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A VARIATIONAL PROBLEM OF PHASE TRANSITIONS

FOR A TWO-PHASE ELASTIC MEDIUM

WITH ZERO COEFFICIENT OF SURFACE TENSION

V. G. OSMOLOVSKĬI

Dedicated to Vasilĭı Mikhăılovich Babich

Abstract. The variational problem on the equilibrium of a two-phase elastic
medium is given in an extended form and is compared with the standard setting.
The lower semicontinuity of the energy functional in the extended formulation is
studied, and an example is constructed where no equilibrium states exist for a spe-
cial class of residual strain tensors. In the case of isotropic media, a method is

described for finding equilibrium states in explicit form. The notion of temperatures
of phase transitions is introduced, their existence is proved, and their properties are
studied.

§1. Introduction

In determining strain densities for the energy of a homogeneous anisotropic elastic
medium, certain coefficients aijkl such that

(1.1) aijkl = ajikl = aklij = aijlk, aijklξijξkl ≥ ν|ξ|2, i, j, k, l = 1, . . . ,m,

are fixed; here ν > 0, ξ ∈ Rm×m
s , where Rm×m

s is the space of symmetric (m × m)-
matrices, |ξ|2 = ξijξij , and summation from 1 to m over repeating indices is implied
(physically, only the cases where m = 2 or m = 3 are of interest). With the help of these
coefficients, the strain energy density F (M) is given by the relation

F (M) = aijkl(eij(M)− ζij)(ekl(M)− ζkl),

eij(M) =
Mij +Mji

2
, ζ ∈ Rm×m

s , M ∈ Rm×m,
(1.2)

where Rm×m is the space of (m×m)-matrices.
Let Ω be a bounded domain with Lipschitz boundary. Then the strain energy of an

elastic medium that occupies this domain in the nondeformed state is determined by the
relation

(1.3) I[u] =

∫
Ω

{F (∇u) + g · u} dx+

∫
∂Ω

f · u dS.

Here the vector-valued function u(x) = (u1(x), . . . , um(x)), x ∈ Ω, is the displacement
field, g(x) = (g1(x), . . . , gm(x)), x ∈ Ω, is the external volume force field, f(x) =
(f1(x), . . . , fm(x)), x ∈ ∂Ω, is the external boundary force field, and (∇u)ij = ui

xj
.
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In this case, e(∇u) is the strain tensor and ζ is the residual strain tensor. We assume
that g ∈ L2(Ω, R

m), f ∈ L2(∂Ω, R
m).

To describe the admissible displacement fields, we fix u0 ∈ W 1
2 (Ω, R

m) and a measur-
able subset Γ0 ⊂ ∂Ω. The role of the domain of the functional (1.3) will be played by
the set

(1.4) X = {u ∈ W 1
2 (Ω, R

m) : (u− u0)|Γ0
= 0}.

By an equilibrium state of an elastic medium we mean a solution of the variational
problem

(1.5) I[pu] = inf
u∈X

I[u], pu ∈ X.

It is well known that if |Γ0| > 0 (in what follows the modulus of a set denotes its Lebesgue
measure; in the case in question it is (m−1)-dimensional), then problem (1.5) is uniquely
solvable by the definition of the equilibrium displacement field pu. If |Γ0| = 0, a criterion
of its solvability is the condition∫

Ω

g · v dx+

∫
∂Ω

f · v dS = 0 for all v ∈ R,

R =
{
v(x) : v(x) = Bx+ x0, B ∈ Rm×m, B∗ = −B, x0 ∈ Rm

}
,

(1.6)

under which problem (1.5) is uniquely solvable up to a summand belonging to R.
Assume that we have two elastic media characterized by coefficients a±ijkl and ten-

sors ζ±. Denoting their energy densities by F±, we fix a measurable characteristic
function χ(x), x ∈ Ω, and assume that the elastic medium with the strain energy density
F+ is placed at the points x for which χ(x) = 1 and the medium with the density F−

is placed at the remaining points. Then for the resulting contact problem, the energy
functional takes the form

(1.7) Iχ[u] =

∫
Ω

(
χF+(∇u) + (1− χ)F−(∇u) + g · u

)
dx+

∫
∂Ω

f · u dS, u ∈ X.

We emphasize that the function χ in (1.7) is fixed, being a parameter of the problem.
In this case, by an equilibrium state we mean a solution of the variational problem

(1.8) Iχ[pu] = inf
u∈X

Iχ[u], pu ∈ X,

which is uniquely solvable if |Γ0| �= 0. A criterion of its solvability for |Γ0| = 0 is
condition (1.6) under which it is uniquely solvable up to a summand belonging to the
set R.

There exist elastic media in which the crystal structure may change [1], depending
on the temperature and internal stresses. We assume that only two kinds of crystal
structure + or − may occur; let F± denote their strain energy densities. Such media are
said to be two-phase. The location of media with densities F± is not known a priori. To
decribe it, we fix the set

(1.9) Z
′ = {χ ∈ L∞(Ω) : χ(x) = χ2(x) almost everywhere in Ω}

of all measurable characteristic functions and define the strain energy functional of a
two-phase elastic medium by the relation

I0[u, χ, t] =

∫
Ω

(
χ(F+(∇u) + t) + (1− χ)F−(∇u) + g · u

)
dx+

∫
∂Ω

f · u dS,

u ∈ X, χ ∈ Z
′,

(1.10)

where t is the temperature, which is assumed to be constant in the domain Ω and which
plays the role of a parameter of the problem.
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By an equilibrium state for the energy functional of a two-phase elastic medium for a
fixed value of the temperature t, we mean a solution of the variational problem

(1.11) I0[put, pχt, t] = inf
u∈X,χ∈Z′

I0[u, χ, t], put ∈ X, pχt ∈ Z
′.

The function put determines an equilibrium displacement field, and the function pχt speci-
fies the distribution of phases in an equilibrium state. An equilibrium state is said to be
one-phase if pχt ≡ 0 or pχt ≡ 1, and two-phase otherwise.

The distinction of the functional (1.7) from (1.10) is not only in the occurrence of the
temperature t (which is not fundamental for (1.7)), but also in the fact that the function
χ in (1.10) is not a parameter but an argument of the energy functional.

The functional (1.10) is viewed as having the right to exist (see [1]), but it does not
give a complete description of the strain energy of a two-phase elastic medium, because
it ignores the surface energy of the boundary where the phases meet. It is customary to
assume that this energy is proportional to the area of that boundary. To give this area
in terms of the function χ, we consider the expression

(1.12)

∫
Ω

|Dχ| ≡ sup
h∈C1

0 (Ω,Rm),|h|≤1

∫
Ω

χ div h dx.

If the right-hand side of (1.12) is finite, then we say that χ ∈ BV (Ω). In the case of
a smooth boundary separating the phases, the right-hand side of (1.12) coincides with
the area of this boundary. For arbitrary functions χ, the quantity (1.12) is a natural
generalization of that area [2]. We set

(1.13) Z = Z
′ ∩BV (Ω)

and define a new two-phase elastic medium energy functional (this time, it takes into
account the surface energy of the boundary separating the phases) by the relation

(1.14) I[u, χ, t, σ] = I0[u, χ, t] + σ

∫
Ω

|Dχ|.

Here, σ > 0 is the so-called surface tension coefficient.
By an equilibrium state corresponding to the functional (1.14) for fixed t and σ, we

mean a solution of the variational problem

(1.15) I[put,σ, pχt,σ, t, σ] = inf
u∈X,χ∈Z

I[u, χ, t, σ], put,σ ∈ X, pχt,σ ∈ Z.

The involvement of surface energy improves the mathematical properties of the energy
functional. It turns out [3] that problem (1.15) is solvable for |Γ0| > 0, and that property
(1.6) is a criterion of its solvability for |Γ0| = 0. A different situation arises with problem
(1.11).

In the present paper, results describing the properties of problem (1.11) are given. In
the first part of the paper (§2), it is explained why problem (1.11) is “bad”. In particular,
an example where it has no solution is presented. In the second part of the paper (§3),
it is explained why this problem is “good”: for isotropic media, in a number of cases,
not only solvability is proved, but an explicit form of the solutions is also given. In the
third part (§4), the notion of temperatures t± of phase transitions is introduced, their
existence is proved, and it is explained why problem (1.11) is “good” for t ≥ t+ and
t ≤ t− for arbitrary energy densities.

§2. A criterion for the lower semicontinuity of the energy functional

Besides the sets (1.9) and (1.13), we define

(2.1) Z
′′ = {χ ∈ L∞ : 0 ≤ χ(x) ≤ 1 almost everywhere inΩ}.
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For fixed t, we consider the following variational problem for the functional (1.10):

(2.2) I0[ũt, χ̃t, t] = inf
u∈X,χ∈Z′′

I[u, χ, t], ũt ∈ X, χ̃ ∈ Z
′′.

The variational problem (2.2) admits the following physical interpretation: the sub-
stances of two phases may occur at each point of the domain x ∈ Ω, and the function
χ(x) describes the part of each phase at this point.

We denote by μ′(t) and μ′′(t) the right-hand sides of (1.11) and (2.2), respectively. It
turns out [4] that these numbers satisfy the relation

(2.3) μ′(t) = μ′′(t).

The following lemma shows that the extension of the domain of the functional (1.10)
by replacing the set Z′ with Z

′′ is indeed useful.

Lemma 2.1. Suppose the variational problem (2.2) is solvable for some t. Then the
variational problem (1.11) is also solvable for this t.

Proof. Let ũ, χ̃ be a solution of (2.2). Since

I0[ũ, χ̃, t] =

∫
Ω

(F−(∇ũ) + g · ũ) dx+

∫
∂Ω

f · ũ dS

+

∫
Ω

χ̃
(
(F+(∇ũ)− F−(∇ũ)) + t

)
dx,

(2.4)

we have

(2.5) I0[ũ, χ̃, t] ≥ I0[pu, pχ, t],

where pu = ũ and

pχ =

{
1 if Φ(x, t) < 0,

0 if Φ(x, t) ≥ 0,

Φ(x, t) =
(
F+(∇ũ(x))− F−(∇ũ(x))

)
+ t.

(2.6)

Since pχ ∈ Z
′, from (2.2) and (2.5) we obtain μ′′(t) = I0[ũ, χ̃, t] ≥ I0[pu, pχ, t] ≥ μ′(t).

Then, by (2.3), the pair pu, pχ is a solution of (1.11). �

Our aim in this section is to establish necessary and sufficient conditions for the
relation

I0[u, χ, t] ≤ lim inf
n→∞

I0[un, χn, t], u, un ∈ W 1
2 (Ω, R

m), χ, χn ∈ Z
′′, t ∈ R1,

un ⇁ u in W 1
2 (Ω, R

m), χn
∗
⇁ χ.

(2.7)

Recall that χn
∗
⇁ χ means that∫

Ω

χnφ dx →
∫
Ω

χφ dx as n → ∞ for all φ ∈ L1(Ω).

Obviously, the set Z′′ is closed with respect to this convergence.
The condition (2.7) of lower semicontinuity serves as a basis for the proof of the

solvability of problem (2.2), and also of problem (1.11), in view of Lemma 2.1 (see,
e.g., [5]).

Obviously, relation (2.7) is equivalent to a similar relation for the functional

(2.8) J [u, χ] =

∫
Ω

{χF+(∇u) + (1− χ)F−(∇u)} dx, u ∈ W 1
2 (Ω, R

m), χ ∈ Z
′′.
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Theorem 2.1. The inequality

(2.9) J [u, χ] ≤ lim inf
n→∞

J [un, χn], u, un ∈ W 1
2 (Ω, R

m), χ, χn ∈ Z
′′,

is valid for all u, χ and any sequences un, χn such that

(2.10) un ⇁ u in W 1
2 (Ω, R

m), χn
∗
⇁ χ,

if and only if

(2.11) a+ijkl = a−ijkl, ζ+ij = ζ−ij , i, j, k, l = 1, . . . ,m.

Proof. The sufficiency of conditions (2.11) is obvious because

F+(M) = F−(M) for all M ∈ Rm×m

(this follows from (2.11)). To prove the “only if” part, we shall construct special se-
quences (2.10) so that inequality (2.9) will imply (2.11). In constructing such sequences,
we follow the approach of [5] and its adaptation to problems on phase transitions [6]. We
fix the unit cube

(2.12) K = (0, 1)m ⊂ Rm.

Suppose we are given functions

(2.13) φ ∈ C∞
0 (K,Rm), ψ ∈ L∞(K), 0 ≤ ψ(x) ≤ 1 almost everywhere in K.

Denote by N the set of all vectors in Rm with integral coordinates. We represent the
space Rm, up to a set of zero measure, as a union of cubes:

(2.14) Rm =
⋃

zj∈N
Kzj , Kzj = K + zj .

Let φ̃ and ψ̃ be periodic extensions of the functions φ and ψ from the cube K to the
space Rm:

(2.15) φ̃(z + zj) = φ(z), ψ̃(z + zj) = ψ(z) for z ∈ K.

Let x0 ∈ Ω, and let a positive number l be so small that

(2.16) K(l, x0) = {x ∈ Rm : x0
i < xi < l} ⊂ Ω.

Using functions (2.15) and the cube (2.16), we define sequences φ̃n and ψ̃n by the relations

(2.17) φ̃n(x) =
l

n
φ̃
(x− x0

l
n
)
, ψ̃n(x) = ψ̃

(x− x0

l
n
)
, n = 1, 2, . . . .

Then the functions

φn(x) =

{
φ̃n(x) if x ∈ K(l, x0),

0 if x ∈ Ω \K(l, x0),

χn(x) =

{
ψ̃n(x) if x ∈ K(l, x0),

0 if x ∈ Ω \K(l, x0),

n = 1, 2, . . . , x ∈ Ω,

(2.18)

belong to the spaces C∞
0 (Ω, Rm) and Z

′′, respectively.
The role of un in (2.10) will be played by the sequence

(2.19) un = M(x− x0) + φn(x), M ∈ Rm×m,

and the χn will be chosen as in (2.18).
Straightforward calculations show that

(2.20) un ⇁ u = M(x− x0) in the space W 1
2 (Ω, R

m)
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and

(2.21) χn
∗
⇁ χ, χ(x) =

{∫
K
ψ(y) dy if x ∈ K(l, x0),

0 if x ∈ Ω \K(l, x0).

By (2.18), conditions (2.9) for the resulting sequence (2.10) take the form

J [un, χn] =

∫
Ω\K(l,x0)

F−(M) dx

+

∫
K(l,x0)

{ψ̃n(x)F
+(M +∇φ̃n(x)) + (1− ψ̃n(x))F

−(M +∇φ̃n(x))} dx.

(2.22)

A series of transformations and changes of coordinates lead to the relation∫
K(l.x0)

{ψ̃n(x)F
+(M +∇φ̃n(x)) + (1− ψ̃n(x))F

−(M +∇φ̃n(x))} dx

= lm
∫
K

{ψ(x)F−(M +∇φ(x)) + (1− ψ(x))F−(M +∇φ(x))} dx.

Consequently,

lim inf
n→∞

J [un, χn] =

∫
Ω\K(l,x0)

F−(M) dx

+ lm
∫
K

{ψ(x)F−(M +∇φ(x)) + (1− ψ(x))F−(M +∇φ(x))} dx.

(2.23)

Next, for the pair u, χ as in (2.20), (2.21) we have

J [u, χ] =

∫
Ω

{χF+(∇u) + (1− χ)F−(∇u)} dx =

∫
Ω\K(l,x0)

F−(M) dx

+

∫
K(l,x0)

{(∫
K

ψ(y) dy

)
F+(M) +

(
1−

∫
K

ψ(y) dy

)
F−(M)

}
dx.

(2.24)

Using (2.23) and (2.24), we write inequality (2.9) in the form

F+(M)

∫
K

ψ(x) dx+ F−(M)

(
1−

∫
K

ψ(x) dx

)
≤

∫
K

{ψ(x)F+(M +∇φ(x)) + (1− ψ(x))F−(M +∇φ(x))} dx.
(2.25)

Since

F±(M +∇φ(x)) = F±(M) + F±
Mij

(M)φi
xj
(x) +

1

2
F±
MijMkl

φi
xj
(x)φk

xl
(x),

inequality (2.25) is equivalent to the relation

0 ≤ F+
Mij

(M)

∫
K

ψ(x)φi
xj
(x) dx+ F−

Mij
(M)

∫
K

(1− ψ(x))φi
xj
(x) dx

+
1

2
F+
MijMkl

∫
K

ψ(x)φi
xj
(x)φk

xl
(x) dx+

1

2
F−
MijMkl

∫
K

(1− ψ(x))φi
xj
(x)φk

xl
(x) dx.

In this inequality we replace φ by εφ, ε > 0, divide both sides of the inequality obtained
by the positive number ε, and let ε go to zero. We get

0 ≤ F+
Mij

(M)

∫
K

ψ(x)φi
xj
(x) dx+ F−

Mij
(M)

∫
K

(1− ψ(x))φi
xj
(x) dx.
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Since the function φ is compactly supported, this inequality is equivalent to

0 ≤ (F+
Mij

(M)− F−
Mij

(M))

∫
K

ψ(x)φi
xj
(x) dx.

Since this must be true for both φ and −φ, we obtain

(2.26) 0 = (F+
Mij

(M)− F−
Mij

(M))

∫
K

ψ(x)φi
xj
(x) dx.

Therefore,

(2.27) (F+
Mij

(M)− F−
Mij

(M))φi
xj
(x) ≡ 0 for all φ ∈ C∞

0 (K), M ∈ Rm×m.

Indeed, otherwise for the role of ψ we can choose the characteristic function of the set
of positivity or negativity of the left-hand side of (2.27), arriving at a contradiction
with (2.26).

For each pair of vectors ξ, λ ∈ Rm, we take a function φ(x) such that

φi
xj
(px) = ξiλj

at some point px ∈ K. Then (2.27) implies that

(F+
Mij

(M)− F−
Mij

(M))ξiλj = 0 for all M ∈ Rm×m, λ, ξ ∈ Rm.

Consequently, F+
Mij

(M) = F−
Mij

(M), i.e.,

(2.28) a+ijkl(Mkl − ζ+kl) = a−ijkl(Mkl − ζ−kl).

From (2.28) with Mkl = ζ−kl, it follows that a+ijkl(ζ
+ − ζ−)kl = 0. Then, since (1.1) is

positive definite, we have ζ+ = ζ−. Relation (2.28) with M = 0 shows that a+ijklζ
+
kl =

a−ijklζ
−
kl. Then a+ijklMkl = a−ijklMkl. Taking the matrix with zero entries (except for one

of them) for M , we get a+ijkl = a−ijkl. �

The absence of the weak lower semicontinuity of the energy functional in the case where
conditions (2.11) fail, which is established by Theorem 2.1, may lead to the unsolvability
of the variational problem (1.11). We give an example confirming this.

Example 2.1. An example where no equilibrium states exist will be constructed in
several steps.

Construction of the energy functional. Consider the functional (1.10) with Γ0 = ∂Ω,
u0 = 0, t = 0, g = 0, and f = 0. We describe the residual strain tensors that we need.
Let N± = {x ∈ Rm : ζ±x = 0}. We assume that

(2.29) N+ = N− ≡ N, dimN = m− 1.

We set

(2.30) l ∈ Rm, |l| = 1, l ⊥ N.

By the symmetry of the matrices ζ±, we have ζ±l = α±l, α± ∈ R1. The matrices ζ±

will be fixed by the condition

(2.31) ζ+l = l, ζ−l = −l.

Construction of a special family of displacement fields. Obviously, the functions

(2.32) u±(x) = ζ±x− x±
0 , x, x±

0 ∈ Rm,

satisfy the equations

(2.33) e(∇u±) = ζ±.
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Using the decomposition

(2.34) x = x̃+ sl, x̃ ∈ N, s ∈ R1,

we write the functions u± in the form

(2.35) u±(x) = ±sl − x±
0 .

Fix a number δ > 0. We choose the vectors x±
0 in such a way that

u−(x) = 0 if x ∈ {N + 2δl}, u−(x) = u+(x) if x ∈ {N + δl},
u+(x) = 0 if x ∈ N.

(2.36)

Conditions (2.36) are fulfilled for x+
0 = 0, x−

0 = −2δl. For such x±
0 , the functions (2.35)

have the form

(2.37) u+(x) = sl, u−(x) = (2δ − s)l.

For the vectors x in (2.34), we consider the function

(2.38) uδ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if s ≤ 0,

sl if s ∈ [0, δ],

(2δ − s)l if s ∈ [δ, 2δ],

0 if s ≥ 2δ.

We split the space Rm into the bands

Πk = {x ∈ Rm : the number s in (2.34) belongs to [2kδ, 2(k + 1)δ]},
k = . . . ,−2,−1, 0, 1, 2, . . . .

(2.39)

For each band Πk, we define the function uk
δ (x) = uδ(x+ 2kδl). Then the function

(2.40) puδ(x) =

∞∑
k=−∞

uk
δ (x)

satisfies

(2.41) puδ ∈ W 1
2,loc(R

m, Rm), |puδ(x)| ≤ Cδ for all x ∈ Rm.

Moreover, by (2.33),

e(∇puδ) = pχδζ
+ + (1− pχδ)ζ

−,

pχδ =

{
1 if x ∈ Π+

k , Π+
k = {x ∈ Πk : s ∈ [2kδ, 2(k + 1)δ]},

0 if x ∈ Π−
k , Π−

k = {x ∈ Πk : s ∈ ((2k + 1)δ, 2(k + 1)δ)}.
(2.42)

Property (2.42) shows that

(2.43) I0[puδ, pχδ, 0] = 0.

Calculation of the infimum of the energy functional. We prove that, in the case
under consideration,

(2.44) inf
u∈X,χ∈Z′

I0[u, χ, 0] = 0.

For all sufficiently small positive ρ, we consider a function φρ such that

(2.45) φρ ∈ C∞
0 (Ω), φρ(x) = 1 if dist(x, ∂Ω) > ρ, |∇φρ(x)| ≤

C

ρ
.

Since

(2.46) e(∇(φρpuδ)) = φρe(∇puδ) + e(∇φρ ⊗ puδ), (∇φρ ⊗ puδ)ij = φρxi
puj
δ,
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relations (2.42) and (2.45) yield

e(∇(φρpuδ)) = pχδζ
+ + (1− pχδ)ζ

− if dist(x, ∂Ω) > ρ,

|e(∇(φρpuδ))| ≤ C
δ

ρ
if dist(x, ∂Ω) ≤ ρ.

Therefore,

pχδF
+(∇(φρpuδ)) + (1− pχδ)F

−(∇(φρpuδ)) = 0 if dist(x, ∂Ω) > ρ,

pχδF
+(∇(φρpuδ)) + (1− pχδ)F

−(∇(φρpuδ)) ≤ C
(δ
ρ
+ 1

)2

if dist(x, ∂Ω) ≤ ρ.

Thus,

I0[puδφρ, pχδ, 0] ≤ C
( δ
ρ
+ 1

)2

δ.

Putting ρ = δ in this inequality and using the fact that puδφρ ∈ X and the nonnegativity
of the functional I0[u, χ, 0], we see that (2.44) is valid.

Proof of the unsolvability of the variational problem (1.5) for the resulting energy func-
tional. If the functional I0[u, χ, 0] has an equilibrium state pu, pχ, then, by (2.44),

(2.47) e(∇pu) = pχζ+ + (1− pχ)ζ−, pu ∈
◦
W 1

2(Ω, R
m), pχ ∈ Z

′.

Conversely, any solution pu, pχ of problem (2.47) is an equilibrium state for the functional
I0[u, χ, 0]. We prove that for the tensors ζ± satisfying conditions (2.29) and (2.31),
problem (2.47) has no solution.

Transforming (2.47), we obtain

(2.48) pui
xj

+ puj
xi

= 2(pχζ+ij + (1− pχ)ζ−ij ).

Let τ be a unit vector of the subspace N . Multiplying the two sides of (2.48) by τiτj ,
τilj , and lilj and summing over repeating indices, we arrive at the relations

(2.49)
∂(pu · τ )

∂τ
= 0,

∂(pu · τ )
∂l

+
∂(pu · l)
∂τ

= 0,
∂(pu · l)

∂l
= 2pχ− 1.

Fixing τ ∈ N , we denote by M the subspace of Rm orthogonal to this vector. It is
obvious that l ∈ M . We set

Ωx =
{
r ∈ R1 : Ω ∩ {x+ rτ}

}
, x ∈ M.

Since Ωx is an open set on a line, either it is empty or it is a union of an at most countable
collection of open disjoint intervals dj .

The function pu belongs to X =
◦
W 1

2(Ω, R
m). Consequently, for almost all x ∈ M with

Ωx �= ∅, the restriction of the function pu · τ to the interval dj lies in the space
◦
W 1

2(dj)
for each j, and the Sobolev derivative with respect to r ∈ dj of this restriction coincides
with the restriction of the Sobolev derivative ∂pu · τ/∂τ to the interval dj .

From the above arguments and the first relation in (2.49), it follows that pu · τ = 0
on a set Eτ ⊂ Ω of full measure. Then, for the same reasons, the second relation in
(2.49) shows that pu · l = 0 on a set E′

τ ⊂ Ω of full measure. Repeating these arguments
for the elements of a basis τ1, . . . , τm−1 of the space N , we conclude that pu = 0 almost
everywhere in Ω, but this contradicts the third equation in (2.49). �

The construction of the above example is based on the techniques developed in [7, 8].
The fact that any solution of (1.11) solves (2.2) enables us to state the following necessary
minimum condition.
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Lemma 2.2. Let a pair pu, pχ be a solution of problem (1.11). Then∫
Ω

{(pχF+
Mij

(∇pu) + (1− pχ)F−
Mij

(∇pu))vixj
} dx

+

∫
∂Ω

f · v dS = 0 for all v ∈ W 1
2 (Ω, R

m), v|Γ0
= 0,

(F+(∇pu)− F−(∇pu)) + t ≤ 0 for a.e. x ∈ Ω with pχ(x) = 1,

(F+(∇pu)− F−(∇pu)) + t ≥ 0 for a.e. x ∈ Ω with pχ(x) = 0.

(2.50)

Proof. Note that for all s ∈ [0, 1] and all χ ∈ Z
′′, if v is as in the lemma, then

pu+ sv ∈ X, (1− s)pχ+ sχ ∈ Z
′′.

Since the pair pu, pχ is a solution of problem (2.2), the function

φ(s) = I0[pu+ sv, (1− s)pχ+ sχ, t]

attains its minimal value for s = 0. Consequently,

φ′(0) ≥ 0.

Expanding this inequality, we obtain∫
Ω

(pχF+
Mij

(∇pu) + (1− pχ)F−
Mij

(∇pu))vixj
dx+

∫
∂Ω

f · v dS

+

∫
Ω

(χ− pχ)((F+(∇pu)− F−(∇pu)) + t) dx ≥ 0.

Obviously, this is equivalent to (2.50). �

§3. Isotropic two-phase media

The absence of the lower semicontinuity of the energy functional (see Theorem 2.1)
may (see Example 2.1), or may not, lead to the unsolvability of the variational prob-
lem (1.11). Our aim in this section is to describe a method that enables us not only to
prove the existence of equilibrium states in some cases but also to derive explicit formulas
for the functions pu and pχ.

This method works in the case of isotropic media,

(3.1) a±ijkl =
a±
2
(δikδjl + δilδjk) + b±δijδkl, a± > 0, b± ≥ 0, ζ±ij = c±δij , c± ∈ R1,

under the additional condition that the strain energy densities F±(M) are close:

(3.2) a+ = a− ≡ a.

Note that in the case of (3.1),

F±(M) = a± tr(e(M)− c±i)
2 + b± tr2(e(M)− c±i),

where i is the identity matrix in the space Rm.
(3.3)

The main idea of the method is based on the following statement [9].
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For the energy functional I0[u, χ, t] with densities (3.3), for all u ∈ W 1
2 (Ω, R

m), all
χ ∈ Z

′, and all t ∈ R1, in the case of zero force fields g and f we have

I0[u, χ, t] = G(Q, t, ν) +

∫
Ω

a+χ+ a−(1− χ)

4
| curlu|2 dx

+

∫
Ω

(a+χ+ a−(1− χ))(ui
xj
uj
xi

− ui
xi
uj
xj
) dx

+

∫
Ω

((a+ + b+)χ+ (a− + b−)(1− χ))

×
(
div u−

c+(a+ + b+m)− λ
2

a+ + b+
χ−

c−(a− + b−m)− λ
2

a− + b−
(1− χ)

)2

dx,

(curlu)ij = ui
xj

− uj
xi
,

|Ω|−1G(Q, t, ν) = tQ− νλ+
(
mc2+(a+ + b+m)−

(c+(a+ + b+m)− λ
2 )

2

a+ + b+

)
Q

+
(
mc2−(a− + b−m)−

(c−(a− + b−m)− λ
2 )

2

a− + b−

)
(1−Q),

Q =
1

|Ω|

∫
Ω

χdx, ν =
1

|Ω|

∫
∂Ω

un dS,

λ = λ(Q, ν) = 2

c+(a++b+m)
a++b+

Q+ c−(a−+b−m)
a−+b−

(1−Q)

Q
a++b+

+ 1−Q
a−+b−

− 2
Q

a++b+
+ 1−Q

a−+b−

ν.

(3.4)

We consider the auxiliary functional

J [u, χ, t, ν] = J0[u, χ, t] +G(Q, t, ν),

J0[u, χ, t] =

∫
Ω

a+χ+ a−(1− χ)

4
| curlu|2 dx

+

∫
Ω

((a+ + b+)χ+ (a− + b−)(1− χ))

×
(
div u−

c+(a+ + b+m)− λ
2

a+ + b+
χ−

c−(a− + b−m)− λ
2

a− + b−
(1− χ)

)2

dx.

(3.5)

The functional (3.5) differs from the initial energy functional by the absence of the third
summand on the right-hand side in (3.4).

Let Xν be a subset of functions in W 1
2 (Ω, R

m) with fixed ν (see (3.4)). For fixed t and
ν, we consider the variational problem

(3.6) J [put,ν , pχt,ν , t, ν] = inf
u∈Xν ,χ∈Z′

J [u, χ, t, ν], put,ν ∈ X
ν , pχt,ν ∈ Z

′.

To study this problem, we shall use a solution pQt,ν ∈ [0, 1] of the extremum problem

(3.7) G( pQt,ν , t, ν) = inf
Q∈[0,1]

G(Q, t, ν),

which exists necessarily by the continuity of the function G(., t, ν) on the interval [0, 1].

We fix numbers t and ν. Let pQt,ν be a solution of problem (3.7). Suppose χ̃t,ν ∈ Z
′

is a function satisfying

(3.8) pQt,ν =
1

|Ω|

∫
Ω

χ̃t,ν dx,
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and such that the system of equations

curlu = 0,

div u =
c+(a+ + b+m)− λ

2

a+ + b+
χ+

c−(a− + b−m)− λ
2

a− + b−
(1− χ), λ = λ( pQt,ν , ν),

(3.9)

admits a solution u = ũt,ν ∈ X
ν (the necessary solvability condition for the second

equation of this system in the space X
ν is fulfilled by the choice of the number λ).

Obviously, then the variational problem (3.6) is solvable and the set of its solutions
consists only of the pairs put,ν = ũt,ν , pχt,ν = χ̃t,ν .

To describe the set of all solutions of problem (3.7), we define functions t±(ν) by the
relations

t+(ν) =− ν2[a+ b]
a− + b−
a+ + b+

+ 2ν[c(a+ bm)]
a− + b−
a+ + b+

+
[c(a+ bm)]2

a+ + b+
− [mc2(a+ bm)],

t−(ν) =− ν2[a+ b]
a+ + b+
a− + b−

+ 2ν[c(a+ bm)]
a+ + b+
a− + b−

− [c(a+ bm)]2

a− + b−
− [mc2(a+ bm)].

(3.10)

Here the square brackets denote the jump of the quantity enclosed: [α] = α+ − α−.
Obviously,

(3.11) t+(ν)− t−(ν) =
(
[c(a+ bm)]− ν[a+ b]

)2 (a+ + b+) + (a− + b−)

(a+ + b+)(a− + b−)
≥ 0.

We split the plane of parameters {ν, t} into the following zones:

V≥ = {ν, t ∈ R1 : t ≥ t+(ν) > t−(ν) and t > t+(ν) = t−(ν)},
V≤ = {ν, t ∈ R1 : t ≤ t−(ν) < t+(ν) and t < t−(ν) = t+(ν)},
V= = {ν, t ∈ R1 : t = t+(ν) = t−(ν)},
V0 = {ν, t ∈ R1 : t ∈ (t−(ν), t+(ν)) �= ∅}.

(3.12)

The set of all solutions pQt,ν of problem (3.7) was described in [9]; generally speaking,
it is a multivalued function of the parameters {t, ν} ∈ R2.

The function pQt,ν of parameters {t, ν} ∈ R2 possesses the following properties:

(a) the function pQt,ν is single-valued and continuous for {t, ν} ∈ R2 \ V=;
(b) we have

(3.13) pQt,ν =

⎧⎪⎨⎪⎩
0 if {t, ν} ∈ V≥,

1 if {t, ν} ∈ V≤,

any number in the interval [0, 1] if {t, ν} ∈ V=;

(c) the function pQt,ν is single-valued and infinitely differentiable on the set V0; its first
derivatives on this set are given by the formulas

∂ pQt,ν

∂t
= −1

2

(
pQt,ν

a+ + b+
+

1− pQt,ν

a− + b−

)3 (a+ + b+)
2(a− + b−)

2

[c(a+ bm)− ν(a+ b)]2
,

∂ pQt,ν

∂ν
=

(
pQt,ν

a+ + b+
+

1− pQt,ν

a− + b−

) (a+ + b+)(a− + b−)

[c(a+ bm)− ν(a+ b)]
.

(3.14)
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Now we turn to the variational problem (3.6). We fix a function

(3.15) p ∈ W 2
2 (Ω, R

m), Δp ≡ ν,

and use this function to specify the set Xν occurring in (3.6): we set

(3.16) X
ν ⊂ Y = {u ∈ W 1

2 (Ω, R
m) : u = v +∇p, vn|∂Ω = 0}.

Since for the functions u as above we have∫
∂Ω

un dS =

∫
∂Ω

∂p

∂n
dS =

∫
Ω

Δp dx = |Ω|ν,

these functions form a subset of the space W 1
2 (Ω, R

m) with a fixed ν (see (3.4)).
We replace the set of admissible displacement fields X in the variational problem (1.11)

by X
ν . This yields the variational problem

(3.17) I0[put,ν , pχt,ν , t] = inf
u∈Xν ,χ∈Z′

I0[u, χ, t], put,ν ∈ X
ν , pχt,ν ∈ Z

′.

Note that, in terms of the function v, for the functions u as in (3.16), system (3.9) has
the form

curl v = 0, div v = α(Q, ν)(χ−Q), vn|∂Ω = 0,

α(Q, ν) =
[c(a+ bm)− ν(a+ b)]

(a− + b−)Q+ (a+ + b+)(1−Q)
.

(3.18)

In (3.18), only the boundary conditions dictated by the definition of the set Y are pre-
sented. Additional boundary conditions arise when the set Xν is given explicitly.

Since under condition (3.2), for the domains Ω with sufficiently smooth boundaries we
have ∫

Ω

(a+χ+ a−(1− χ))(ui
xj
uj
xi

− ui
xi
uj
xj
) dx = a

∫
Ω

(ui
xj
uj
xi

− ui
xi
uj
xj
) dx

=

∫
Ω

(u2
nδjnj − 2unδiu

i − uiujδjni) dS, δi =
∂

∂xi
− nink

∂

∂xk
,

(3.19)

it follows that, in some cases, for u ∈ X
ν the right-hand side of (3.19) is fully determined

by the function p. In these cases, the variational problem (3.17) reduces to the variational
problem (3.6) for the functional (3.5). Appropriate examples and the construction of
solutions of system (3.18) for them were given in [9]. For some examples, the set Xν has
structure (1.4), and in other examples it contains the slipping condition.

Thus, we obtain the following description of the set of all solutions of problem (3.17).

Theorem 3.1. Suppose that the right-hand side of (3.19) with functions in the set (3.16)
is uniquely determined by the function p, and that system (3.18) is solvable in the class
X

ν . Then, for each pair of parameters t and ν,
(a) in the set V≥, there is a unique equilibrium state pu = ∇p, pχ = 0;
(b) in the set V≤, there is a unique equilibrium state pu = ∇p, pχ = 1;
(c) in the set V=, there are infinitely many distinct equilibrium states pu, pχ; for each

of them we have pu = ∇p, and pχ is an arbitrary function belonging to Z
′;

(d) in the set V0, generally speaking, the number of equilibrium states is more than
one, all equilibrium states are two-phase, and the volume part of each of the phases is
uniquely determined by the parameters t and ν.
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§4. Temperatures of phase transitions

The formula for the functional I0[u, χ, t] suggests that, plausibly, there exist two num-
bers t± such that −∞ < t− ≤ t+ < ∞ and

for t < t−, only equilibrium states pu = pu+, pχ = χ+ ≡ 1 exist;

for t > t+, only equilibrium states pu = pu−, pχ = χ− ≡ 0 exist;

for t− < t+ and t ∈ (t−, t+) no one-phase equilibrium states exist,

(4.1)

where the pu± are the minimizers of the functionals

(4.2) I±[u] =

∫
Ω

(
F±(∇u) + g · u

)
dx+

∫
∂Ω

f · u dS, u ∈ X,

respectively.
The numbers t± (if they exist) are called the upper and lower temperatures of phase

transitions. In (4.1), the existence of equilibrium states for t < t− and t > t+ is claimed,
but their existence for t ∈ (t−, t+) is not stated.

The following is a sufficient condition for the existence of the temperatures of phase
transitions; see [10].

Let g ∈ L∞(Ω, Rm). Then the condition pu± ∈ W 1
∞(Ω, Rm) is sufficient for the exis-

tence of the temperatures t± for the sign + and the sign −, respectively.

If the temperatures t± exist, then for t = t± the energy functional has (possibly,
not unique) equilibrium states pu±, χ±; see [10]. Next from (2.50) we obtain necessary
conditions for the existence of the temperatures t±.

If the temperature t+ or t− exists, then the following inequalities are fulfilled for almost
all x ∈ Ω (respectively):(

F+(∇pu+(x))− F−(∇pu+(x))
)
+ t− ≤ 0,(

F+(∇pu−(x))− F−(∇pu−(x))
)
+ t+ ≥ 0.

(4.3)

Example 4.1. Inequalities (4.3) make it possible to construct examples of the energy
densities F±(M) and the force field g for which the temperatures t± do not exist.

We fix an energy density F+ and a function pu+ with the properties

pu+ ∈
◦
W 1

2(Ω, R
m) ∩W 2

2 (Ω, R
m), F+(p∇u+) �∈ L∞(Ω).

We define a function g ∈ L2(Ω, R
m) by the relation

gk = a+ijklpu
+i
xjxl

.

Obviously, pu+ is an equilibrium state of the functional I+[u] for Γ0 = ∂Ω and u0 = 0.
We set

a−ijkl =
1

2
a+ijkl, ζ−ij = ζ+ij .

In this case, the function

F+(p∇u+(x))− F−(∇pu+(x)) =
1

2
F+(∇pu+(x))

is nonnegative and does not belong to the space L∞(Ω), which implies that the tem-
perature t− does not exist. An example of the nonexistence of the temperature t+ is
constructed similarly.
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In the examples in §3, the temperatures of phase transitions exist and are given by
the explicit formulas (3.10). In these examples, pu± = ∇p. However, the function p only
satisfies conditions (3.15), so that the displacement fields may fail to belong to the space
W 1

∞(Ω, Rm). This observation shows that Theorem 4.1 is not sharp.
If the temperatures t± exist, then the necessary condition for their existence implies

that the numbers

pt+ = − ess inf
x∈Ω

{F+(∇pu−(x))− F−(∇pu−(x))},

pt− = − ess sup
x∈Ω

{F+(∇pu+(x))− F−(∇pu+(x))}

are finite and t+ ≥ pt+, t− ≤ pt−. For the problems treated in §3,
F+(∇pu±)− F−(∇pu±) = m[ac2]− 2ν[ac] + [b(ν −mc)2].

Therefore, for these problems we have pt− = pt+. Consequently, generally speaking, the
numbers pt± are not the temperatures of phase transitions, because, for these problems,
the relation t− = t+ is true only in exceptional cases (see (3.11)).

The examples in §3 show that the temperatures of phase transitions may coincide
and may be different. The following statement provides sufficient conditions for the
noncoincidence of the temperatures of phase transitions.

Theorem 4.2. Suppose the temperatures of phase transitions exist and u+ = pu− ≡ pu0.
Then:

1) If

F+(∇pu0)− F−(∇pu0) �= const a.e. in Ω,

then t− < t+.
2) If

(4.4) F+(∇pu0)− F−(∇pu0) = const a.e. in Ω,

but

F+
M (∇pu0) �= F−

M (∇pu0) on a set E ⊂ Ω of positive measure,

then t− < t+.
3) If condition (4.4) is satisfied and

F+
M (∇pu0) = F−

M (∇pu0) a.e. in Ω,

then t− = t+.
If the temperatures of phase transitions exist, pu+ �≡ pu−, and the inequality

F−(∇pu−(x))− F+(∇pu−(x)) > F−(∇pu+(x))− F+(∇pu+(x))

is fulfilled on a set of positive measure, then t− < t+.

Proof. The proof of the first part of the theorem was given in [10]. The second part is a
consequence of the necessary minimum condition (4.3). �
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