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TRACE HARDY–SOBOLEV INEQUALITIES IN CONES

A. I. NAZAROV

Dedicated to V. M. Babich on the occasion of his 80th birthday

Abstract. Sharp constants are found for the trace Hardy–Sobolev inequalities in
cones. The question as to whether these constants are attained is discussed.

§1. Introduction

Let Ω ⊂ R
n, n ≥ 2, be an open cone; we assume that G = Ω ∩ S

n−1 is a domain with
strictly Lipschitz boundary on the unit sphere. Let Ċ1(Ω) denote the set of continuously
differentiable functions whose support is bounded and separated away from the origin.
For 1 ≤ p ≤ ∞, denote by Ẇ 1

p (Ω) the completion of Ċ1(Ω) with respect to the norm
‖∇v‖p,Ω .

Consider a scale of weighted trace spaces Lq,σ(∂Ω) with the norms

‖v‖q,σ,∂Ω = ‖rσ−1v‖Lq(∂Ω),

where r = |x|.
For 1 < p < ∞ with p 	= n and 1

p ≤ σ ≤ min{1, n
p }, we denote by p∗∗σ = (n−1)p

n−σp the

critical exponent for the trace embedding Ẇ 1
p (Ω) ↪→ Lq,σ(∂Ω):

(Iσ) λ(p, σ,Ω) = inf
v∈Ẇ 1

p (Ω)\{0}
Jσ(v) ≡ inf

v∈Ẇ 1
p (Ω)\{0}

‖∇v‖p,Ω
‖v‖p∗∗

σ ,σ,∂Ω
> 0.

The case where p < n, σ = 1 leads to the trace Sobolev inequality; see, e.g., [M,
1.4.5]. In a natural way, the case of σ = 1

p will be called the trace Hardy inequality.

The intermediate cases can be obtained from these cases by the Hölder inequality. For
p > n one should use the Morrey inequality, see [M, 1.4.5], instead of the trace Sobolev
inequality.

We call (Iσ) the trace Hardy–Sobolev inequality.

Remark 1. For p = n the infimum in (Iσ) equals zero. For σ = 1 this is a classical fact;
for σ < 1 it suffices to consider the sequence

vk(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if r ≤ 1

k or r ≥ 2k,

kr − 1 if 1
k < r < 2

k ,

1 if 2
k ≤ r ≤ k,

2− r
k if k < r < 2k.
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Since the embedding operator Ẇ 1
p (Ω) ↪→ Lp∗∗

σ ,σ(∂Ω) is noncompact, the problem of
attainability of the norm of this operator (i.e., the question concerning the existence of
an extremal function in the embedding theorem) is nontrivial. The conventional Hardy–

Sobolev inequality generated by the embedding Ẇ 1
p (Ω) ↪→ Lp∗

σ,σ(Ω) (here p∗σ = np
n−σp ,

0 ≤ σ ≤ min{1, n
p }) was treated in many papers; see, e.g., the recent survey [N] and

further references therein. The problem for the trace embedding is not so well studied.

The structure of our paper is as follows. §§2 and 3 are devoted to the values of sharp
constants, respectively, in the trace Hardy inequality and in the trace Sobolev inequality.
In §4 we discuss the existence of a minimizer in the intermediate cases.

We recall some notation. For p < n we put p∗ = p∗1 = np
n−p (this is the usual critical

Sobolev exponent) and p∗∗ = p∗∗1 = (n−1)p
n−p . Next, ωn−1 = 2πn/2

Γ(n
2 ) is the area of the unit

sphere in R
n. Further, B is the Euler beta-function, while Pμ

ν (x) is the Legendre function
(see, e.g., [GR, 8.7]).

§2. The “Hardy” case σ = 1
p

Our first result provides the sharp constants for the trace Hardy inequality in cones.

Theorem 1. Suppose 1 < p < ∞, p 	= n, σ = 1
p . Then the infimum in (Iσ) is not

attained and equals (Λ(p)(G))
1
p , where

(1) Λ(p)(G) = min
v∈W 1

p (G)\{0}

∫
G

((
n−p
p

)2

v2 + |∇′v|2
) p

2

dΘ∫
∂G

|v|p dS

(∇′ stands for the tangential gradient on S
n−1 ⊂ R

n).

Proof. First, the minimum in (1) is attained because the trace embedding W 1
p (G) ↪→

Lp(∂G) is compact, and this minimum is positive because p 	= n. Let V denote the
minimizer of (1) normalized in Lp(∂G). By a standard argument, V is positive in sG.

We define U(r,Θ) = r1−
n
p V (Θ), where (r,Θ) stands for the spherical coordinates in Ω.

Then for any h ∈ Ċ1(Ω) we have∫
Ω

|∇U |p−2∇U · ∇h dx =

∫
Ω

|∇U |p−2
(
Urhr +

1

r2
∇′U · ∇′h

)
dx

=

∫
G

((
n−p
p

)2

V 2 + |∇′V |2
)p−2

2
V ·

∫ ∞

0

p−n
p r

n
p −1hr dr dΘ

+

∫ ∞

0

∫
G

((
n−p
p

)2

V 2 + |∇′V |2
) p−2

2 ∇′V · ∇′h r
n
p −2 dΘ dr

=

∫ ∞

0

∫
G

((
n−p
p

)2

V 2 + |∇′V |2
) p−2

2
((

n−p
p

)2

V h+∇′V · ∇′h
)
r

n
p −2 dΘ dr

(∗)
= Λ(p)(G)

∫ ∞

0

∫
∂G

V p−1h r
n
p −2 dS dr = Λ(p)(G)

∫
∂Ω

Up−1

rp−1
h dΣ

(2)

(identity (∗) follows from the weak Euler–Lagrange equation for V ). Thus, U is a positive
weak solution of the Steklov-type problem

−Δpu ≡ −div(|∇u|p−2∇u) = 0 in Ω, |∇u|p−2 ∂u

∂n
= Λ(p)(G)

up−1

rp−1
on ∂Ω.
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Now, the relation Λ(p)(G) ≤ λp(p, 1p , Ω) follows from the generalized Picone identity (see

[AH]). For any u ∈ Ċ1(Ω), we set h = |u|p
Up−1 . Then (2) implies that

Λ(p)(G)

∫
∂Ω

|u|p
rp−1

dΣ = Λ(p)(G)

∫
∂Ω

Up−1

rp−1
h dΣ =

∫
Ω

|∇U |p−2∇U · ∇h dx

=

∫
Ω

(
p|∇U |p−2∇U · ∇u

|u|p−2u

Up−1
− (p− 1)|∇U |p |u|

p

Up

)
dx

(∗∗)
≤

∫
Ω

(
p|∇u| · |∇U |p−1 |u|p−1

Up−1
− (p− 1)|∇U |p |u|

p

Up

)
dx

≤
∫
Ω

|∇u|p dx.

(3)

Here (∗∗) is the Cauchy inequality, and the last inequality follows from

(4) xp − pxyp−1 + (p− 1)yp ≥ 0, x, y > 0.

By approximation, (3) is true for u ∈ Ẇ 1
p (Ω).

To prove that Λ(p)(G) = λp(p, 1
p , Ω), we consider the sequence

uδ(r,Θ) =

{
r1−

n
p +δV (Θ) if r ≤ 1,

r1−
n
p −δV (Θ) if r ≥ 1.

Clearly, uδ ∈ Ẇ 1
p (Ω). A direct computation gives

Λ(p)(G)

∫
∂Ω

|uδ|p
rp−1

dΣ =
2

pδ
· Λ(p)(G)

∫
∂G

V pdS =
2

pδ

∫
G

((
n−p
p

)2

V 2+ |∇′V |2
) p

2

dS

=
1

pδ

∫
G

[((
n−p
p + δ

)2

V 2+ |∇′V |2
) p

2

+
((

n−p
p − δ

)2

V 2+ |∇′V |2
) p

2

]
dx+O(δ)

=

∫
Ω

|∇uδ|p dx+O(δ),

(5)

and the claim follows.
Finally, equality in (∗∗) means that ∇u ‖ ∇U , while equality in (4) means that x = y.

These two facts show that
∇u

u
=

∇U

U
=⇒ u = cU

on the set {u 	= 0} and, therefore, in the entire domain Ω. Since U /∈ Ẇ 1
p (Ω), equality

in (3) is impossible. �
Note that the minimizer of (1) is unique up to a multiplicative constant. There are

many ways to prove this. The simplest one is to use convexity; see, e.g., [LL, Theorem 7.8]
and [Kw, Proposition 4] for particular cases.

Lemma 1. Let F (t, x) be a function on R+×R
n; assume that it is positive homogeneous

of degree p > 1 and convex. If 1 ≤ q ≤ p, then F (v,∇v) is convex with respect to vq on
the set of positive functions.

Proof. Set f = vq; we need to prove that Φ(f) = F (f
1
q , 1

qf
1
q−1∇f) is convex. Observe

that the homogeneity of F implies the relations

D2
ttF (s, y) s+

∑
k

D2
txk

F (s, y) yk = (p− 1)DtF (s, y);

D2
txj

F (s, y) s+
∑
k

D2
xkxj

F (s, y) yk = (p− 1)Dxj
F (s, y), j = 1, . . . , n.

(6)
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Table 1

n 3 4 5 6

λ(2, 12 ,R
n
+)

2π

Γ2( 14 )

√
2

π

Γ2( 14 )

4π

√
π

2

Using (6), by direct calculations we obtain

(7) d2Φ(f ; h) =
f

p
q −2

q2
·
[
p− q

p− 1
· d2F

(
1, ∇f

qf ; h, z(1)
)
+

q − 1

p− 1
· d2F

(
1, ∇f

qf ; 0, z(2)
)]

,

where

z(1) = ∇h− (q−1)∇f
qf h; z(2) = ∇h− ∇f

f h.

Since F is convex, the expression in (7) is nonnegative, and the claim follows. �

Now, uniqueness in (1) follows from the fact that the function F (t, x) = (α2t2+ |x|2) p
2

is strictly convex. Thus the vanishing of (7) implies that ∇h
h = ∇f

f , i.e., h = cf .

In particular, this means that if G is the spherical “hat”

(8) G = {(θ, φ1, . . . , φn−2) ∈ S
n−1 : 0 < θ < θ∗},

then the minimizer in (1) depends only on θ. For p = 2 this gives the opportunity to
calculate Λ(2)(G) explicitly.

Theorem 2. Let G be the spherical “hat” (8). Then

(9) Λ(2)(G) =
(n− 2)2

4
·
P

−n−1
2

− 1
2

(
cos(θ∗)

)
P

−n−3
2

− 1
2

(
cos(θ∗)

) .
In particular, for θ∗ = π

2 , which case corresponds to Ω = R
n
+ = {x = (x′, xn) :

xn > 0}, we have

(10) Λ(2)(G) =
2Γ2

(
n
4

)
Γ2

(
n−2
4

) .
Proof. By standard variational arguments, the minimizer in (1) for p = 2 is an eigen-
function of the Steklov problem (Δ′ stands for the Beltrami operator on S

n−1)

−Δ′V + (n−2)2

4 V = 0 in G,
∂V

∂n
= Λ(2)(G) V on ∂G.

Since this minimizer is a “one-dimensional” function, this problem is reduced to

V ′′ + (n− 2) cot(θ)V ′ − (n−2)2

4 V = 0, |V (0)| < ∞; V ′(θ∗) = Λ(2)(G)V (θ∗).

A solution bounded at the origin is proportional to sin−
n−3
2 (θ) ·P−n−3

2

− 1
2

(
cos(θ)

)
(see, e.g.,

[Km, 2.171]). Now, formula (9) follows from [GR, 8.733], and formula (10) from [GR,
8.756.1]. �

As an illustration, we list the sharp constants in the trace Hardy inequality for the
half-spaces of small dimensions. It is easily seen that λ(2, 12 ,R

n
+) · λ(2, 12 ,R

n+2
+ ) = n−2

2 .
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§3. The “Sobolev” case σ = 1

The next theorem deals with the trace Sobolev inequality in circular cones.

Theorem 3. Let Ω be a convex circular cone, i.e., let G be a spherical “hat” (8), θ∗ ≤ π
2 .

Suppose 1 < p < n and σ = 1. Then the function

(11) w(x) = |x− e|−
n−p
p−1 , e = (0, . . . , 0,−1),

provides the minimum of Jσ.

Remark 2. For the case of the half-space (θ∗ = π
2 ), this statement was proved in the

remarkable paper [Nt]; see also [E] for p = 2.

Proof. We repeat the proof of [Nt, Theorem 1] almost literally. The method is based on
the mass transportation approach (generalized Monge–Kantorovich problem). Consider
two probability measures on Ω with smooth densities F and G whose supports are
bounded and separated away from the origin. Then (see [Br] and [MC]) there exists the
so-called Brenier map T = ∇ϕ such that for all measurable functions ψ we have

(12)

∫
Ω

ψ(x)G(x) dx =

∫
Ω

ψ(T (x))F (x) dx.

Moreover, the function ϕ is convex and satisfies the Monge–Ampère equation

(13) F (x) = G(∇ϕ(x)) · det(D2ϕ(x))

almost everywhere with respect to the measure Fdx. Here D2ϕ is the Hessian matrix of
ϕ, which exists a.e. by A. D. Aleksandrov’s theorem.

By (12), ∫
Ω

G1− 1
n (x) dx =

∫
Ω

G− 1
n (∇ϕ(x))F (x) dx.

Using (13) and the Hadamard inequality, we obtain

(14)

∫
Ω

G1− 1
n (x) dx =

∫
Ω

det
1
n (D2ϕ(x))F 1− 1

n (x) dx ≤ 1

n

∫
Ω

Δϕ(x)F 1− 1
n (x) dx.

Since ϕ is convex, on the right-hand side of (14) we can replace Δϕ, understood in (14)
as calculated a.e., by the full distributional Laplacian.

Integrating by parts, we get

n

∫
Ω

G1− 1
n (x) dx ≤

∫
∂Ω

F 1− 1
n (x)〈∇ϕ(x),n〉 dΣ−

∫
Ω

〈∇ϕ(x),∇(F 1− 1
n )(x)〉 dx.

By the definition of the Brenier map, ∇ϕ(x) ∈ Ω for all x ∈ Ω. Therefore, 〈∇ϕ(x),n〉 ≤ 0
on ∂Ω, and

(15) n

∫
Ω

G1− 1
n (x) dx ≤ −

∫
Ω

〈∇ϕ(x),∇(F 1− 1
n )(x)〉 dx.

Adding the integral∫
Ω

〈e,∇(F 1− 1
n )(x)〉 dx =

∫
∂Ω

F 1− 1
n (x)〈e,n〉 dΣ = sin(θ∗)

∫
∂Ω

F 1− 1
n (x) dΣ

to both parts of (15), we arrive at the inequality

(16) sin(θ∗)

∫
∂Ω

F 1− 1
n (x) dΣ+ n

∫
Ω

G1− 1
n (x) dx ≤

∫
Ω

〈e−∇ϕ(x),∇(F 1− 1
n )(x)〉 dx.

Put F = vp
∗
, G = up∗

. Then ‖v‖p∗,Ω = ‖u‖p∗,Ω = 1, and (16) becomes

sin(θ∗)‖v‖p
∗∗

p∗∗,∂Ω ≤ (n− 1)p

n− p

∫
Ω

v
n(p−1)
n−p (x)〈e−∇ϕ(x),∇v(x)〉 dx− n‖u‖p

∗∗

p∗∗,Ω .
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By the Hölder inequality and (12),

sin(θ∗)‖v‖p
∗∗

p∗∗,∂Ω ≤ (n− 1)p

n− p
‖∇v‖p,Ω

(∫
Ω

vp
∗
(x)|e−∇ϕ(x)|p′

dx

) 1
p′

− n‖u‖p
∗∗

p∗∗,Ω

=
(n− 1)p

n− p
‖∇v‖p,Ω

(∫
Ω

up∗
(x)|e− x|p′

dx

) 1
p′

− n‖u‖p
∗∗

p∗∗,Ω .

(17)

Note that the two sides of (17) do not involve the Brenier map. Hence, by approximation,

this inequality remains valid for all u, v ∈ Ẇ 1
p (Ω) normalized in Lp∗(Ω).

Now we specify (17) by setting u = Cw, where w is defined in (11) and C = ‖w‖−1
p∗,Ω

is the normalization constant. Then for any v ∈ Ẇ 1
p (Ω) such that ‖v‖p∗,Ω = 1, we have

(18) ‖v‖p
∗∗

p∗∗,∂Ω ≤ A‖∇v‖p,Ω −B,

where

A =
(n− 1)pC

n(p−1)
n−p

(n− p) sin(θ∗)
· I

1
p′ , B =

nCp∗∗

sin(θ∗)
· I, I = ‖w‖p

∗∗

p∗∗,Ω =

∫
Ω

dx

|x− e|(n−1)p′ .

For arbitrary v ∈ Ẇ 1
p (Ω) (without normalization), (18) can be rewritten as follows:(

K(v)

J1(v)

)p∗∗

≤ AK(v)−B ⇐⇒ Jp∗∗

1 (v) ≥ F(K(v)) ≡ Kp∗∗
(v)

AK(v)−B
,

where

J1(v) =
‖∇v‖p,Ω
‖v‖p∗∗,∂Ω

, K(v) =
‖∇v‖p,Ω
‖v‖p∗,Ω

.

By elementary calculus, the function F achieves its minimum at the point

p(n− 1)B

n(p− 1)A
=

n− p

p− 1
CI 1

p = K(w),

and therefore,

(19) Jp∗∗

1 (v) ≥ Kp∗∗
(w)

AK(w)−B
=

(n− p

p− 1

)n(p−1)
n−p I

p−1
n−p sin(θ∗).

If v = u = Cw, then the Brenier map is the identity. Direct calculations show that all
the inequalities become equalities, and the statement follows. �

Thus, the right-hand side of (19) equals λp∗∗
(p, 1, Ω). By [GR, 3.252.10], [GR, 8.733.1],

and [GR, 8.335.1], we have

I = ωn−2

∫ θ∗

0

∫ ∞

0

rn−1 sinn−2(θ) dr dθ

(r2 + 2r cos(θ) + 1)a

= ωn−22
a− 1

2Γ
(
a+ 1

2

)
B(n, 2a− n)

∫ θ∗

0

sinn−a− 3
2 (θ)P

1
2−a

n−a− 1
2

(
cos(θ)

)
dθ

= π
n
2 −12a−

3
2Γ

(
a− n−1

2

)
B
(

n
2 , a−

n
2

)
sinn−a− 1

2 (θ∗)P
1
2−a

n−a− 3
2

(
cos(θ∗)

)
,

where a = (n−1)p
2(p−1) .

In particular, for θ∗ = π
2 we obtain

λ(p, 1,Rn
+) =

(
n−p
p−1

) 1
p′
(ωn−2

2
· B

(
n−1
2 , n−1

2(p−1)

)) 1
(n−1)p′

.

Now we show that for nonconvex cones, Theorem 3 fails.
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Theorem 4. Let Ω be a nonconvex circular cone, i.e., let G be a spherical “hat” (8),
θ∗ > π

2 . Suppose 1 < p < n and σ = 1. Then the function (11) does not provide the
minimum to the functional Jσ, though it is a stationary point.

Proof. Direct calculations show that w is a positive solution of the Neumann problem

(20) −Δpu = 0 in Ω, |∇u|p−2 ∂u

∂n
= γup∗∗−1 on ∂Ω,

where γ = Jp∗∗

1 (w)/‖∇w‖p
∗∗−p

p,Ω .
Let Ω1 ⊂ Ω be a half-space such that ∂Ω1 is a hyperplane tangent to ∂Ω. Then w

solves the same problem (20) in Ω1.
By the dilation invariance of the quotient J1, the function w provides the minimum

to J1 in Ω1. Thus, γ = λp∗∗
(p, 1,Rn

+)/‖∇w‖p
∗∗−p

p,Ω1
, and Ω1 ⊂ Ω implies that J1(w) >

λ(p, 1,Rn
+).

Now we claim that λ(p, 1, Ω) ≤ λ(p, 1,Rn
+). Indeed, consider wk(x) = |x − xk|−

n−p
p−1 ,

where xk /∈ sΩ, xk → x0 	= 0, and x0 ∈ ∂Ω. Since the neighborhood of x0 in the large scale
looks like a half-space, the dilation invariance of the quotient Jσ yields limk J1(wk) =
λ(p, 1,Rn

+), and the statement follows. �

Remark 3. One can see from the proof that Theorem 3 remains valid for any convex
cone Ω if its support hyperplanes at almost every point have a constant angle with the
axis xn. The simplest example of such a cone is a dihedral angle less than a half-space.
Another interesting example is a cone such that G is an arbitrary simplex in S

n−1.

Similarly, Theorem 4 remains valid if Ω is a complement of such a convex cone.

Remark 4. The claims of Theorems 3 and 4 hold true also for a more general definition
of the norm in the numerator of J1. Namely, consider an arbitrary norm ~x~ in R

n and
replace ‖∇v‖p,Ω by

~∇v~p,Ω =

(∫
Ω

~∇v~
p dx

) 1
p

.

Then Theorems 3 and 4 remain valid if we replace the Euclidean norm in (11) by the
dual norm

~x~o = sup
~ξ~≤1

〈x, ξ〉 = sup
ξ �=0

〈x, ξ〉
~ξ~

.

The proofs run without changes.

§4. Intermediate case

Now we consider the case where 1
p < σ < min{1, np }. For the conventional Hardy–

Sobolev inequality, the corresponding sharp constants in cones are attained (see [N],
[N1]). This is the case also for the trace embedding.

Theorem 5. Let 1 < p < ∞, p 	= n, 1
p < σ < min{1, n

p }. Then the infimum in (Iσ) is

attained.

Remark 5. Standard arguments show that under suitable normalization the minimizer
of Jσ is a positive solution of the Neumann problem

(21) −Δpu = 0 in Ω, |∇u|p−2 ∂u

∂n
=

up∗∗
σ −1

r(1−σ)p∗∗
σ

on ∂Ω.
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Proof. Consider a minimizing sequence {vk} for the quotient Jσ. Since this quotient is
homogeneous of degree zero and invariant with respect to dilations, we can ensure the
relations

(22)

∫
Ω

|∇vk|p dx = 1,

∫
B1∩Ω

|∇vk|p dx =
1

2
.

There is no loss of generality in assuming that vk ⇁ v in Ẇ 1
p (Ω).

By the P.-L. Lions concentration-compactness principle (see [Ls, Part 1] and also [N1,
Lemma 3.1]), we have

|rσ−1vk|p
∗∗
σ ⇁ |rσ−1v|p∗∗

σ + α0δ0(x) + α∞δ∞(x),

|∇vk|p ⇁ μ ≥ |∇v|p + β0δ0(x) + β∞δ∞(x),
(23)

where

α0, α∞ ≥ 0, β0 = λp(p, σ,Ω)α
p/p∗∗

0 , β∞ = λp(p, σ,Ω)αp/p∗∗

∞ .

The second convergence in (23) is in the sense of measures on the compact set K =
sΩ ∪ {∞}, and the first is in the sense of measures on ∂K.
Since {vk} is a minimizing sequence, we can repeat the arguments in [N1, Theorem

3.1] to obtain the following alternative: either v is a minimizer of Jσ(v) and α0 = α∞ = 0,
or v = 0; in the latter case, β0 = 1 or β∞ = 1. However, the second relation in (22)
allows only the first possibility, and the statement follows. �

Let Ω = R
n
+. Then we could expect that the least energy solution of (21) is symmetric.

For p < n this is the case, the minimizer of Jσ(u) is radially symmetric in x′, i.e.,
u = u(|x′|, xn). This follows from the properties of the Schwarz symmetrization with
respect to the x′-variables (or from the properties of the Steiner symmetrization with
respect to x1 for n = 2). Indeed, this transformation reduces the numerator in Jσ
(see, e.g., [PS, Chapter 7]) and enlarges the denominator (see, e.g., [LL, Chapter 3]).
Moreover, u is symmetrically decreasing in x′ for every xn > 0 and decreasing in xn for
any x′ ∈ R

n−1 (the latter claim can be proved by monotone rearrangement with respect
to xn).

For p > n the symmetrization arguments do not work because of the condition
u(0) = 0. It turns out that the symmetry of the minimizer really breaks in this case.
For the conventional Hardy–Sobolev inequality in R

n \ {0}, this effect was established in
[N1, Theorem 4.1].

Theorem 6. Let G be a spherical “hat” (8). Then for any p > n there exists σ̂(n, p, θ∗) <
n
p such that for σ > σ̂ no symmetric function u(|x′|, xn) gives the minimum to the

functional Jσ.

Proof. Let u(|x′|, xn) be a function providing the minimum to the functional Jσ over

the set of symmetric functions in Ẇ 1
p (Ω). Without loss of generality, we assume that

‖u‖p∗∗
σ ,σ,∂Ω = 1. By the principle of symmetric criticality, see [P], dJσ(u;h) = 0 for any

variation h ∈ Ẇ 1
p (Ω).

As in [N2, Theorem 1.3], the second differential of Jσ at the point u can be written
as follows:

Jp−1
σ (u) · d2Jσ(u; h) =

∫
Ω

|∇u|p−4
(
(p− 2)〈∇u,∇h〉2 + |∇u|2|∇h|2

)
dx

− Jp
σ(u) ·

[
(p− p∗∗σ ) ·

(∫
∂Ω

|u|p∗∗
σ −2uh

r(1−σ)p∗∗
σ

dΣ
)2

+ (p∗∗σ − 1) ·
∫
∂Ω

|u|p∗∗
σ −2h2

r(1−σ)p∗∗
σ

dΣ
]
.

(24)
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Now we set h(x) = u(|x′|, xn)f(x), where f(x) = x1

r . By the symmetry of u, we have∫
∂Ω

|u|p
∗∗
σ −2uh

r(1−σ)p∗∗σ
dΣ = 0. Next,

〈∇u,∇h〉2 = |∇u|2〈∇u,∇(uf2)〉+ u2〈∇u,∇f〉2, |∇h|2 = 〈∇u,∇(uf2)〉+ u2|∇f |2.
Substituting these formulas into (24) and using the relation dJσ(u;uf

2) = 0, we obtain

Jp−1
σ (u) · d2Jσ(u; h) =

∫
Ω

|∇u|p−4u2
(
(p− 2)〈∇u,∇f〉2 + |∇u|2|∇f |2

)
dx

− Jp
σ(u) · (p∗∗σ − p) ·

∫
∂Ω

|u|p∗∗
σ f2

r(1−σ)p∗∗
σ

dΣ.

Note that ∫
∂Ω

|u|p∗∗
σ

r(1−σ)p∗∗
σ

x2
1

r2
dΣ =

1

n− 1

∫
∂Ω

|u|p∗∗
σ

r(1−σ)p∗∗
σ

|x′|2
r2

dΣ

=
sin2(θ∗)

n− 1

∫
∂Ω

|u|p∗∗
σ

r(1−σ)p∗∗
σ

dΣ =
sin2(θ∗)

n− 1

(the last identity is the normalization condition for u). Since |∇f | ≤ 1
r , we get

(25) Jp−1
σ (u) · d2Jσ(u; h) ≤ (p− 1) ·

∫
Ω

|∇u|p−2 u
2

r2
dx− Jp

σ(u) · (p∗∗σ − p) · sin
2(θ∗)

n− 1
.

Finally, we estimate the integral in (25) by the Hölder and Hardy inequalities, arriving
at

d2Jσ(u; h) ≤ Jσ(u) ·
[
(p− 1)

(
p

p−n

)2

− (p∗∗σ − p) · sin
2(θ∗)

n− 1

]
.

The quantity in the square brackets is negative for σ close to n
p , and the statement

follows. �

Corollary. For p > n and σ̂ < σ < n
p , problem (21) in a circular cone has at least two

nonequivalent positive solutions.

Proof. The first solution is a global minimizer of Jσ (under suitable normalization), and
the second is a minimizer over the set of symmetric functions. �
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1959. MR0106302 (21:5036)

[Kw] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities,
Discrete Contin. Dynam. Systems 6 (2000), 683–690. MR1757396 (2001c:35064)

[LL] E. H. Lieb and M. Loss, Analysis, Grad. Stud. in Math., vol. 14, Amer. Math. Soc., Providence,
RI, 1997. MR1415616 (98b:00004)

[Ls] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally
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