjoint; relations (3.1) and (3.2) take the form

〈u, v〉 = (Δxu,Δxv)Ω, 〈Ku, v〉 = (u, v)Ω, u, v ∈ H.
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The eigenvalues of K will be denoted by μ1 ≥ μ2 ≥ · · · ≥ μp ≥ · · · → +0 (cf. (3.5)), and
the variational spectral problem (1.11) is equivalent to the abstract equation Ku = μu
in H, similar to (3.3), and the eigenvalues λp and μp are related by (3.4).

In order to compare the eigenvalues μq and με
q of the operators K and Kε, we apply

Proposition 1 and Theorem 1 of the paper [8]. In the sequel, it is convenient to assume
that the functions of classes H and Hε are extended by zero to the entire plane. We
shall need the operator S : H0 �→ Hε defined as follows: for ϕ ∈ H0 by φ = Sϕ ∈ Hε

we mean a unique solution of the problem

〈φ, v〉ε = 〈ϕ, v〉ε, v ∈ Hε.

For the conjugate operator S∗ : Hε → H we have 〈ϕ,S∗v〉 = 〈ϕ, v〉, ϕ ∈ H. By
definition, ‖S;H → Hε‖ = ‖S∗;Hε → H‖ = 1. Moreover, Sw = w and S∗w = w
whenever w ∈ H ∩Hε. If wε ∈ Hε (or w ∈ H) and the vector wε (or w) is orthogonal
to H ∩Hε, then the same orthogonality remains valid for Sw (or S∗wε).

Compared to Subsection 1 of §1, now we characterize the mutual proximity of the
domains Ω and Ωε by a more complicated condition, which will be verified afterwards
starting with the previous requirements. Observe that if functions w ∈ H and wε ∈ Hε

are orthogonal to the subspace H ∩Hε, then

(4.1) ‖w;L2(Ω)‖2 ≤ ν‖∇2
xw;L2(Ω)‖2, ‖wε;L2(Ω

ε)‖2 ≤ ν‖∇2
xw;L2(Ω

ε)‖2

with some constant ν, which will be regarded as a small parameter in what follows.
Namely, the new condition looks like this:

(i) Ω and Ωε are bounded domains with nonempty intersection, and the quantity ν
in (4.1) is small.

We introduce the operator B = KεS − SK : H → Hε and denote by ς the best
constant in the inequality

(4.2)
∣∣〈Bϕ,Sψ〉ε

∣∣ ≤ ς‖ϕ;H‖ ‖Sψ;Hε‖, ϕ, ψ ∈ Xp.

Let Yp be the orthogonal complement of the subspace SXp in Hε. Also, let Pp denote
the orthogonal projection onto SXp in Hε, and let Qp = 1−Pp.

Lemma 4.1. Let λp be an eigenvalue of problem (1.11) of multiplicity κp (see (1.17)).
If the constant ν in inequalities (4.1) is small, then the interval (1.5) contains exactly
κp eigenvalues of problem (1.18), and the following asymptotic formula is valid:

(4.3) (λε
q)

−1 = λ−1
p + tq +O (ν(ς + ν)) , q = p, . . . , p+ κp − 1,

where tp, . . . , tp+κp−1 are the eigenvalues of the algebraic problem

(4.4) 〈Bϕ,Sψ〉ε + 〈bϕ,Bψ〉ε = t〈Sϕ,Sψ〉ε, ψ ∈ Xp,

for the unknown function ϕ ∈ Xp, and bϕ ∈ Yp is the solution of the equation

(4.5) λ−1
p bϕ −QpK2bϕ = QpBϕ.

Proof. Essentially, the proof is the same as that of formula (53) in [7]. �

We show that any ϕ ∈ Xp satisfies the inequality

(4.6) ‖Bϕ; H̊2(Ωε)‖ ≤ cν1/2‖ϕ; H̊2(Ωε)‖.

Recalling the definitions of K and Kε, we see that

〈Bϕ,w〉ε = (Sϕ,w)Ωε − (ϕ,S∗w)Ω
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for any test function w ∈ H̊2(Ωε). Let ϕ = ϕ0 + ϕ1 and w = w0 + w1, where ϕ0, w0 ∈
H̊2(Ω ∩ Ωε), and the components ϕ1 ∈ H̊2(Ω) and w1 ∈ H̊2(Ωε) are orthogonal to the

subspace H̊2(Ω ∩ Ωε). Then

(4.7) 〈Bϕ,w〉ε = (ϕ0, w1)Ωε − (ϕ1, w0)Ω + (Sϕ1, w)Ωε − (ϕ,S∗w1)Ω.

Applying inequalities (4.1) to w1, Sϕ1 and ϕ1, S
∗w1, we obtain

|〈Bϕ,w〉ε| ≤ cν1/2‖ϕ;H‖ ‖w;Hε‖;

this implies the required estimate (4.6).
Now we compute the scalar product 〈Bϕ,Sψ〉ε occurring in (4.4). For ϕ, ψ ∈ Xp, we

write

(4.8) Sϕ = ϕ+Φε
ϕ, Sψ = ψ +Φε

ψ,

where Φε
ϕ is the solution of problem (1.21). The function Φε

ψ is introduced similarly. We
have

〈Bϕ,Sψ〉ε = (ϕ+Φε
ϕ, ψ +Φε

ψ)Ωε − λ−1
p 〈ϕ+ Φε

ϕ, ψ +Φε
ψ〉ε.

The definitions of Φε
ϕ and Φε

ψ imply that

(4.9) 〈Φε
ϕ, ψ +Φε

ψ〉ε = 〈ϕ+Φε
ϕ,Φ

ε
ψ〉ε = 0.

Thus,

(4.10) 〈Bϕ,Sψ〉ε = (ϕ+Φε
ϕ, ψ +Φε

ψ)Ωε + λ−1
p

(
〈Φε

ϕ,Φ
ε
ψ〉ε − 〈ϕ, ψ〉ε

)
.

With the help of the relations

(Δxϕ,Δxψ)Ω∩Ωε − (Δxϕ,Δxψ)Ω\Ωε

= λp(ϕ, ψ)Ω∩Ωε − λp(ϕ, ψ)Ω\Ωε + 2

∫
Γ0ε

(Δxϕ(x)∂nψ(x)− ∂nΔxϕ(x)ψ(x)) dsx

and

λp(ϕ,Φψ)Ωε = 〈ϕ,Φψ〉ε −
∫
Γ0ε

(∂nΔxϕ(x)ψ(x)−Δxϕ(x) ∂nψ(x)) dsx,

where Γ0ε = ∂(Ω ∩ Ωε), we show that

〈ϕ,Φε
ψ〉ε = λp(ϕ,Φ

ε
ψ)Ωε − 1

2

(
(Δxϕ,Δxψ)Ω∩Ωε

− (Δxϕ,Δxψ)Ω\Ωε − λp(ϕ, ψ)Ω∩Ωε + λp(ϕ, ψ)Ω\Ωε

)
.

Together with a similar formula for 〈Φϕ, ψ〉ε, this relation reshapes identity (4.10) as
follows:

〈Bϕ,Sψ〉ε = (ϕ, ψ)Ωε + (Φε
ϕ,Φ

ε
ψ)Ωε + λ−1

p

(
〈Φε

ϕ,Φ
ε
ψ〉ε − 〈ϕ, ψ〉ε

)
+ λ−1

p

(
〈ϕ,Φε

ψ〉ε + 〈Φε
ϕ, ψ〉ε + (Δxϕ,Δxψ)Ω∩Ωε

− (Δxϕ,Δxψ)Ω\Ωε − λp(ϕ, ψ)Ω∩Ωε + λp(ϕ, ψ)Ω\Ωε

)
.

Applying (4.9), finally we deduce that

(ΔxBϕ,ΔxSψ)Ωε = (ϕ, ψ)Ω\Ωε + (Φε
ϕ,Φ

ε
ψ)Ωε

− λ−1
p

(
(ΔxΦ

ε
ϕ,ΔxΦ

ε
ψ)Ωε + (Δxϕ,Δxψ)Ω\Ωε

)
.

(4.11)
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4. Consequences of the requirements of Subsection 1 in §1, and estimation
of the factor ν. Assume the restrictions (1.2). We introduce the domains Ωε

+ = {x :
dist(x,Ω) < ε} and Ωε

− = {x ∈ Ω : dist(x,Γ) > ε}. By the restrictions mentioned,
Ωε ⊂ Ωε

+ and Ωε
− ⊂ Ω∩Ωε. Putting ρ(x) = dist(x, ∂Ω2ε

+ ), we write the Hardy inequality

(4.12)

∫
Ω2ε

+

ρ−4|v(x)|2 dx ≤ c1

∫
Ω2ε

+

ρ−2|∇xv(x)|2 dx ≤ c2

∫
Ω2ε

+

|∇2
xv(x)|2 dx,

valid for functions of class C∞
c (Ω2ε

+ ) with constants c1 and c2 independent of ε. For a
subdomain Ξ ⊂ Ω2ε

+ we introduce the weighted norm

~v; Ξ~β =

Å∫
Ξ

ρ(x)β|∇2
xv(x)|2 dx

ã1/2

.

The next statement can be proved, essentially, like Lemma 1 in [7].

Lemma 4.2. For any w ∈ H̊1(Ωε
+), we have

(4.13)

∫
Ωε

+
\Ωε

−

|w(x)|2 dx ≤ cε2
∫
Ωε

+
\Ωε

−

|∇xw(x)|2 dx

and

(4.14)

∫
∂Ωε

−

|w(x)|2 dx ≤ cε

∫
Ωε

+\Ωε
−

|∇xw(x)|2 dx.

Here c is a constant depending on Ω.

Corollary 4.1. 1) Let w ∈ H (or w ∈ Hε) be orthogonal to H ∩Hε with respect to the
scalar product 〈 , 〉 (or 〈 , 〉ε). Then∫

Ω

|w(x)|2 dx ≤ cβε
1+β

∫
Ω

ρ(x)−β|∇2
xw(x)|2 dxÅ

or

∫
Ωε

|w(x)|2 dx ≤ cβε
1+β

∫
Ωε

ρ(x)−β|∇2
xw(x)|2 dx

ã
.

(4.15)

2) The factor ν in inequality (4.1) does not exceed cε.

Proof. Applying estimate (4.13) to the gradient ∇xw, we get

(4.16)

∫
Ωε

+
\Ωε

−

|∇xw(x)|2 dx ≤ cε2
∫
Ωε

+
\Ωε

−

|∇2
xw(x)|2 dx.

Similarly, inequality (4.14) shows that

(4.17)

∫
Ωε

−

|∇xw(x)|2 dx ≤ Cε

∫
Ωε

+
\Ωε

−

|∇2
xw(x)|2 dx.

Using Theorem D(p) in [55], we find∫
Ωε

−

|∇xw(x)|2 dx ≤ C

∫
∂Ωε

−

(|∇xw((x)|2 + |w(x)|2) dx.

Now relations (4.16) and (4.17)) lead to the estimate∫
Ωε

+

|∇xw(x)|2 dx ≤ Cε

∫
Ωε

+
\Ωε

−

|∇2
xw(x)|2 dx,

which ensures inequality (4.15), because 0 < c ≤ ρ(x)/ε ≤ C for x ∈ Ωε
+ \ Ωε

−.
The second claim of the lemma follows from the first for β = 0. �
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Lemma 4.3. Suppose ϕ ∈ Xp and ‖ϕ;Hε‖ = 1.
1) We have

(4.18)

∫
Ω\Ω2ε

−

|∇k
xϕ(x)|2 dx ≤ cε5−2k, k = 0, 1, 2,

∫
Γ

|∇2
xϕ(x)|2 dsx ≤ c.

2) The function Φε
ϕ determined by ϕ in accordance with (1.21) satisfies the estimate

(4.19)

∫
Ωε

|∇k
xΦ

ε
ϕ(x)|2 dx ≤ cε3−k, k = 1, 2.

Proof. 1) We represent ϕ as the sum φ1 + φ2, where φ1 ∈ H6(Bd
R) is the solution of the

problem

Δ2
xφ1(x) = λpϕ(x), x ∈ B

d
R, φ1(x) = ∂|x|φ1(x) = 0, x ∈ ∂Bd

R.

Here d ≥ 2 is the dimension, Bd
R is a ball with large radius R (it includes Ω2ε), and

H l is the Sobolev class. The second summand φ2 is the solution of the boundary-value
problem

Δ2
xφ2(x) = 0, x ∈ Ω, φ2(x) = −φ1(x), ∂nφ2(x) = −∂nφ1(x), x ∈ Γ.

Put Γ� = {x ∈ Ω : dist(x,Γ) = �}. By the trace inequality, we have

∫
Γ�

(|φ1(x)|2 + |∇xφ1(x)|2 + |∇2
xφ1(x)|2) dsx ≤ c.

Applying this estimate with � = 0, and also Theorems D(p) and R(p) in [55] to φ2, we
see that ∫

Γ�

(|∇xφ2(x)|2 + |∇2
xφ2(x)|2) dsx ≤ c.

This relation with � = 0 ensures the second inequality in (4.18). On the other hand,
integration of the same relations over the parameter � results in the first inequality in
(4.18) for k = 2, and for k = 0, 1 the required inequality follows from (4.13).

2) Let x(x) be a smooth function equal to 1 outside of Ωε
− and to zero in Ω2ε

− . We

may assume that this function satisfies the conditions |∇k
xx(x)| ≤ cε−k for k = 0, 1, 2.

We represent Φε
ϕ in the form Ψε

ϕ − xϕ. Then Ψε
ϕ must solve the boundary-value problem

Δ2
xΨ

ε
ϕ(x) = Δ2

x(x(x)ϕ(x)), x ∈ Ωε, Ψε
ϕ(x) = ∂nΨ

ε
ϕ(x) = 0, x ∈ Γε.

We have

〈Ψε
ϕ,Ψ

ε
ϕ〉ε =

∫
Ωε

(
ϕ(x)Δxx(x) + 2∇xx(x) · ∇xϕ(x)

)
ΔxΨ

ε
ϕ(x) dx

+

∫
Ωε

Δxϕ(x)
(
Δx(x(x)Ψ

ε
ϕ(x))− 2∇xx(x) · ∇xΨ

ε
ϕ(x)−Δxx(x)Ψ

ε
ϕ(x)

)
dx

=

∫
Ωε

(
ϕ(x)Δxx(x) + 2∇xx(x) · ∇xϕ(x)

)
ΔxΨ

ε
ϕ(x) dx

−
∫
Ωε

(
− λpϕ(x)x(x)Ψ

ε
ϕ(x) + Δxϕ(x)(2∇xx(x) · ∇xΨ

ε
ϕ(x) + Δxx(x)Ψ

ε
ϕ(x))

)
dx.
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Consequently,

‖Ψε
ϕ;H

ε
ϕ‖2 ≤ c

(
ε−2‖ϕ;L2(Ω

ε \ Ω2ε
− )‖ ‖∇2

xΨ
ε
ϕ;L2(Ω

ε \ Ω2ε
− )‖

+ ε−1‖∇xϕ;L2(Ω \ Ω2ε
− )‖ ‖∇2

xΨ
ε
ϕ;L2(Ω

ε \ Ω2ε
− )‖

+ ε−1‖∇2
xϕ;L2(Ω \ Ω2ε

− )‖ ‖∇xΨ
ε
ϕ;L2(Ω

ε \ Ω2ε
− )‖

+ ε−2‖∇2
xϕ;L2(Ω \ Ω2ε

− )‖ ‖Ψε
ϕ;L2(Ω

ε \ Ω2ε
− )‖

+ ‖ϕ;L2(Ω \ Ω2ε
− )‖ ‖Ψε

ϕ;L
2(Ωε \ Ω2ε

− )‖
)
.

Using estimate (4.13) for the function Ψε
ϕ, we see that

‖Ψε
ϕ;H

ε‖ ≤ c
(
ε−2‖ϕ;L2(Ω \ Ω2ε

− )‖
+ ε−1‖∇xϕ;L

2(Ω \ Ω2ε
− )‖+ ‖∇2

xϕ;L2(Ω \ Ω2ε
− )‖

)
.

Combining this with (4.18), we deduce the relation

‖Ψε
ϕ;H

ε‖2 ≤ cε,

which ensures (4.19) for k = 2. Also, Lemma 4.2 shows that

(4.20)

∫
Ωε\Ω2ε

−

|Ψε
ϕ(x)|2 dx ≤ cε5,

∫
Ωε\Ω2ε

−

|∇xΨ
ε
ϕ(x)|2 dx ≤ cε3

and

(4.21)

∫
∂Ω2ε

−

|Ψε
ϕ(x)|2 dx ≤ cε4,

∫
∂Ω2ε

−

|∇xΨ
ε
ϕ(x)|2 dx ≤ cε2.

By Theorem D(p) in [55] applied to Ψε
ϕ in the domain Ω2ε

− , and by (4.21), we obtain

‖∇xΨ
ε
ϕ(x);L2(Ω

2ε
− )‖2 dx ≤ cε2.

Together with (4.20), this inequality implies (4.19) with k = 1. �

The next statement is a consequence of (4.18), (4.19), and (4.11).

Corollary 4.2. We have

(4.22) 〈Bϕ,Sψ〉ε = −λp
−1

(
〈Φε

ϕ,Φ
ε
ψ〉ε + (Δxϕ,Δxψ)Ω\Ωε

)
+O(ε2).

In a domain Ξ such that Ωε
− ⊂ Ξ ⊂ Ωε

+, we consider the following boundary-value

problem for u ∈ H̊2(Ξ):

(4.23) (Δxu,Δxw)Ξ =
∑
|α|≤2

(fα, ∂
α
xw)Ξ, w ∈ H̊2(Ξ);

here α = (α1, . . . , αd) is multi-index, ∂α
x = ∂|α|/∂xα1

1 · · · ∂xαd

d , and fα ∈ L2(Ξ). Also,
we introduce the regularized distance rε to the boundary of Ω2ε

− . This function satisfies

|∇k
xrε(x)| ≤ ckρ

1−k, k = 0, 1, 2, . . . , and rε(x) ≥ cρ, where c > 0 and ρ is the quantity
introduced before formula (4.12).

Lemma 4.4. There exists a number β0 ∈ (0, 1) such that for β ∈ (−β0, β0) the solution

u ∈ H̊2(Ξ) of problem (4.23) satisfies the weighted estimate

(4.24)

∫
Ξ

ρβ|∇2
xu(x)|2 dx ≤ c

∑
|α|≤2

∫
Ξ

ρβ+4−2|α||fα(x)|2 dx,

where c depends only on β0 and the domain Ξ.
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Proof. We put w = rε
βu and v = rε

β/2u in the integral identity (4.23). We have

(4.25) (Δx(rε
−β/2v),Δx(rε

β/2v))Ξ =
∑
|α|≤2

(fα, ∂
α(rε

β/2v))Ξ.

The left-hand side is equal to the scalar product

(
Δxv −

β

rε
∇xrε · ∇xv +

β(β + 2)

4rε2
|∇xrε|2v

− βΔxrε
2rε

v,Δxv +
β

rε
∇rε · ∇v +

β(β − 2)

4rε2
|∇rε|2v +

βΔrε
2rε

v)
)
Ξ
,

and hence, to the sum

(Δxv,Δxv)Ξ +
(
Δxv,

β2

2rε2
|∇xrε|2v

)
Ξ

− β2

4
(∇rε · ∇v,∇rε · ∇v)Ξ + β2

(
rε

−1∇rε · ∇v,
|∇rε|2
rε2

v
)
Ξ

− β2
( 1

rε
∇xrε · ∇xv,

Δrε
2rε

v
)
Ξ
+
(β(β + 2)

4rε2
|∇xrε|2v,

β(β − 2)

4rε2
|∇xrε|2v

)
Ξ

+ β2
( 1

rε2
|∇xrε|2v,

Δrε
2rε

v
)
Ξ
− β2

(Δxrε
2rε

v,
Δrε
2rε

v
)
Ξ
.

Using the Hardy inequalities (4.12), we obtain

(Δx(rε
−β/2v),Δx(rε

β/2v))Ξ ≥ (1− cβ2)(Δxv,Δxv)Ξ.

The same inequalities allow us to estimate the right-hand side of (4.25) as follows:

∑
|α|≤2

(fα,∇α
x (rε

β/2v))Ξ ≤ c
∑
|α|≤2

‖rεβ/2+2−|α|fα;L2(Ξ)‖ ‖Δxv;L2(Ξ)‖.

The last two inequalities yield estimate (4.24) for small β. �

Applying Lemma 4.4 to the operators S, S∗ and to the projection to the subspace
H1 ∩H2, we obtain several important formulas.

Corollary 4.3. There exists β0 ∈ (0, 1) such that for |β| ≤ β0 the following statements
are valid.

1) If v ∈ Hε, then ~S∗v; Ω~β ≤ c~v; Ωε~β.
2) If v ∈ H, then ~Sv; Ωε~β ≤ c~v; Ω~β.

3) Let P be the projection from H̊2(Ω ∪ Ωε) onto H̊2(Ω ∩ Ωε) orthogonal with respect

to the scalar product 〈 , 〉. If v ∈ H̊2(Ω ∪ Ωε), then

~Pv; Ω ∩ Ωε~β ≤ C~v; Ω ∪ Ωε~β .

Proof. Since 〈S∗v, w〉 = 〈v, w〉 for w ∈ H, Lemma 4.4 ensures statement 1). The second
statement is also checked with the help of the definition of the operator S.

The operator P is given by the formulas u = Pv and

(Δu,Δw)Ω∩Ωε = (Δv,Δw)Ω∩Ωε , w ∈ H̊2(Ω ∩ Ωε).

Therefore, statement 3 follows from Lemma 4.4. �
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5. Proof of the asymptotic formula of Subsection 3 in §1. We check relation
(1.19). For this, we transform the scalar product 〈bϕ,Bψ〉ε (see Subsection 3 in §4 for
the definitions). We write bϕ as the sum λpQpBϕ + dϕ, where dϕ is defined by the
formula

(4.26) λ−1
p dϕ −QpK

ε
dϕ = g, g = λpQpK

ε
QpBϕ.

This formula (4.26) is completely similar to equation (27) in [7], i.e., by estimate (33)

in the same paper, the solution of our equation satisfies ‖dϕ; H̊2(Ωε)‖ ≤ c‖g; H̊2(Ωε)‖.
Since the operators Qp and Kε are bounded in the space Hε, formula (4.6) with the
replacement ν �→ cε (see Corollary 4.1, 2)) shows that

(4.27) ‖dϕ; H̊2(Ωε)‖ ≤ cε1/2‖ϕ; H̊2(Ωε)‖.

We rewrite (4.26) as follows:

(4.28) 〈dϕ, w〉ε = λp〈Kε
dϕ,Qpw〉ε + λp〈g, w〉ε, w ∈ Hε.

The right-hand side can be reshaped to

(4.29) λp(dϕ,Qpw)Ωε + λ2
p(QpBϕ,Qpw)Ωε .

We want to rewrite this expression as the scalar product (F,w)Ωε . For this, we fix

an orthonormal basis {fi}κp−1
i=0 in SXp and expand the operator Pp introduced before

Lemma 4.1 with respect to this basis:

(4.30) Ppv =

κp−1∑
i=0

〈v, fi〉εfi.

Thus,

〈Ppv, w〉ε = λp

κp−1∑
i=0

〈v, fi〉ε(fi, w)Ωε .

As a result, expression (4.29) takes the form (F,w)Ωε if we put

F = λpdϕ + λ2
pQpBϕ− λ2

p

κp−1∑
i=0

〈dϕ + λpBϕ, fi〉εfi.

Using (4.6) and (4.27), we obtain

‖F ;L2(Ω
ε)‖ ≤ c

(
‖dϕ;Hε‖+ ‖Bϕ;Hε‖

)
≤ cε1/2‖ϕ;H‖.

Lemma 4.4 applied to problem (4.28) shows that for any β ∈ (−β0, β0) we have

(4.31)

Å∫
Ωε

ρβ |∇2
xdϕ(x)|2 dx

ã1/2

≤ cε1/2‖ϕ;H‖.

Since Ω is a Lipschitz domain and ψ ∈ Xp, we can apply Theorem R(p) in [55] to show
that ψ ∈ H2

q(Ω) with some q > 2. Thus,

(4.32)

∫
Ω

ρ−β |∇xψ(x)|2 dx ≤ c‖ψ;H‖2

for some β > 0. Relation (4.7) implies that

|〈Bϕ,w〉ε| ≤ c
(
‖ϕ;H‖ ‖w1;L2(Ωε)‖+ ‖ϕ1;L2(Ωε)‖ ‖w;H‖
+ ‖Sϕ1;H‖ ‖w1;H

ε‖+ ‖ϕ;H‖ ‖S∗w1;L2(Ωε)‖
)
.
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Applying Corollary 4.1, 1) to the functions w1, ϕ1 and Sϕ1, Sw1, we obtain the estimate

|〈Bϕ,w〉ε| ≤ C1ε
(1+β)/2

(
~w1; Ωε~−β + ~ϕ1; Ω~−β

+ ~Sϕ1; Ωε~−β + ~S∗w1; Ω~−β

)
,

where C1 = c(‖ϕ;H‖+ ‖w;Hε‖). Now, formulas (4.32), (4.31) and Corollary 4.3 imply
the relations

(4.33) |〈dϕ,Bψ〉ε| ≤ cε1+β/2‖ϕ;H‖ ‖ψ;H‖, |〈Bϕ,Sψ〉ε| ≤ cε(1+β)/2‖ϕ;H‖ ‖ψ;H‖

for any ϕ, ψ ∈ Xp. In particular, it follows that, first, the quantity ς occurring in (4.2)

does not exceed cε(1+β)/2, and second, the asymptotic representation (4.3) can be written
as

(4.34) (λε
q)

−1 = λ−1
p +�q +O(ε1+β/2).

Here �p, . . . , �p+κp−1 are the eigenvalues of the following algebraic spectral problem for
ϕ ∈ Xp:

(4.35) 〈Bϕ,Sψ〉ε + λp〈QpBϕ,Bψ〉ε = �〈Sϕ,Sψ〉ε, ψ ∈ Xp.

Next, using the representation (4.8) for Sϕ ∈ Xp and Lemma 4.3, 1), we obtain

‖Sϕ− ϕ;Hε‖2 = ‖Φε
ϕ;H

ε‖2 ≤ cε‖ϕ;H‖2.

Relations (4.33) and (4.35) imply that �q = O(ε(1+β)/2). Now, formula (4.30) shows
that

〈PpBϕ,Bψ〉ε =
p+κp−1∑

q=p

〈Bϕ,Sϕq〉ε〈Sϕq,Bψ〉ε,

where Sϕq = fq and ϕq ∈ Xp. By (4.33), we have

〈PpBϕ,Bψ〉ε ≤ cε1+β‖ϕ;H‖ ‖ψ;H‖.

The above observations allow us to write relations (4.34) in a shorter form:

(λε
q)

−1 = λ−1
p + τj +O(ε1+β/2);

here τq, . . . , τp+κp−1 are the eigenvalues of the algebraic spectral problem

(4.36) 〈Bϕ,Sψ〉ε + λp〈Bϕ,Bψ〉ε = τ 〈ϕ, ψ〉ε, ψ ∈ Xp.

6. Auxiliary calculations. To simplify the expression 〈Bϕ,Bψ〉ε, we write

(4.37) Kεϕ = λ−1
p Sϕ− λ−1

p Ψε
ϕ;

here Ψε
ϕ ∈ Hε is the solution of problem (1.22). Clearly, the function Ψε

ϕ is orthogonal
to H ∩Hε.

By (4.8) and (4.37), we get Bϕ = KεΦε
ϕ − λ−1

p Ψε
ϕ. Hence,

〈Bϕ,Bψ〉ε = λ−2
p 〈Ψε

ϕ,Ψ
ε
ψ〉ε + 〈KεΦε

ϕ,K
εΦε

ψ〉ε

− λ−1
p

(
〈KεΦε

ϕ,Ψ
ε
ψ〉ε + 〈KεΨε

ϕ,Φ
ε
ψ〉ε

)
.

(4.38)

Lemma 4.5. We have

(4.39) ‖∇2
xϕ

ε
ϕ;L2(Ω \ Ωε)‖2 ≤ cεδ, ‖Ψε

ϕ;L2(Ω
ε)‖2 ≤ cε1+δ,

where δ is a positive number depending on Ω.
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Proof. Since ∇2
xϕ

ε
ϕ ∈ Lq(Ω) with some q > 2, the first inequality is valid. We check the

second. For this, we put

(4.40) Ψε
ϕ = ϕ−Υε

ϕ,

where Υε
ϕ ∈ Hε is the solution of the problem 〈Υε

ϕ, w〉ε = λp(ϕ,w)Ωε , w ∈ Hε.

We represent Υε
ϕ as the sum Υε1

ϕ +Υε2
ϕ , where Υε1

ϕ ∈ H̊2(Ωε
+) satisfies Δ

2
xΥ

ε1
ϕ = λpϕ

in Ωε
+, and Υε2

ϕ has the form −xΥε1
ϕ +Θε

ϕ with Θε
ϕ ∈ H̊2(Ωε) satisfying the equation

(4.41) Δ2
xΘ

ε
ϕ(x) = Δ2

x(x(x)Υ
ε1
ϕ (x)), x ∈ Ωε

(the function x was already defined in the course of the proof of Lemma 4.3).

Theorem R(p) in [55] shows that Υε1
ϕ ∈ H̊2

q (Ω
ε
+) for some q > 2, and that

(4.42) ‖Υε1
ϕ ;H2

q (Ω
ε
+)‖ ≤ c‖ϕ;L2(Ω)‖.

We multiply equation (4.41) by Θε
ϕ, integrate over Ω

ε and use the homogeneous bound-
ary conditions, obtaining∫

Ωε

|ΔxΘ
ε
ϕ(x)|2 dx =

∫
Ωε

Δx(x(x)Υ
ε1
ϕ (x))ΔxΘ

ε
ϕ(x) dx.

Consequently,

‖ΔxΘ
ε
ϕ;L2(Ω

ε)‖ ≤ c
(
ε−2‖Υε1

ϕ ;L2(Ω
ε \ Ω2ε

− )‖

+ ε−1‖∇xΥ
ε1
ϕ ;L2(Ω

ε \ Ω2ε
− )‖+ ‖∇2

xΥ
ε1
ϕ ;L2(Ω

ε \ Ω2ε
− )‖

)
.

By (4.13) and (4.42), we have ‖ΔxΘ
ε
ϕ;L2(Ω

ε)‖2 ≤ cε1−2/q‖ϕ;L2(Ω)‖2. The same for-
mulas yield the relation

‖∇2
xΥ

ε1
ϕ ;L2(Ω

ε \ Ω2ε
− )‖2 + ‖Δx(xΥ

ε1
ϕ );L2(Ω

ε)‖2 ≤ cε1−2/q‖ϕ;L2(Ω)‖2.

Therefore,

‖∇2
xΥ

ε2
ϕ ;L2(Ω

ε \ Ω2ε
− )‖2 ≤ cε1−2/q‖ϕ;L2(Ω)‖2.

The above estimates imply the inequality∫
Ωε\Ω2ε

−

|∇2
xΥ

ε
ϕ(x)|2 dx ≤ cε1−2/q‖ϕ;L2(Ω)‖2.

Now Lemma 4.2 shows that

ε−4‖Υε
ϕ;L2(Ω

ε \ Ω2ε
− )‖2 + ε−1‖∇xΥ

ε
ϕ;L2(∂Ω

2ε
− )‖2 + ε−3‖Υε

ϕ;L2(∂Ω
2ε
− )‖2

≤ cε1−2/q‖ϕ;L2(Ω)‖2.
(4.43)

By Theorem D(p) in [55] and the formulas obtained, we have

‖∇xΥ
ε
ϕ;L2(Ω

2ε
− )‖2 ≤ cε2−2/q‖ϕ;L2(Ω)‖2.

So, taking (4.43) into account, we arrive at the required estimate (4.39). �

Relations (4.39) and (4.8), (4.38) imply the identity

〈Bϕ,Bψ〉ε = λ−2
p 〈Ψε

ϕ,Ψ
ε
ψ〉ε + O(ε1+δ);

combining this with (4.36), (4.39), and (4.22), we establish the desired asymptotic ap-
proximation (1.20).
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7. On the validity of the Hadamard formula. Suppose that the boundary of Ω is
of class C1,α, α ∈ (0, 1); then ϕ falls into the Hölder space C2,α(Ω). In a neighborhood
of the boundary Γ, with every point x we associate a point s ∈ Γ nearest to x and a
number n such that x = s + n−→n (s); here −→n (s) is the outward unit normal to Γ � s.
The boundary Γε is given by the equation n = hε(s). Assume that |hε(s)| ≤ ε and that
|∇sh

ε(s)| is bounded uniformly in ε ∈ (0, ε0] and satisfies condition (1.23). Our nearest
goal is to check formula (1.24). Let the surface Γ(ε) surrounding the domain Ω(ε) be
defined by the equation n = ε. We write Υε

ϕ as the sum Υε1
ϕ +Υε2

ϕ , where Υε1
ϕ solves the

problem

Δ2
xΥ

ε1
ϕ (x) = λpϕ(x), x ∈ Ω(ε), Υε1

ϕ = ∂nΥ
ε1
ϕ (x) = 0, x ∈ Γ(ε).

The function Υε2
ϕ satisfies the relations

ΔxΥ
ε2
ϕ (x) = 0, x ∈ Ωε, Υε2

ϕ (x) = −Υε1
ϕ (x), ∂nΥ

ε2
ϕ (x) = −∂nΥ

ε1
ϕ (x), x ∈ Γε.

Since Υε1
ϕ ∈ C2,α(Ω(ε)) and Υε1

ϕ = ∂nΥ
ε1
ϕ = 0 on Γ(ε), we have

|Υε1
ϕ (x)| ≤ c|hε(s)− ε|2, |∇Υε1

ϕ (x)| ≤ c|hε(s)− ε|,
|∇s∇xΥ

ε1
ϕ (x)| ≤ c|hε(s)− ε|α, x ∈ Γε,

(4.44)

whence ∫
Γε

|Υε1
ϕ (x)|2 dsx = O(ε4),

∫
Γε

|∇xΥ
ε1
ϕ (x)|2 dsx = O(ε2),

∫
Γε

|∇2
xΥ

ε1
ϕ (x)|2 dsx = O(1).

(4.45)

Recalling the requirement (1.23), we see that the last inequality in (4.44) implies that

(4.46)

∫
Γε

|∇s∇xΥ
ε1
ϕ (hε(s), s)|2 dsx = o(1).

It follows that ∇xΥ
ε2
ϕ ∈ H1/2(Γε)d and ‖∇xΥ

ε2
ϕ ;H1/2(Γε)‖ = o(ε). Consequently,

‖∇2
xΥ

ε2
ϕ ;L2(Ω

ε)‖2 = o(ε), whence 〈Ψε
ϕ,Ψ

ε
ψ〉ε = 〈ϕ−Υε1

ϕ , ψ −Υε1
ψ 〉ε + o(ε).

Consider the function Θε
ϕ = ϕ − Υε1

ϕ in Ω ∩ Ωε. It satisfies the equation Δ2
xΘ

ε
ϕ = 0

in Ω ∩ Ωε and the boundary conditions Θε
ϕ = −Υε1

ϕ , ∂nΘ
ε
ϕ = −∂nΥ

ε1
ϕ on the boundary

Γ0ε = ∂(Ω ∩ Ωε). Since the curve Γ0ε is defined by the relation n = min{hε(z), 0}, with
the help of (1.23) we find that formulas (4.45) and (4.46) remain valid if we replace Γε

with Γ0ε.
Since ϕ ∈ C2,α(Ω), in the vicinity of Γ we have

(4.47) |ϕ(x)| ≤ c|n|2, |∇xϕ(x)| ≤ c|n|, |∇s∇xϕ(x)| ≤ c|n|α, |∇2
xϕ(x)| ≤ c.

Combining this with (4.45) and (4.46), we see that

‖Θε
ϕ;L2(Γ0ε)‖ = O(ε2), ‖∇xΘ

ε
ϕ;L2(Γ0ε)‖ = O(ε),

‖∇s∇xΥ
ε1
ϕ ;L2(Γ0ε)‖ = o(1).

(4.48)

Thus, ∇xΘ
ε
ϕ ∈ H1/2(Γ0ε)

d and ‖∇xΘ
ε
ϕ;H

1/2(Γ0ε)
d‖2 = o(ε), i.e., ‖∇2

xΘ
ε
ϕ;L2(Ω∩Ωε)‖2 =

o(ε). Together with (4.40), the last relation shows that

(4.49) 〈Ψε
ϕ,Ψ

ε
ψ〉ε = (ΔxΥ

ε1
ϕ ,ΔxΥ

ε1
ψ )Ωε\Ω + o(ε).

Now, we can apply Theorem R(p) in [55] to the function Θε
ϕ and use (4.48) to check that

‖∇2
xΘ

ε
ϕ;L2(Γ0ε)‖ = o(1), whence

(4.50) ‖ΔxΥ
ε1
ϕ ;L2(Γ0ε)‖2 = ‖Δxϕ;L2(Γ0ε)‖2 + o(1).
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Since Υε1
ϕ ∈ C2,α(Ω(ε)), we have

|∇2
xΥ

ε1
ϕ (n, s)−∇2

xΥ
ε1
ϕ (0, s)| ≤ c|n|α.

Using also (4.50), we arrive at the identity

(4.51) (ΔxΥ
ε1
ϕ ,ΔxΥ

ε1
ψ )Ωε\Ω =

∫
Γ∩Ωε

h(z)Δxϕ(x)Δxψ(x) dsx +O(ε1+α).

With the help of (4.47) and (1.23), we can show that the function Φε
ϕ satisfies estimate

(4.48) with Θε
ϕ and Γ0ε in place of Φε

ϕ and Γε. For Φε
ϕ we have ‖∇xΦ

ε
ϕ;H

1/2(Γε)‖2 = o(ε),
whence

(4.52) 〈Φε
ϕ,Φ

ε
ψ〉ε = o(ε).

Since ϕ ∈ C2,α(Ω), we obtain

(4.53) (Δxϕ,Δxψ)Ω\Ωε =

∫
Γ0ε

|h(s)|Δxϕ(x)Δxψ(x) dsx + o(ε).

Now formulas (4.52), (4.53), (4.49), (4.51), and also (1.19) and (1.20), imply the required
relations (1.24) and (1.25).

8. Plane domains with corner points. Suppose that the boundary Γ of a domain
Ω ⊂ R

2 has corner points P1, . . . , PQ, but is smooth (of class C1,δ with some δ ∈ (0, 1))
outside of these points. Let αq denote the opening of the angle with the vertex Pq,
measured inside of Ω, αq < 2π. The results on solutions of the Dirichlet problem for
elliptic equations (see Chapter 7 in [56]) show that there exist quantities Λq > 3/2 such
that

|ϕ(x)|+ r(x)|∇xϕ(x)|+ r(x)2|∇2
xϕ(x)|

+ |x− y|−δ
(
|r(x)2∇2

xϕ(x)− r(y)2∇2
yϕ(y)

)
≤ cRΛ,

(4.54)

where r = r1r2 · · · rl, rq(x) = |x− Pq|, and RΛ = Πl
q=1r

Λq
q .

Suppose Ωε ⊂ Ω. Then we have the asymptotic formula (1.19), but now the functions
Ψε

ϕ and Ψε
ψ in (1.20) are equal to zero, so that the exponents σp, . . . , σp+κp−1 in (1.19)

are the eigenvalues of the problem

(4.55) λ−1
p

(
−(ΔxΦϕ,ΔxΦψ)Ωε − (Δxϕ,Δxψ)Ω\Ωε

)
= σ(Δxϕ,Δxψ)Ω, ψ ∈ Xp.

Let Γ′ = {s ∈ Γ : |s− pq| > cε}. In the vicinity of Γ′ we use the local coordinates n,
s (see Subsection 1 in §1). The part of the curve Γε located “above” Γ′ is given by the
equation n = hε(s); we denote this part by Γ′

ε. Assume that |hε(s)| ≤ ε, |∂shε(s)| ≤ c,
and

(4.56)

∫
Γ′
ε

RΛ(x)
2r(x)−4 |∂shε(s)|2 dsx = o(1).

Also, we assume that the remaining part of Γε is located in the annuli Bc2ε(Pq)\Bc1ε(Pq),
where c1 < c2, and that each of such parts is Lipschitz with a constant bounded uniformly
relative to ε ∈ (0, ε0].

Since ϕ = ∂nϕ = 0 on Γ = ∂Ω, estimate (4.54) yields

|∂s∇xϕ(n, s)| ≤ c|n|δRΛ(x)r(x)
−2−δ, |∇2

xϕ(s, n)| ≤ cRΛ(x)r(x)
−2.

Consequently,

(4.57) |∂s∇xϕ(h
ε(s), s)| ≤ c

(
|n|δRΛ(x)r(x)

−2−δ +RΛ(x)r(x)
−2|∂shε(s)|

)
.

Moreover, by (4.54) we have

|ϕ(hε(s), s)| ≤ ch(ε, s)2RΛ(x)r(x)
−2, |∇xϕ(h

ε(s), s)| ≤ chε(s)RΛ(x)r(x)
−2,
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whence

(4.58)

∫
Γ′
ε

|ϕ(hε(s), s)|2 dsx = O(ε4),

∫
Γ′
|∇xϕ(h

ε(s), s)|2 dsx = O(ε2).

The assumption (4.56) and estimate (4.57) prove that
∫
Γ′
|∂s∇xϕ(x)|2 dsx = o(1), ε → 0.

Also, from (4.54) it follows that
∫
Γε\Γ′

ε

|∇2
xϕ(x)|2 dsx ≤ c max

q=1,...,Q
ε2Λq−3.

The second inequality in (4.58) shows that ∇xϕ ∈ H1/2(Γε) and ‖∇xϕ;H
1/2(Γε)‖2 =

o(ε). Consequently, ‖∇2
xΦ

ε
ϕ;L2(Ω

ε)‖2 = o(ε). Recalling system (4.55), we obtain relation
(1.24) in which θp, . . . , θp+κp−1 are the eigenvalues of the algebraic problem (1.26). With
the help of the above estimates for ϕ, direct calculations yield θj = O(ε). If the opening
of one of the angles (e.g., αq) is greater than π, then we can find an eigenfunction such
that the modulus |∇2

xϕ| of the second gradient is estimated from below by crλ−1
q , where

c > 0 and λ ∈ (3/2, 2). The Hadamard formula predicts the inequality θj ≥ cε2λ−3;
therefore, the spectral problem (1.26) is an appropriate substitute of problem (1.26) in
the case of nonconvex piecewise smooth domains.

§5. Discussion

1. Comparison of two approaches. The results of [7] also make it possible to con-
struct the asymptotic expansions of eigenvalues (this was already explained in Subsec-
tion 7 of §4). Now we trace how the formulas obtained by one of the methods can be
transformed into those obtained by the other method. We only consider the case where
γ = 1 assuming for brevity that λp is a simple eigenvalue and H < 0, i.e., Ωε ⊂ Ω (see
formula (1.1)). Then Ψε

ϕ = 0, because the right-hand side in (1.22) vanishes. Problem
(1.21) takes the form

Δ2
xΦ

ε
ϕ(x) = 0, x ∈ Ωε, Φε

ϕ(x) = −ϕ(x), ∂nεΦε
ϕ(x) = −∂nεϕ(x), x ∈ Γε.

The asymptotic approximation of its solution is constructed in a standard way (see, e.g.,
[11, 12]) and looks like this:

(5.1) Φε
ϕ(x) = εϕ′(x) + χ(x)ε2∂2

nϕ(0, s)ĂW0(ε
−1, ε−1, s) + rΦε

ϕ(x),

where rΦε
ϕ is a small remainder term, ĂW0 is the exponentially decaying function (3.23)

found by the solution of the homogeneous problem (2.21)–(2.23), and ϕ′ is the solution
of the problem

Δ2
xϕ

′(x) = 0, x ∈ Ω, ϕ′(x) = 0, ∂nϕ
′(x) = P (s)∂2

nϕ(0, s), s = x ∈ Γε.

Now, putting ϕ = up in (1.20), we obtain the algebraic equation

−λ−1
p

Ä
(ΔxΦ

ε
up
,ΔxΦ

ε
up
)Ωε + (Δxup,Δxup)Ω\Ωε

ä
= ϑp(Δxup,Δxup)Ωε .

We find the asymptotic approximations of the terms in this formula. In the last scalar
product, integration can be extended to the domain Ω with an error of O(ε); hence, by
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(1.11) and (2.4), this scalar product is λp+O(ε). In the second summand in parentheses
on the left, integration is over a narrow boundary strip:

(Δxup,Δxup)Ω\Ωε =

∫
Γ

∫ 0

εH(ε−1s,s)

|Δxup(x)|2(1 + nκ(s)) dn ds

= −ε

∫
Γ

sH(s)|∂2
nup(0, s)|2 ds+O(ε2).

(5.2)

To compute the first scalar product, we use the asymptotic representation (5.1). Observe
that the smooth term εϕ′ contributes O(ε3/2) and can be neglected. The boundary layer
contribution is of order of ε4ε−4ε, where the first factor is the squared coefficient ε2 of
the cutoff function χ on the right-hand side of (5.1), the second factor comes as a result
of two-fold differentiation with respect to the fast variables, and the third results from
integration over the variable n, because O(exp(−δ|n|/ε)) decays exponentially with the

rate ĂW0. The scalar product itself needs averaging, which can be done, as in (5.2), with
the help of (2.17). As a result, we obtain

(ΔxΦ
ε
up
,ΔxΦ

ε
up
)Ωε = ε

∫
Γ

|∂2
nup(0, s)|2

∫
Π(s)

|Δξ
ĂW0(ξ, s)|2 dξ ds+O(ε3/2).

Thus,

λ2
pϑp = ε

∫
Γ

|∂2
nup(0, s)|2

ß
− sH(s) +

∫
Π(s)

|Δξ
ĂW0(ξ, s)|2 dξ

™
ds+O(ε3/2).

Formulas (2.27) and (2.28) show that the expression in braces coincides with the coeffi-
cient −P (s) = −P00(s) in the expansion (2.25); i.e., in accordance with the calculations
in Subsection 2 of §2, we have λ2

pϑp = −ελ′
p. Substituting this in (1.19), we arrive at the

same formula as in §2:
1

λε
p

=
1

λp
− ε

λ′
p

λ2
p

+ O(ε1+δ) ⇒ λε
p = λp + ελ′

p +O(ε1+δ).

2. Other types of boundary perturbations. If γ = 1, the above arguments and
calculations make it possible to study also other perturbations of the boundary. In
Figure 8, we depicted two locally periodic perturbations: small holes of diameter O(ε)
located at a distance of O(ε) from the boundary and from one another, and a periodic
family of boundary cracks. In both cases, the boundary Γε cannot be described as in (1.1),
but all our arguments remain valid. Moreover, the domain on the right in Figure 8 fails
to be Lipschitzian, and the domain on the left has smooth boundary, but the Lipschitz
constant grows unboundedly as ε → +0.

If γ < 1, then the boundary layer is localized near the curve Γε
0 = {x ∈ V : s ∈ Γ,

n = εγH0(s)}, and the form of Γε outside the cε-neighborhood of the contour Γε
0 is to a

large extent irrelevant. Figure 9 illustrates two types of perturbation, and in the second
of them we have periodicity only in a small neighborhood of the contour Γε

0. In both
cases, the eigenvalues of problem (1.3), (1.4) in the singularly perturbed domain have
the asymptotic properties described in Theorem 3.1 in the case where γ < 1, H0 �≡ 0.

Remark 5.1. What was said in the preceding paragraph also remains valid for γ = 0;
this case is not touched upon in the present paper.

3. On the concept of a smooth image of singularly perturbed domains. In
the paper [12] it was observed that for various perturbations of spectral boundary-value
problems it is possible to find a regular perturbation

(5.3) Γ(ε) = {x ∈ V : s ∈ Γ, n = εγh(s)}, h ∈ C∞(Γ),
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Figure 8

of the boundary Γ such that the spectral problem in the domain Ω(ε) bounded by the
contour (5.3) provides a two-term (higher accuracy) asymptotic expansion for eigenvalues
and eigenfunctions of singularly perturbed problems. Such an interpretation of the results
of the asymptotic analysis is possible for boundary-value problems with a small parameter
at higher derivatives (in equations and in boundary conditions) in thin domains (for
example, in the case of a strip Ω × (−ε/2, ε/2) ⊂ R

3 with small thickness ε) and in a
domain with a rapidly oscillating boundary (the case of γ = 1 in the definition (1.1)).

The concept of the smooth image of singularly perturbed domains turned out to be
useful for the modeling of thin elastic plates (see [57, 58, 59]) and rough surfaces of
deformable bodies (see [20, 21])). The “wall-laws”, which were invented only after the
paper [12] (see [13, 14] and others), also fit in with this concept.

We explain how to use the asymptotic formulas obtained in §§2 and 3 to form the
smooth image of the rapidly oscillating boundary (1.1) in the framework of the Kirchhoff
plates theory. Note that, in accordance with Subsection 1 of §2, the eigenvalue asymp-
totic approximation for problem (1.3), (1.4) in the domain Ωε bounded by a regularly
perturbed contour (5.3) has the form (2.1), where the λ′

q are the eigenvalues of the matrix
Tp with the entries (2.15).

If γ > 1 and the periodic perturbation (1.1) of the boundary Γ is slanting, then, by
Theorem 3.1, the first two asymptotic terms for the eigenvalues of problem (1.3), (1.4)
in the domain Ωε coincide with those in the case where the profile function has the form
(2.18) (see Subsection 1 of §2 and, in particular, formula (3.14)). In other words, the
shift h(s) of the boundary (5.3) is determined by the averaged function sH (see (1.15)).

If γ = 1, i.e., the sizes of the hollows and (or) bumps are comparable to the period,
then the role of the function h that determines an asymptotically equivalent regularly
perturbed boundary (5.3) is played by the coefficient in the expansion (2.25) of the special
solution W0 of the homogeneous problem (2.21)–(2.23) (see formula (2.32)).

The same relation (2.32) remains valid in the case where γ ∈ (0, 1) under the additional
condition H0 ≡ 0 (see the restriction (1.16) and the definition (3.15)), but, first, in
identity (5.3) for the regularly perturbed boundary Γ(ε) we have the smaller factor ε1,
rather than εγ as in the Hadamard formula (see the discussion in Subsection 1 of §1), and,
second, the coefficient P in the expansion (2.25) of the solution of problem (2.39) in the
cut strip (2.38) is independent of the variable s ∈ Γ. In the situation where H0 �≡ 0 and
γ < 1, the smooth image (5.3) of the rapidly oscillating and deeply indented boundary
(1.1) is given by formula (2.44), where H0(s) is the minimal value of the profile function
[0, 1] � η �→ H(η, s) (see Theorem 3.1 and relation (3.15)).

Whenever Ω ⊂ Ω(ε) (or Ω(ε) ⊂ Ω), the eigenvalues of problem (1.3), (1.4) satisfy
λp ≥ λp(ε) (or λp ≤ λp(ε)). As was mentioned in Remark 2.2, the same relationship is
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Figure 9

preserved also for the eigenvalue λε
p with ε sufficiently small, i.e., if ε ∈ (0, εp] with some

εp > 0.
Yet another important point deserves mention: the profile function for the regularly

perturbed boundary (5.3) does not depend on the number p of the eigenvalue λε
p. The

same function can be used for modeling other form functionals (cf. [35, 36]).
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castrées, Œuvres. de Jacques Hadamard. T. 2, Centre Nat. Rech. Sci., Paris, 1968, pp. 515–631.
MR0230598 (37:6158)

[6] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3
(1969), 510–585. MR0298508 (45:7560)

[7] V. Kozlov, On the Hadamard formula for nonsmooth domains, J. Differential Equations 230 (2006),
no. 2, 532–555. MR2269932 (2007h:35244)

[8] , Lq-perturbations of leading coefficients of elliptic operators: asymptotics of eigenvalues,
Abstr. Appl. Anal. 2006, Art. ID 26845, 15 pp. MR2251795 (2007d:35051)

[9] V. G. Maz′ya, S. A. Nazarov, and B. A. Plamenevskĭı, Asymptotic behavior of solutions of elliptic
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