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ABSTRACT. A problem under study arises as a result of linearization of a free bound-
ary problem for Navier—Stokes equations governing the evolution of an isolated mass
of a viscous incompressible capillary liquid.

§1. INTRODUCTION

The paper is devoted to the linear problem
v, — vV 4+ Vp = f(x,1),
V-v=f(z,t) =V -F(x,t), z€F, t>0,
(1.1) T(v,p)N(x) +oN(z)Lp = d(z,t),
pi(z,t) +V(z) Vep—v(z,t) - N(z) =g(x,t), z€G,
v(z,0) =vo(x), z€F, p(z,0)=po(x), z€G,

in a bounded domain F C R?® with a smooth boundary G. The unknowns are the
vector field v(x,t) = (v1,v2,v3) and the functions p(z,t), x € F, and p(z,t), z € G.
Qv; vy

By T(v,p) = —pI + vS(v) we mean the stress tensor, S(v) = (Bxk oo )j,k:1,2,3
the doubled rate-of-strain tensor, IN is the outward normal to G, v and o are positive
constants, and £p = —Agp + b(x)p, where Ag is the Laplace—Beltrami operator on G
and b(z) is a smooth function. Finally, V() is a vector field defined on G and V. is the
tangential part of the gradient.

Problem (LI arises as a result of linearization of a free boundary problem for the
Navier—-Stokes equations governing the evolution of an isolated mass of a viscous incom-
pressible capillary liquid. The latter was studied in the papers [I1 2] and others, where the
method of the Lagrangian coordinates was used. This turned out to be especially fruitful
in the case where the surface tension is not taken into account [3]. Problem (1) is ob-
tained by applying the so-called Hanzawa coordinate transformation to the free boundary
problem in order to write it in a fixed domain (see formula (5.2)). This transformation
provides some technical advantages in the case of a capillary liquid with positive coeffi-
cient o of the surface tension. We intend to apply the results of the present paper to the
analysis of problems of magnetohydrodynamics.

In [], problem (LI was studied in the Holder spaces of functions.
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The main result of the paper is a coercive estimate of the solution of problem (L)

in anisotropic Sobolev—Slobodetskii spaces WQZ’Z/ 2(QT) in a cylindrical domain Qr =
F x (0,T). We recall the definition of these spaces. Let Q be a domain in R™. The
(isotropic) Sobolev space W(€Q) with I > 0 is the space of functions u(z), z € €2, with
the norm

g = 3 1Dl = > [ D) ds

0<|j]<! 0<|g]<l

if I =[], i.e., | is an integer, and

dx dy
Il = by + 3 [ [ 100 = Dt Pty
l71=[1]

if [=[l]+ X, A€(0,1). As usual, D7u denotes a (generalized) partial derivative 4{9 Oy

dxin’
where j = (j1,72,.-.,Jn) and |j| = j1 + -+ + jn. The anisotropic space W ’ /Q(QT)

Qr = Q x (0,T), can be defined as the space L2((0,7), Wi(Q)) N WZ/Q((O T), L2(£2))
supplied with the norm

T
12 gy, = [ IO+ [ ey do

There exist many other equivalent norms in Wzl’l/ 2 (Qr); some of them will be used below.
Sobolev spaces of functions given on smooth surfaces, in particular, on G and on G =
G x (0,T), are introduced in a standard way, with the help of local maps and partition of
unity. We also find it convenient to introduce the spaces Wi°(Qr) = Ly ((0,T), W(€2))
and WQO’Z/Q(QT) = WQZ/2(((),T),L2(Q)); the squares of norms in these spaces coincide,
respectively, with the first and the second terms in (1.2). Finally, by |ul, /2,r,Qp and
|uli/2,r,c We mean the norms of u in 1/1/1/2(07 T; W3 (§2)) and WI/Q(O, T;W3(G)), respec-
tively.

Theorem 1.1. Assume that | € [0,5/2), | # 1/2,1,3/2, and that the data of prob-
lem (L)) possess the following regularity properties: f € WQZ’Z/Q(QT), fe WQHLO(QT),
flz,t) = V- F(z,t), F € Wo'™2(Qr), d- N € WGy n w20, T:Wi'?(G)),
d— N(d-N) e WY G g e Wwi2aGr) n Wi o, T WB/Q(Q)), v €
WY FD), po € WET2(G), where T < o0, Qr = Fi x (0,T), Gr = G x (0,T). Assume
also that V' € W21+3/2(g). Finally, let the compatibility conditions

. V vo(z) = f(x,0), z€ F, if 1<1/2,
(13) V- vo(z) = f(x,0), z € F, vllgS(ve)N =1lgd(z,0), z€G, if | >1/2

be satisfied, where llgd = d — N(d - N) is the projection of d to the tangent plane

to G. Then problem (L)) has a unique solution v,p,p such that v € VVZJr2 Z/QH(QT),

Vp € WQZ /2 (Qr), pe I/I/'Ql—~_1/2 %(Gr)n WQZ/Q(O,T, W;/Q(g)), and the function p satisfies
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p € W20 Gr) n w2 (0. 1w (G)). pe € WY (Gr) 0 (0.1 w2 (9),
p(-,t) € WiT2(G) for all t € (0,T), and this solution satisfies the inequality
(1.4)
Yr(v,p,p) = ||’UHW5+2J/2+1(QT) + ||VP||W2U/2(QT) + HpHWéH/Q’O(GT)
+ |p|l/2,1/2,GT + ||P||W2l+5/2~0(GT) + |P|l/2,5/2,GT

+llpellyyreerzo g,y +1odiy2s/2.60

< D) (I 2 gy + M lwerop + 1Flyoreia gy
+ ||Hgd||W21+1/2,z/2+1/4(GT) + Hd . N||W2l+1/2,0(GT) + |d . Nll/z)l/QvGT

Hlgllypir20 Gy T19li2.3/2.60 + Vol (7)) + ||/70HW2{+2(g))
= ¢(T)Nr.
Moreover, if g € W2l+3/2’l/2+3/4(GT), then p; € W2l+3/2’l/2+3/4(GT), and

(1.5)
HUHW2’+2J/2+1(QT) + ||Vp||W21,l/2(QT) + ||p||W21+1/2»0(GT) + |p|l/271/2,GT

llellyresrzo gy, + lolyzszcn + lotliomimiong,,

< oD (I flwzr2iqry + 1 lwgoin + IF lygania gy,
+ ||Hgd||W2z+1/2,z/2+1/4(GT) + ||d . NHW2l+1/2’O(GT) + |d . Nll/271/2_’GT

+ ||g||W21+3/2,l/2+3/4(GT) + HUO||W21+1(]_-1) + H/)QHWQHQ(Q)).

The restriction ! < 5/2 minimizes the order of compatibility of the initial and boundary
data expressed by (L3). The requirement [ # 1/2,1,3/2 is technical; it is imposed to
avoid the cases where the compatibility conditions (I3]) should be modified substantially
(in this connection, see [5] [@]).

The imbedding theorems show that in the case where f = 0, F' = 0 the estimate (L)
is coercive, i.e.,

NT < CYT(U,p, p),
the same is true for (I5]). Hence, Theorem 1.1 guarantees the existence of a solution of
problem (1) with maximal regularity properties.

By the trace theorem for the space W2l+2’l/2+1(QT), we have v(-,t) € WiTH(F), ie.,
v is as smooth as vg. Proposition 4.1 implies that the same is true for p.

The proof of Theorem 1.1 is given in §§2-4. §5 contains a short discussion (without
detailed proofs) of an application of Theorem 1.1 to the free boundary problem with
initial domain of arbitrary shape and with an initial velocity vector field vo(x) that need
not be small.

§2. PARAMETER-DEPENDENT PROBLEM
As in [7], we consider the problem with a complex parameter s:
sv — vV 4+ Vp = f(z),
V-v(x)=0, zeF,
T(v,p)N + ocN£Lp = d(z),
sp+V(z) -Vep—v(z) N(x)=g(z), z€g.

The solution of (2] is also sought in the space of complex-valued functions.

(2.1)
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Theorem 2.1. Suppose Res >a>> 1, f € Wi(F), d ¢ W2l+1/2(g), and g € W2l+3/2(g)
with 1 € [0,5/2). Then problem @) has a unique solution v € WTH(F), p € Wy T(F),
p e W, %(g), and

||'U||W22+l(]:) + |3|1+l/2||'v||L2(.7-‘) + ||p||W2l+1(]:) + ‘3‘1/2”17”1/1/21(}')

152l 572 gy + s lollygraraggy + 1812 1llys/2g) + lellyzrsragg,

< (I flhwir + 8121 Laim) + Is/*72d = N(d - N)| Ly (9)
+ ||d||W21+1/2(g) + |5|l/2l|d ) N||W21/2(g) + |S|l/2||g||W23/2(g) + ||g||wzl+3/2(g))
with constant independent of |s| (but, possibly, depending on a).

Proof. We start with the proof of estimate ([22)). Without loss of generality, we may
assume that f is divergence free, because any f € Lo(F) can be decomposed into the
orthogonal sum

f=f+Ve,
where f’ is divergence free and ¢ is a solution of the Dirichlet problem
Vp=V-f, z€F, ¢lg=0.

Since

callfllwyr < IVelwir + 1 Twir) < 2l Fllwr),
problem (21) is equivalent to a similar problem with f and p replaced by f’ and p’ =
p — Vo, respectively.
Step 1. We consider the following model problem in the half-space Ri ={xz3 > 0}:
sv(z) + (V' - Vv(z) — vV30(z) + Vp(z) = 0,
V-v(x)=0, x3>0,

( OJvs ~ Ovj

—+—) :bj(‘r,)a ]:1727

(2.3) dx;  Oxs

-p+ 21/2—;’0’ —ol'p = bz(z'),

sp+ V' -V'p+us(z)=g(x), x3=0,

where V' is a constant vector of the form V' = (V4,V3), 2/ = (21,22), and V' =
(8%1, 8%2). Using the Fourier transformation in 21, z9, we reduce (23) to a boundary
value problem on the half-axis Ry = {x3 > 0}:

a2
1/(7’% . 2>vj—|—z£]p 0, =12,

2

de \ - dp dv:
V(Tf—d—x%>v3+d—;; =0, Zflvl+lﬁ2vz+d—z =0, z3>0,

dv; . ~ ,
(24) I/(d—x; + Zgj’Ug) = b], ] = 172,

—P+2V—+0|§|2 = bs,
dxs

s1p+v3=g, x3=0,
v—20, p—0 (x3— 00),

where ¢ = (£1,&), r1 = 11(5,&) = \/s1v L+ €2, —7 < arg 71 < 7, and 57 = s+iV’- €.
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It is convenient to exclude the function p from (Z4]), writing this problem in the form

y(r% dz)vj—l—lfjp—o j=1,2,
a2\ dp o~ L dus
o )it g =0 TG+ =0, >0,
(2.5) dv; . . ~ ‘
V(d_x; +’L£j’l)3) = bj, ] = 1,2,
~ d:l\}/?, 2~
—p+2Vd———\§| 03—b3——\§| x3 =0,
3
v—=0, p—=0 (x3— 00).

In the paper [2], an explicit formula for the solution of (Z.5]) was obtained; in particular,
it was shown that, if Res; > 0, then

~ 1 -4 ~ eo(x3) > ~ e1(xs3)

= = B ()b + —— 2 NTpp Vib;
(2.6) VT o(@s) v2ry(r1 + [€]) Py ; 3% T v2(ry + [€]) Pr Z !

ol¢|*eo(w3) ~ oléPer(x3) ~
- Uis = oo Vg, i =1,2,3,
Vo (4 €D 0T Vs (m + €N P Y
~_ st ﬁ ~ EN (5. T e ] o leles

O {(2 n )(zflbl +i€aby) u(m n )(b3 e g)}e ,
where

e~ T3 _ €—|f‘$3
- g

(2 22 2, 03 _ S1(51 2 €] alg]?
(29)  Pr= (0} +1e) —anlel + 1P = T (5 + 4P (1 ) +500):

(2.8)  eg(zs) =e "3, eq(xg) =

and U;j, V;; are the entries of the matrices

E2((3re — [€l)s1 + 21€%)  &1&a((3re — [€])s1 + ZI€ | ) i&risi(rn — [€])

U=|&&(Br—|E)st+ 2E)  &((Bri —[¢])s1 + Z|§\ ) i&risi(ri—1€]) |,
—i&1r151(r1 — [€]) —i&aris1(r1 — [§]) —[€r1s1(r1 + [€])
—E1(2rs1 + ZIEP)  —&i&2ris + Z[EP) —i&si(r + [€]7)
V= —&&(2rs + %|§|2) —&3(2r1s1 + %|§|2) —i&as1(r? + [€]?)

—i&1|€|(2r1s1 + Z|€]7)  —i&all(2ris1 + ZIE[7)  [Elsa(rT 4 [€]?)

In [2] it was shown that for Res; > v > 0 we have

2
Y
(2.10) §+|51\|§|2+\31|2+0|§|3SC(V)\PlL
/ MI dis < — it
0 dx3 \/—
& 2j—1 2—1
/ ‘ e1(x3) ’ dis <C|7“1| +2|§| ’
0 dI3 |7"1|
/ / dJ@o (23 +2)  deols) dxlsdzz < ey 2O,
o Jo da?, day 2|1 +2
[* [Pt Dot drse o e
o Jo dx3 dxé |z|tH2 — |71 ]2 ’
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where j > 0, k € (0,1). Moreover, if Res >~ > 0 and v > (2v)~}|V’|?, then

clri(s1, ) < Vs + 6> < ¢lra(s1, €)1

Using the above inequalities and repeating the calculations in the proof of Theorem 3.1
in [2] (carried out in the case where V' = 0), we obtain

8181 e,y + I P NS o, + 1 [y, + I 6P 1B s
< cBgrnqm, ) + (o1 OPOPIBI g, + 1B o) + I PP 1P e, )
< elfra P (Bl + Bl) + [e fra P Bal? + I € G1)
< eIrP (B2 + [Baf?) + Il 2 Bal? + [r[? €°112),

where || - ”Wl (g is the principal part of the norm in WE(R™):
dx dy
g e 2/ D)~ Dl P A==l € (0.1),
=l 7R

Now we integrate this inequality with respect to & € R? and use the Parceval formula.
This leads to
(2.11)

Hv||€[,21+z(Ri) + s w17, rg) + HVpllivzz(Ri) +1s'1IVPl,zs )

< (01, gy + 151210 1 ey + [51 10512

g1 s ey + 15191 72 e )
We supplement (211]) with estimates for p|,,—o = p(0) and p. By [27), we have

(2.12) B0)] < e([b] + (1 + €] [3]),
which implies that

o1y 1200 g2 g2y < (1Bl 272y + 192 o))

1200 172 gy < 1Bl i172 gy + 191572 gy )
To estimate the norms of p, we use the identities
Slﬁ: g_ 53(0)a
(2.14)

-~ _ dv:
ol25 = b + (5 - %72)

2
=Bt (O r 2 i, 0).
j:
Since 3 ~
> j=1Us;b; 02Us3g

03(0) = V2ry(r + )P v2sir(r1 + [€]) Py

and, as a consequence,

[3(0)] < e (€] Ir| 2 [B] + [g1),
relations (2I4)) imply that
(2.15) Y161 < e(€l Irl =[] + 131).  ol€l’I7] < (Bl + (1 + 1€D)31).
Hence,

10 1ol gy < (1Bl gy + 9l g )

oll 272 gy < (18l ye172 g + lgllygresro g, )
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Now we pass to estimating sp. By (214,
[sI15] < [V'[1E]1B] + c(l€] |r|~2[b] + 191,

which yields
(2.17)
|S| ||P||W2l+3/2(R2) < |V/| ||pHW2H5/2(]R2) + c(||b||w2l+1/2(R2) + HgHWzHS/?(]Rz))v
2ol ysrmny < V715120l 2y + 512 0Bl 272 gy + 1925

Estimates (2.16), 2I7) show that

|S|l/2Hp(0)HW21/2(R2) + Hp(O)HWzHlﬂ(Rz) + |S|l/2

||p||W25/2(R2) + ||pHW2l+5/2(R2)
(2'18) + |S| ||p||W21+3/2(R2) + |3|1+l/2||p||W23/2(R2)

< c(‘s‘l/2||b||w21/2(m2)+ ||bHW2l+1/2(R2)+ ‘3‘l/2||g||W23/2(R2)+ ”g”WzHS/?(]R?))'
Step 2. Counsider the problem

sv+ (V- Vv —vVie + Vp = f(z),
V-v(z)=0, x3>0,

8’03 8Uj .
e B ) =1,2
(2.19) ”(axj +3x3) 0. 7=12
—p+2u%—oA’p:O,
81‘3

sp+V' - Vp+uv3=0, x3=0.

Our goal is to construct the solution of (ZI9) and to obtain an estimate similar to
&I1I), @I8). Without loss of generality, we may assume that V - f = 0; otherwise we
could decompose f in the sum of a divergence free and a potential vector field:

f=rf+ve,
where ¢ is a solution of the Dirichlet problem
V2p(z) =V - f(z), 23>0, Glsy—0=0.

Problem (ZI9) is equivalent to a similar problem with f’ instead of f and p’ = p — ¢
instead of p.

Thus, we assume that f is divergence free and extend f to R3 with preservation of
this property and of the regularity properties; namely, we require that V - f* = 0,

Hf*HL2(R3) < C||fHL2(R3_)v ||f*||W2’(R3) < C||f||w5(Ri),

where f* is the extension of f.
We define u as the solution of the system

su+ (V' -Vu—vViu = f*(z), zeR.

Taking the Fourier transform with respect to x1,zs,x3, we obtain the solution in the
form

~ %

~ f
u(§) = m7

where & = (£1, &9, £3) is the dual variable and sy = s + iV’ - €. It is clear that V - u = 0.
The corresponding pressure p vanishes. The vector field u satisfies the inequalities

s/ el o) < ellf o), lwllwive sy < el lwies),
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and, as a consequence,

|12l o oy + e gay < els20F o) + 1 lwyces))-

The difference w = v — u is a solution of (2.3) with

B Ous  Ouy . B
ba(x)*—’/(%j‘f'a—xa)a J=123, g=-—us.

Hence, w, p, p satisfy 2I1)), (ZI8). It follows that
H””ivz“?(mi) + \S\HQHUHQLz(Ri) + ”Vp”%/VQI(Ri) + |5|l||Vp||2LZ(R1)

+ ‘S‘l||p(0)||$;[/21/2(R2) + ||p(0)||3‘/2l+1/2(]R2) + |S|l||p||$;[/25/2(]R2)
(2.20) O e, s+ 201 rara o + s o
W, (R2) W, (R2) W5/ (R2?)

l
< (1 Fvyceg) + 15117 o))
Step 3. We consider the problem

sv — vV + Vp = f(2),
V-v(z)=0, =z3>0,
V(@’Ug 3vj

—+—):bja j:172a

(2.21) Ox; Oz

—p+21/§—;z —olA'p =bs(2'),

sp+ V' -Vp+uvs=g(2), xz3=0.

The first equation can be written in the form
sv+ (V' -V)v—vV2u+Vp= f(z) + (V' V)v,
and the term (V' - V)wv can be estimated by an interpolation inequality as follows:
IOV V)olhwgan) < elsl ™72 (Iollyaenges ) + 15120l aes)):
SV Vol aqery < elsl ™2 ([0 llsszges ) + 151200 ] Lyga) ).
whence
IOV D) llwgag )+ 15121V -0l iy < elsl =2 (012003 g+ 1517210003, e )-

If |s] is sufficiently large, then (ZI1)), (ZI8]), and ([Z20)) yield
(2.22)

[0 s52 a3, + 91 101, + 1901y o+ 51 191, s
l l
+ |S| ||p(0)||2wzl/2(R2) + Hp(o)‘lf/vé-%—l/Q(RQ) + |S| ||p||‘2/V§/2(R2) + ||p||?/Vzl+5/2(R2)
l
P12, gy 7112,

< (I gms ) + sl NF I+ 1020073 gy + 15l 720012,

+ ‘S‘l||b3‘|$,v21/2(R2) + HgH?,V;ﬁ/?(]Rz) + |S|l||g||?/v23/2(R2))



ON A FREE BOUNDARY PROBLEM 1031

Step 4. We consider the problem
sv(z) — vV2v(x) + Vp(z) =0,
V-v(z) =h(z), xR},

l/(%-‘r-%) —0, j=1,2,

(223) 81‘]‘ 6133
—p—i—2ua —oA'p=0,
Oz3

sp+ (V' -V)p+uv3 =0, x3=0,
under the assumption that h decays sufficiently rapidly at infinity, and
(2.24) h=V-H(x)+h (z)

with compactly supported h’. We reduce [223)) to [221I). For this, we introduce w =
V®(x), where ® is a solution of the Dirichlet problem

(2:25) V2(r) = h(z), @ ERYL, B(@)lsm = 0.
By the Green identity,

/}R3+ [VO(z)|* de = —/]Rgr O(2)V P () dx = /Ri(vyx) -H — W/ (z)®(x)) dx

(2:26) < c(||H||L2(Ri)||v<1>||L2(R3) 1 | L s (supp h’)H(I)”La(Ri))

< |Vl s (1H | ces) + Il aqes) )-
Moreover, the coercive estimate for problem (225 yields
921 eg) < ellblhisogen
whence

‘1+l/2

oyt gas y + 151/ o]l e

(2.27) (g y ,
< c|s| 1H | ) + 1A N Loy ) + cllPllwpe gz

The functions v1 = v —w, p, p represent the solution of problem ([221)) with the data
f=—sw+vViw

ow; = OJws .
b (axg + axj )7 J IR b3 v 3533 y g9 ws,

and they can be estimated by ([Z22]). Together with (Z27)), this estimate yields

811)3

||’U||€sz+z(R3 + s T, g + 19015 R2) +s/'1VPIZ, rg)

+ 18 PO Ty 172 gy + PO Tyr5172 gy + [l 1015y 572 o

(2.28)
+ ||p||2 l+5/2 (R2) + | | Hp||‘2/vl+3/2(R2) + ‘ ‘2+l||p‘|$4/23/2(R2)

< s |2+l(uHuL2<R )+ I eg)) + cllblpneg

Step 5. We estimate the solution of (21) in the vicinity of an arbitrary fixed point
x9 € G by Schauder’s localization method. Without loss of generality, we may assume
that zp = 0 and that the inward normal —IN(0) is parallel to e3. Let ((z) be a smooth
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cutoff function equal to 1 for |z| < §/2 and to zero in the domain |x| > §. The functions
w = ((x)v(z), g = (p, r = (p satisfy the equations

sw — vV2w + Vq = f(x)((x) + my(v,p),
V-w(z)=V( v(z), z€F,

(229 T(w,g)N — 7N Agr = ((x)d(x) + msfo,p).
sr(x) + V' -Vr —w(z) N(z) = pV'-V(+g(z){(z), z€G,
where
my(v,p) = ~20V((z) - Vv — voV( +pV(,

ma(v. ) = v(v(r) oo £ VC) (- N)) + No(C()Agp — AglCp) — ba)C()p(x).

We assume that in the d-neighborhood of the origin (d > 2§) the surface G is given
by the equation
x3 = d(x'), o' = (r1,22).
The function ¢ is smooth and ¢(0) = 0, V#(0) = 0, which implies that
(2.30) V()| < cla’l, [¢(a)] < cla’f?

for |2’| < d. The components of IN and the Laplace-Beltrami operator Ag are expressed

in terms of ¢ as follows:
Py 1
Na = —a7 o = ]‘) 27 N = T /=75
Vit |V¢|2 tVITIVeP
Pya Pys )i

1+ [VoP2/ dys

1+ |Ve|? -

Ag =
V1t |V¢|2 Z (
We make a change of variables in (Z29]):
y=Flx):y =12, ys=u13-9(a)

If d is sufficiently small, then the transformation F' is invertible, establishing a one-to-one
correspondence between the domain K4 = {|z| < d, = € ]-'} and a certam subdomain
D of R3. The operators V, and S(v) are transformed into V= Vy ngﬁ( ") and

S(v) = Vo + (%’U)T, respectively, and we have
Vo f(2) =V fa(y) =V, F),

where f; = fi = 03 Yo_y Sy fa-
We write equations (2.29) in the variables {y}, keeping the old notation for all trans-
formed functions. We have

.31 { sw — vV2w +AVq = M1A(W, q) + mi(v,p) +(f,
Vw=(V-V) w+V(-v,

where V =V,,

(2.32) M (w,q) =v(V? = V)w+ (V- V).

We note that the function V(- v can be written in the form

(233)  VCw=1VC (0¥~ Vp+ ) = V- A,.0) +as(o.0) + VS,
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where
1
As(vap) = _(VV'UVC _PVC)7
(2.34) ‘;
as(v,p) = ;( —vD?C : Vv +pV24),
D2 = (%)ijzl 55 and Vo = (g;’;)ijzl , - Consequently, h = (V—%)-w—l—%{-v
satisfies (Z224]) with
2
~ , 1~
(2.35) H:egzqﬁyawa—i—As(v,p), h :as(v,p)—i—;VC'f.
a=1

We write the boundary condition TIN — o NAgr = (d + my for the tangential and
normal components separately; moreover, we can take only the first two components of
the tangential part. This gives the following system of three equations:

V(Z Sai(W)N; — No(IN - §(w)N)) = ((da — No(d- N)) 4+ maq — No(N - m3),
i=1 a=1,2

ie.,

(2.36) { VSas(w) = La(w) +la(v) + ¢dy(y), a=1.2,

—q+vSs3(w) — cA'r = Ly(w) + B'r +l3(v) +¢d - N,

where d!, = d, — N,(d- N),

3
Lo(w) = V(Sag — Zgaj]\fj + Ny (N - §(w)N)),

j=1
Li(w) = V(Sgg(w) - N- §(w)N),
B'r = —O'(A/ - Ag)?“,
la(v) = m2a(v) - Na(m2(v) ’ N)v
13('0) = msy - N.
Finally, we have
(2.37) sr+ V' V'r +wy = (w3 +w - N)+pV'- V¢ +(g.

Now, we extend w, ¢, r by zero to ]Ri and R? and regard [2.31)), (Z.36), (Z37) as a
problem of the type ([221)) in the half-space. We estimate w, ¢, with the help of ([2.22)),
[228)). Observe that, by (2.30), the leading coefficients of the operators M, V-V, L;,
B’ are small provided so is 6. By [2| Lemma 4.1],

1M lwyesy < 00 (lllyserges ) + 1 Vallwyes) )
+c(0) (Iwllgr g, + IValhg 1o ) )

S120M 1 o) < elsl2 (8010 lwgay ) + 1Vl acze) + o lhwg g ).
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where 6 € (0,1). By interpolation inequalities,

ol s, < e(ls 2wl ) + 5122wl ),
HVCIHW;*(W) < C(|S|_1/2||VCIHW§(R3+) + |5|l/2_1/2||VQ||L2(R3+))7

|7l/271/2 ‘1/2

lewllwy s < e(ls

lllyzen s, + 151210l ces) )

whence
1M lwges )+ 151721 M|y sy < (6”4 e(8)]s772)
x (o llwsezes ) + IValwicey, + 152 0] Lo + 15121Vl o) )
In a similar way we obtain

2
> (125 @0) s oy + 5724 L 0) e )

J=1
+ 1L (W)l 172y + [5172 ] Lo (W)l gy
+llws +w - Ny sz gay + s[5 s +w - N, ee)

2
FIV =V) - wlyioge) + [s]"*12]es Y PyoWallL, (w2

a=1
< (0" + 0(5)|5|_1/2)(HwHWQH?(Ri) + |S|l/2+1||w||L2(R§r)>7
1B s/ oy + 5121 BT 2 o)
< o [rlygrora ) + O lygesrageay + 1517 (00 Irllygragaa + @)l )
< (0% + c(O)s ) (g2 gy + 5172117l yy3/2 gy + 517217l y/2 gy )
Now we pass to estimating @C -v, mq, and my. We have

IVE - wllyet oy + Imaliwes ) + 157l o, es )

2
Z ( [0 = Na(mz - N) | yre1r gy + 512714 g — Na(m N)||L2(R2))
a=

”m? NHWH1/2(R2) + | |l/2Hm2 N”Wl/z(Rz)

e(0) (10l ) + 151172

+ 15210l 2 5,5y + Nollzroracs,,y + !

l
vl wa (kas) + ||1)||W2l+1/2(s2§) + 5] /2+1/4||’U||L2(525)
1/2
||p||W§/2(s25)
1/2
+ Il aeas) + 15172 0P N s ) )

and moreover,

| |1+l/2(||A ||L2 R2) + ||as||L2(R )) < C| |l/2(”v”W1 (Ka1s) + ||pHL2(K25))

The coefficient 6? 4 ¢(8)|s|~*/? can be made arbitrarily small by the choice of a small
0 and large |s|. In this case, it is not hard to verify that an application of (2.22)), ([2.28])
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to our problem (Z3T)), 236), (Z37) leads to the inequality
(2.38)

0l svs gy + 151 N0l ) + IVl + 15190l )
1510 O) 12,12 + 19O 12y + 151 172 gy + 1712 02

+ |s|2HT||$;Vzl+3/2(R2) + | |2+l||r‘|$4/23/2(R2)

< cICH I Rygqmyy + 15T ICF ) + 16 I gy + 15121
+ HCd N||2 l+1/2(R2)+ | | HCd N||2 1/2(R2)+ ||<g||2 l+3/2 (R2) + | | ||<g||W3/2(R2)>
e (101 + 10PN sy + 100 ey 15T 100 ey 00,

+ |S|l+1/2||v||iz(525) + |5|l||vH?/V21/2(S26) + ||p||?/[/21+3/2(32 ) + | | Hp” 3/2(8 ))

Inequalities of this type can be obtained in a neighborhood of any point of G and also
of any interior point of F if the distance of that point to G is larger that 6; > 0 (in this
case the norms of g and d do not occur in the estimate). If we cover F by a finite number
of such neighborhoods and add estimates (2.38]) together, we obtain

[0l 2e1 51 10130y + 19003 ) + 15l 1901, )
1,12 gy + B3/ ) + o1 1572 gy + 15T P2 02

1811l vs/2 gy + 151 o152

(2.30) (9) (9)
' < c(||f||2LQ(]-') +s'IF117, ) + IIHgdllfyyuzg + s+ Tgd]|, g
NI s g 51 N2 g+ 191210, + 150 91
+ (1P + 15 1B ) + N2() + N2 () ),
where

N} () = [0l en ) + I8l [0l ) + ol g) + |52 w12, gy + \8\l||11||§[,21/2(g)7
N3 (p) = ||PHI2/V21+3/2 +1sl'llol?, 272Gy
At the next step we estimate p.

Step 6. We have assumed that f is divergence free. Hence, p can be regarded as a
solution of the problem

Vip=0, z€F, p=vN-SwN+olp—d-N, zcg.
It is well known that
[PllLor) S cllvIN - S(0)N +0Lp—d- N|L,qg)
< c(IV0llLag) + Iolwzgy + - Nz )-
By the interpolation inequality
237y < €IVl z) + c@llplL, ),

we have

A LT

(2.40)
< €| VPl ) + cle)lsl (19913, 0) + oz + 14 N3, 0))
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and

l 2 l —1/2 2 1/2 2
st o130y < clsl' (1817721012 5726, + 151211012 5725, )

UV < clsl (151720l sva g, + 152003, )

Estimating the expressions N7 (v) and N3(p) in a similar way, we show that (Z39) and
240) imply (Z2) in the case of large |s].

The solvability of problem (ZT]) is established in §3. O

§3. END OF THE PROOF OF THEOREM 2.1

Continuing the proof of Theorem 2.1, we establish the solvability of the problem
@I). We use the method applied in [7] to the analysis of parabolic initial-boundary
value problems and in [2] to the evolution Stokes problem similar to (1.1).

We need the following auxiliary proposition.

Proposition 3.1. For arbitrary f € Wi(F) and d € W2l+1/2(g), the problem

sv — vV + Vp = f(2),
(3.1) V-v(z)=0, =zé€F,
T(v,p)N =d(z), z€Gg,

with Res > 1 has a unique solution v € W22+l(.7:), pE WQZH(]:), and this solution
satisfies the inequality

1+1/2 1/2
|

Vol
1/2

[vllyie2 (2 + |5 vllz. 7 + IVPIlwy ) + I8l

+ HpHWzl“/z(g) + |s] \|P||Wé/2(g)
< c(IFlwiir + 15121 o) + IMgdllyyien/2g)

s Mgl gy + - Nz gy + 18172 Nz g))-

(3.2)

This theorem was proved in [§]; see also [9].
We consider problem (Z1) with f = 0 and d = 0. Let {px}, ¥k = 1,2,..., be a
sufficiently “fine” smooth partition of unity, >, ¢r(x) = 1, defined on G and in a certain

neighborhood of G. We may assume that supp ¢; C Kéi), where Kéi) isaball |z —z;| <9,
z; € G. We also assume that there exist smooth functions v;(z) with supp¢; C K g such
that ¢;(z)pi(z) = pi(z). We suppose that

|D ()] + | DIy (2)| < e~

and that each point = can belong to at most Mj balls Kéz) with My independent of 9.
Let y3 = ¢:(v'), ¥ = (y1,y2), be the equation of G in a neighborhood of the point
x; in a local Cartesian coordinate system y = (y1,y2,y3) with center at x; and with the
ys-axis directed along the vector —N (z;). It is clear that y = C;(x — x;), where C; is
an orthogonal matrix. Without loss of generality it may be assumed that ¢; is defined
on the entire plane y3 = 0 (i.e., on the tangent plane to G at the point x;) and satisfies
([230) near the origin. The transformation z1 = y1, 20 = Y2, 23 = y3 — ¢;(y') “rectifies” G
near z;. We denote by Z;(x) the composition of this transformation with y = C;(x — ;).
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Now we describe briefly the method to be used to prove the solvability of the problem
sv—vV2v 4+ Vp =0,

V-v(x)=0, z€F,

T(v,p)N +0N£Lp =0,

sp+V -Vop—v(z) N(z)=g(x), z€g.

(3.3)

We construct a linear operator R that takes every function g € W2l+3/ 2(9) to an
element U = (v,p, p), where v is a divergence free vector field belonging to Wit?(F),

p € WE(F) and p € WET/2(G), such that
sv— vV + Vp =0,
V-v(x)=0, z¢€F,

(3.4)

where A is a continuous linear operator in W2l+3/ 2(g ), and the operator I+ A is invertible.
Then U = R(I + A)~'g is a solution of (3.3), as required.
We define Rg as the sum of three terms:

Rg=Rig+ Rog+ Rsg =Ur + Ua + Us, U; = (v, p9, p0)).
We set

Rig = du(@)(vi(@), pi(x), pi(@)),
k

where
vp(z) = O tug(Zea),  pla) = qu(Zix),  prlx) = ri(Zya),

and (wg,qr, %) is a solution of the half-space problem

sur(z) ~ V92 (2) + V() = 0,

V ug(z) =0, z€eR} ={z >0},

Ougs . Oug;j

=0 j=1,2
(3.5) 0z; Oz » J T
0
— qk + 2v 612123 - O'A;Tk = 07

sr(2) + Vi - Virg(z) + s = g(2)pr(2), 23 =0,
with Vi, = C,V (ap), 2 = Z;(x).
It is clear that v() € Wit2(F), p® € Wi (F), p» e WLT/2(G). We set
sv) — V2o 4 vpt) = £ (2),
Vo) = fi(z), zeF,
T(®, pO)N + 0N 2oV () = di (2),
50V + V(@) - Voph) = o0 (2) - N(2) = g(a) + q(2), w €0,

(3.6)

and we define Rog = (v(?,0,0), v(?) = V®(z), where ® is a solution of the Dirichlet
problem

V2o(z) = —fi(z), z€F, ®lg=0.
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Finally, Rsg = (v, p®) 0) is a solution of

svB3) —vV20® 4+ vp® = f,(2),

V.-o®(z)=0, zeF,

T, p®)N = dy(z),
where

fo=—F1 — (s0® —vV20?),

dy = —d; — S(v?)N.
Then the element Rg = (v, p, p) is a solution of (3.4) with Ag = g1 +v®-N+v®).N. We
have v € W2H(F), f, € WH(F), d2 € Wit 2(G), v®) € Wit(F), p® e WitH(F),
Ag=g1 —v?® N -v®) . N ¢ WQHS/Q(Q).

It remains to prove that I + A is invertible.
We compute the functions f;, f1, d1, g1 occurring in (Bﬂ) Since

V(@) =Y di(@)op(z), pY(x Zil)k reF,
%
=Y k(@)pr(x), weg,
%

we have

= Zz/)k(a:)(svk — VVka + Vpk) — I/Z(VQ(’lbk’vk) - z/)kv%k)
k

k

+ Z(V(ka:pk) — YE V),

k

fila) =Y (V- vk + 9V - vk(2)),

k
Hgd1 Z@/}ngS Vi N—FZHg 1/)k'l)k) 1/)kS('Uk))N

di-N = ZW —pr +VvIN - S(vg)N + o Lpy)

+VZN S(Yrvr) — S (vi) N+UZ (Vrpr) — Ve lpr)-

Consider the leadmg terms in the above formulas. By (BED,
svg — vVavg + Vapr = C ' (v(Vy — Vg + (Vy — Va)aw),
V"Uk—(vy—vz) ug.

Moreover, TIgS, (vy)N = Oy 'S, (ug) N, where Iy f = f — Ny(Ny - f) and Ny =
CiN is the vector whose components are given by

_ ¢kyj . 1

v J=12, Nig=——F——o=
1+ |V V14 |V |

in a neighborhood of the origin. Hence,

(3.7)

2
g Sy (vi) N =1lg (HgC{l(Sy(uk:)Nk - Zejszj:s(uk))),
(3.8) j=1

Ou
—pk'f'l/N‘Sx(’Uk)N-i-ngk :V(Nks (’U,k)Nk -2 823)

+0o(L+ A))ry,
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where Sy (u) = (Vyu) 4+ (V,u)T. Finally, the identity
spM +V(z) - Vpl) —oM . N
= Yi(spp+ V(@) Vepr —vi- N)+ Y (V(@) - Vethi)pi
k k

shows that
91 =Y U((Vi(y) - Vyr = Vi(0)- V2)ri — (- N +ugs)) + > _(V (@) - Vrtby) pi
k k
with Vi, = C, V.
A simple calculation yields
0 0 9] / 0Py,
S S A S (1 — e 22k
8Zj ay] 8y3 ¢k,j (y )’ ¢k,j ( 3]) 8y] I
so that
2 8’U,k
. _ . — . J
Vy U VZ Up ;gbkd 3y3 .
Hence,
fr(@) = (Vi - v+ Ye(Vy = Vs) - uy)
k
= Z Vibr v+ Y Z VkCamz— ¢k 5 Ukj
k m,j=1
= Z Zwkc3m¢k UK + ZXk U,
m,j= 1
where x, is the vector field with the components
3 3
Oy, 0
Xkj = Y Cima—— > 75— (VkCamon,).
m=1 axm m=1 axm
Since
3
8 8’uk
(2,1) (VWiug — Vi) j;l E(ij - OSm¢kJ)<Va—Zj - eij),
we have
fi=V-F+ F’
with

3
Funlo) = 313 5 Com = Comtn) (v 525 — es00)
k

(3.10) + Z Vi (2)Cam Z Z Pk,alkas

k j=la=1

/ > Ixy, () 1 Ouy,
F'(x) = —zk: Z oz, Z ;(ij - C3m¢k,j)(l/a—zj - 6ij)-
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Now we pass to estimates. Since every point of F NG belongs to at most My domains
Kél), the functions of the form f(z) = Zj fi(z), supp f; C Kéj), satisfy the inequality

1%y ) < o Z 1Fi1vs )
J

with ¢ independent of §. By [2I6) and ([2:28]),

||Uk||?,v22+z(Rs+) + s |7, ) + 1Vl ) + 151V ak I, o)
2 l 2 2 l 2
+ ||qk?||W2l+1/2(]R2) + |S| quHWzl/?(Rz) + ||rk||W2l+5/2(R2) + |S| HTkHWS/z(Rz)

l
P 3 gy + 151 ]2

(

< cllgrll2 0 gy + 15190813502 g

(R2)

Observe that in B1)—BI0) we have linear differential expressions with respect to uy,

gk, Tk, whose leading coefficients are small in Kék). Hence, we can use Lemma 4.1 in [2]
to obtain the inequality

1By + 15 1A 1y + 1A

241 2 2 2
I o) + 1P 1) + Tt s g

+ |82 gd 12, g) + lldy NGz gy + s ld - NG

9) (9)

|l+3/2

+ Hgl”?xvé“”(g) + |s ||91||2Lz(g)

S 0(69 + C((S)|S|_1/2)2 Z (Hg(pk||‘2/vzl+3/2(R2) + ‘S‘l||g(pk||?/v§/2(R2))
k

Moreover, we have

o1, 211y + 18P+ 0P,

< (I gy + 1P UE R i) + 1 )

< (8 +c(@)lsl ™2 S (gm0 g + 151 M908 372 )
k

and, by Proposition 3.1,
[ 12 501, + 52 R 12, ) + 195D g

< (12 ym) + sl 1F2l 3 + 1Mo 1112
152 g da 3, ) + 1d - NI siass g + Islldz - NI )

< e(6” +c(8)|s| 722 (IIgwkHiwsxz(RQ) + ISIZIIg%IIﬁV;/z(W))-
k

Consequently,
S C(”gl + v(2) N + U(B) : N||‘2/V2l+3/2(g) + |5|l||gl + ’U(2) N + 'U(3) ! NH?/V;/Q(Q))

< o0+ e(@)ls 22 Y (90812 ssm gy + 151 190812302 )
k
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It can be verified that the expression on the right does not exceed
(8 + x93 00 g + 51912002 )

which shows that A is a contraction operator in the case of small ¢ and large |s|. This
completes the proof of the solvability of problem (B.3]).
The solution of (2] can be constructed as the sum
'U:'LU1+'LU27 p:ﬂ-1+ﬂ-23
where (w1, 71) is a solution of (B]) and (wa, 72, p) is a solution of B3) with g replaced
by g +w; - N. Theorem 2.1 is proved.

Remark 1. We have assumed that Res is a sufficiently large positive number. In fact,
the claim of Theorem 2.1 is true for Res > a, where a is determined by the spectrum
of problem (ZT)). It is well known (see [10, [4]) that if d = 0, then this problem can be
written in the form

(3.11) (sI — AU =G,

where U = (v,p)?, G = (£,9)7, I is the (2 x 2)-unit matrix and A is the (2 x 2)-matrix

operator
A An
A:
<A21 A22>

Ao = vV — p1(v), Arap = —pa(p),

14211):'0-]\”(_;7 Agzp: —V~V-,—p|g.
By p1(v) and p2(p) we mean harmonic functions in F satisfying the boundary conditions

pi(v) =vN -S(W)N, pa(p) = —0&p

on G (hence, the pressure as an independent function is excluded). The domain of A is
the subspace of W3 (F) x W25/2(g) defined by the conditions V- v = 0, IIgS(v)N|g = 0.
By Theorem 2.2, for large positive Re s, equation ([BI1)) is solvable, and inequality (B0
with [ = 0 yields

with the entries defined by

I(s1 = A)'Gllp < cllGlx,

where D = W2(F) x Wi/%(G) and X = Ly(F) x Wi/*(G). Therefore, (sI — A)~! is
compact and the spectrum of A consists of eigenvalues with the only accumulation point
at infinity (in the left complex half-plane). There may exist at most finitely many points
of the spectrum in the right half-plane. Let ag be the upper bound of the real parts of
these points. Proposition 3.1 holds true for Res > 0; hence, in Theorem 2.1, we can
require that Res > max(0,ag) = a.

Remark 2. The interpolation inequality
|52V pl| Ly (g) < Slllyyresra gy + c(@)Is|"*llpll o), 6 <1,

and the equation sp+V - V,.p—v - N = g imply that, along with (Z2), the solution of
problem (Z1]) satisfies the inequality
(3.12)

ollyz+t ey + 8120l o) + Il ) + 12 Pl )

18y gy + L1 ol sz g, + 15172

||p||W25/2(g)+ H/)||W2l+5/2(g)
< c(IFlwiem + 151721 fll o) + |51V 42)ld = N(d- Nz, 0)

+ ||d||W2l+1/2(g)+ ‘S‘Z/QHd : N||W21/2(g)+ |s|l/2+3/4”g”L2(g)+ ||g||W2l+3/2(g))'
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84. PROOF OF THEOREM 1.1
We start with the following auxiliary proposition.

. ) 1+45/2,0 1/2 5/2
Proposition 4.1. Let! be as in Theorem 1.1. If p € W, (Gr)NWL 20, T W5 5(G)),
and py € Wy 2120(Gr) nW,/2(0, T W5/%(G)), then
(4.1) PG gy < ellplhygsormoqy + 1otlhysrormogy):
and for 1 > 1 we have
(42) ||pt('7t)HW2l+1/2(g) < C(Hpt||W2l+3/2,0(GT) + |pt|l/2,3/2,GT))‘

If py € WEPB/R2E34 Gy 1> 1/2, then
(4.9 o0 Dllygerr2gy < ellolygearasrasaragy
For arbitrary functions py € WiT2(G) and p, € Wé“”(g), there exists a function
p € Wy 720(Gr) n W20, 755 %(6))
with py € W21+3/2’l/2+3/4(GT) such that
p(x,0) = po(x), pi(x,0) = p1(x)
and

(4 4) Hp||W21+5/2vU(GT) + ||pt||W2H~3/2,l/2+3/4(GT) + |p|l/2,5/27GT
< C(||P0||W;+2(g) + le”Wé“(Q’))'

Proof. Inequalities (AI)-(3]) are consequences of the trace theorems for isotropic and
anisotropic Sobolev—Slobodetskii spaces. We turn to the second statement of the propo-

sition. By the Slobodetskil inverse trace theorem [11]], we can construct r € W2l+5/2 (Gr)
such that ri(x,0) = po(x), r1+(z,0) = 0, and
HT1HW2H5/2(GT) < C||P0||W21+2(g)-

W27/2+z,7/4+l/2(GT)

By a similar theorem in the anisotropic case, there exists ro € such

that ro(z,0) = 0, rot(z,0) = p1(z), and
||7“2||W2z+7/2,l/2+7/4(GT) < C||p1||W2z+1/2(g).

It is easily verified that p = 71 +7ro possesses all the necessary properties. The proposition
is proved. O

Proof of Theorem 1. We reduce (2] to a similar problem with zero divergence by con-
structing an auxiliary vector field w;(x,t) = V®(x,t), where ® is a solution of the
Dirichlet problem

V20 (z,t) = f(x,t), xz€F, ®x,t)|seq=0.
This function satisfies the inequality
(4.5) 1@llys50gp) < elflhpieroioy):
moreover, since
V20 (z,t) = fi(x,t) =V - Fy(a,t), xz€F, &ix,t)=0, x€g,
we have

(46) ||V(I)t||W20’l/2(QT) S C”FtHWS’l/Q(QT)’
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whence

(4.7) larllygenirans gy < (I hwgssir + IFellwoirn oy )-
For v1 = v — uy, p, p we obtain
vy, — vVv1 4+ Vp = f(2,1),
V-vi(z,t) =0, ze€F, t>0,
(4.8) T(v1,p)N + o N&p = dy(z,1),
pe +V - -V,op—wvi(z,t) N(z)=gq(z,t), z€G,
v1(z,0) =vg —ui(z,0) = wo(z), z€F, p(z,0)=po(x), z €G,

where

=f—uy +vViu,
(4.9) fi=F—uu 1
di=d—-vS(u;)N, ¢gi=g+u;-N.

In particular,
di-N=d -N—-vN-Suy)N|zeg-

Now we reduce ([A.8) to a similar problem with zero initial data. If | < 1, we introduce
a solenoidal vector field us(z,t) such that ug(x,0) = wo(x) and

HU2||W21+2,1/2+1(QT) < C||W0||W2l+1(]_-).
In the case where [ > 1, we also compute
v1¢(,0)=0 = vVwo — Vpo(z) + f1(2,0) = w1 (2),

where pg is a solution of the problem

Vipo(z) =V - f1(z,0), z€F,
po(z) =vIN - S(wo)N +0Lpy —di(x,0)- N, z€g.

This solution satisfies the inequality
HpOHWzl(]-‘) < C(||f1('a0)||wzl*1(]:) + ||w0HW2L+1(]-')
+lollygesr2gy + l1d (. 0) - Nllys-ar2g))-
whence

lwrli-r ) < (11 lwi-r ) + Nwollygor
(4.10) 2 () 2 (F) 2 (F)
+llpollysrsreqgy + lld - Nllyivr2g))-
We find a solenoidal vector field ws(z, ) such that
us(z,0) = wo(z), ug(r,0) =w;(z)
and
(4.11) ||UQHW21+2,1/2+1(QT) < C(”wOHWZHl(]:) + H’UJ]HWQZ—I(]_—)).

Moreover, we construct p1(z,t) and pi(x,t) such that py(z,0) = po(x),
(412)  p1(2,0) = pole),  p1u(e,0) =~V (x) - Voo — w0(2) - N + 1(,0) = gl (1)
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and

191y 10728872 0y < ellpollivg ey

(4.13) lorllwseorzoay + lorellypsermizins, + lely2s2.ar

< C(HP0||W21+2(9) + Hp,l”Wé“”(@)'

The construction of p; is described in Proposition 4.1. The construction of us is carried
out in the following way. We find wq(z,0) and wi(z,0), z € R3, in the form w;(z,0) =
&, +m;, where &, is an extension of w; () to R? with preservation of the class; we assume
that &, has compact support. Then, using the result of Bogovskii [12], we can find n,,
also with compact support, satisfying the equation V-1, = —V - £, and the inequalities

H"71HW;+1(R3) < C||€1HW;+1(]R3) < c||w0||W2z+1(Q),

H772||W21*1(R3) < C||£2HW21*1(R3) < CleHWQl’l(Q)'

Finally, we introduce the vector field us(z,t) satisfying

lwallyyeirzon s sy < e(lw0 i as) + il )

< C(||’lUOHW2l+1(]:) + ‘|w1HW571(F)>'

Usually, us is expressed in terms of wg and w; as a sum of convolution integrals (with
respect to x;); then it is divergence free.
For vy = vy — w2, p2 = p —p1, p2 = p— p1 we have

Vo, — VV20y + Vpy = oz, 1),
V - wva(z,t) =0, rEeF, t>0,
(4.14) T(va,p2)N + o N Lps = do(z, 1),
pat +V - Vipa = va(x,t) - N(x) + g2(x,t), x€G,
vy(x,0) =0, z€F, ry(x,00=0, z€g,

where

fo=f1— (Uzt AR +Vp1)a
d2 = d1 — (T(UQ,pl)N+ O'SplN),
g2=g1—V  -Vpr+wi-N — py.

Since da, g2 (and also f, for I > 1) vanish for t = 0 and [ < 5/2, we can extend
these functions by zero to the domain ¢ < 0 with preservation of the class, after which
we extend them, also with preservation of the class, to the domain ¢ > T. Then we
apply the Laplace transformation, as in [7], assuming that Re s = a is sufficiently large
(s is the dual variable). Problem (I4) reshapes to (B1]), whose solvability was proved
in Theorem 2.1. The inverse Laplace transform yields the solution of (@I4)) defined in
an infinite time interval (—oo, +00). Using estimate (Z4]) and the Parceval identity, we
obtain an estimate of this solution in weighted Sobolev spaces with the weight e=%¢. It
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follows that

(4.15)
||U2||W2l+2,l/2+1(Q_OO‘T)+ ||vP2||Wé’l/2(Q—x,T) + Hp2||W2l+1/2’O(G—oc,T)
Fp2lij2nsoo o rtllp2llyieszo g g lol2s2.6 0r
Flo2llyyivarzo ey Flo2eliosme or
< C(”'fQHW;’LM(Qfm,T) + ||d2 — N(dg . N)||W21+1/2,z/2+1/4(G700,T)
+ ||d2 . N||W2l+l/2’0(Gfoc,T) + |Cl2 ! Nll/zvl/chfoo,T
22+ |lg2llyivorzo |92|z/2,3/2,G_OO‘T>7

where Q_cor = F X (—00,T), G_oo,r = G X (—00,T). All functions in (£I5]) vanish for
t < 0, and the constant ¢ is bounded for finite T. Using (I8, it is easy to deduce the
estimate

(4.16)
Yr(v2,q2, p2) < C(T)(||f2||wéwl/2(QT) +lld2 = N(dy - Nl yyierrzir241a

+ldz - Nz, +1da - Nliyzaja.ar + 1920l yia206, + |92|z/2,3/2,GT),

and inequality (L4 follows from (I6), (@II), and 7). This completes the proof of
Theorem 1.1. ]

For an application of this theorem to the proof of the local solvability of a nonlinear
problem (see §5), it is important to be sure that the constant in the basic inequality
(4] remains bounded for small T'. In fact, this is not always the case, because the norm
lullwi(—oo,ry L =[]+ A, 0 <A <1, of the function u(t) vanishing for ¢ <0 is equivalent

to
T | pll] 2
[ Dy u(t)] 1/2
(HUH?A/Z{(O,T) +/0 tt2/\ dt)

(in this connection see [13] and [6, Chapter 4]). If A > 1/2 and Dy]u|t:0 = 0, then

T [1] 2 T T
|D u(t)\ dh 1 1
/ ttTdtgc/ W/ 1D u(t — n) — DM u(t)? dt
0 0 h

with constant independent of T'. If A < 1/2, then we have
T 1 pll 2 T
2 |Di"u(t)] 2 1 M0 2
61(||u\|W£(O7T) +/0 e dt) < lelfyom + 7o [ 1DF () dt

T pll] 2
| D ul(t
C2(H“||?/VQZ(O,T) +/0 ttzx( )| dt>’

where the constants are also independent of T. Hence, the constant ¢(T) in (ZI0)

A

IN

becomes uniformly bounded for finite 7" if all the Wzl/ ?(0, T)-norms in this inequality are

replaced with the Wzl/ ?(0,T)-norms defined by

HU||/V[721/2(0)T) = ||u||W2l/2(O,T) if A>1/2,

(4.17) 1

T 1/2
1/2 .
el = (Wl * 7o | 1DFTu@Pae) ™ it x<1/2
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(here X is the fractional part of [/2). As a consequence of ([IH]), we have

[v2llgpieaizn gy + IVP2llgvz g + IP2llyierrzo g,
+(p2)i/2,1 /2,60 + ||P2||W2z+5/2,o(GT) +{p2)1/2,5/2,G1

+lpotllyyeerzo gy + {p2edij2,3/2.60 +{Phij25/2.60

4.18
( ) < C(Hfznwzz,z/z(QT) + ||d2 — N(dz . N)||W21+1/2,l/2+1/4(GT)

+lldz - Nllgrerrzo g, +{d2 - N)iy2/2.61

+ [ g2llgpreerzo gy + (92)1/2,3/2,GT)7

where (- );/2,,.G, is the norm in WU2(0,T; W5 (G)). By WZ’ZQ(QT) we mean the space
with the modified norm (2]):

T
2 = NI 312
(4.19) H“H/W;,l/z(QT) —/0 [Ju( 7t)HW2£(Q) dt+/ﬂ||u(x, )||W21/2(0’T) dx.

Clearly, the norms ([.2) and [@I9]) are equivalent.
Now we turn to inequality (LII)). We can set T' = oo in {I1)); it is also possible to
assume that wuy vanishes for ¢ > ty. We use the following inequality (see [I3, Lemma 2]):

> o) < _dh [ 2
(4.20) /0 At <c = [v(t —h) —v(y)|” dt;

which is valid for A € (0,1/2) and for A € (1/2,1), v(0) = 0. It follows that the norm
||U2||WL+2,L/2+1(Q in @I1)) can be replaced with ||us||wit2./241 . The same is true
2 ™) Wy (Qr)

for inequalities ([@6l), (). Consequently, along with (I4]), (LX) we have
(4.21)

Yr(v,p,p) = HUHW\zH?J/?“(QT) + ||VPHﬁ/\2lvl/2(QT) + ||pHW2’;+1/2v°(GT)

+{P)iy2,1/2.60 T HPHWQHS/Z’O(GT) +{P)1/2,5/2.G1
+ ||PtHW2{+3/2‘0(GT) +A{pe)iy2.3/2.00 T {PV1j2.5/2.61

< (12072 * 1 lwie19(@m + 1P liggasirag,,)
o Wgdgassrnzssra gy + - Nl gy + (- Nz o.cr

+ HQHW;H/?,O(GT) +{123/2.00 + ||U0||W2l+1(]:1) + HPO||W21+2(Q))7

[l e g + IVDPllg1 02 g + IPlyier20 Ly + (Phy21/2.62

+ ||P\|W2{+5/2v°(GT) +{p)i/2,5/2,G0 + Hpt||@+3/2~l/2+3/4(GT) +{p)i/2,5/2,61

(4.22) < C(||fHW2lvl/2(QT) + ”fHWQ"“vO(QT) + ||F||/m720=1+l/2(QT)
+ ||Hgd||W21+1/2,l/2+1/4(GT) + ||d . N||W21+1/2,0(GT) + (d . N>Z/2,1/2,GT

Tl gllgpirorzzrara gy + vollwier ) + ||Po\|W2{+2(g)),

where the constants are independent of T.
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85. ON THE FREE BOUNDARY PROBLEM

Theorem 1.1 provides an analytical basis for the proof of the solvability of the free
boundary problem governing the motion of an isolated liquid mass:

v+ (v-V)v — vV + Vp =0,

V-v=0, x€Q, t>0,
(5.1) T(v,p)n(z) = cHn(z),

Vio=v-n, xely

v(x,0) = vo(z), x € .

Unknown are the domain €; with the boundary I'; for ¢t > 0, v(x,t), and p(z,t), z € ;.
The domain 2 is given. By n we mean the outward normal to I'y, V,, is the velocity of
the evolution of I'; in the normal direction and H is the doubled mean curvature of T';.

We assume that T'g is close to a smooth closed surface G of arbitrary shape, so that
T’y can be regarded as a normal perturbation of G:

Lo={z=y+N(y)po(y), y € G},

where N (y) is the outward unit normal to G and py is a given small function. We denote
by F the domain bounded by G. Also, we assume that, at least for small ¢, I'; is close to
G, too, and can be given by the equation = = y + N(y)p(y,t), y € G, with an unknown
function p(y,t).

As usual, the free boundary problem (B51]) is written as a nonlinear problem in a given
domain, which is achieved by mapping §2; onto this domain. We use the transformation

(5.2) r=y+ N"(y)p*(y) =epy) : F— U,

where p* and N* are extensions of p and N from G to F such that N is a sufficiently
regular vector field and p* is a function with a small C'-norm. This guarantees the
invertibility of e,.

Denoting by £ = L(y, p*) the Jacobi matrix of the transformation z = e,(y), we set
L=det L, L=LL". By li;(y,p*), 1" (y, p*), Lij(y, p*) we denote the entries of £, L7,
L. The transformation (B2) converts the operator V, of the gradient with respect to z
toV=L"TV,V= V. Equations (5.1)) take the form

uy(y,t) — vVu+ Vg = li(u,q,p),

V-u=Iy(u,p), yeF,t>0,

g S(u)N(y) = l3(u, p),

—q+ VN -S(u)N(y) +0Lp=la(u, p) +15(p) + oH(y),
pt+V(y) Vip—u-N(y) =ls(u,p), yeG,

u(y,0) =uo(y), y€F, py0)=p(y), yeg,

(5.3)
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where H is the doubled mean curvature of G, and

Li(u,q,p) = v(V? = VAu+ (V= V)g+ p; (LTN*(y)  V)u— (L 'u- V)u
lo(u,p)=(I —E)V-u:v-(I—E)

L (u, p) = g (g S(u)N(y) — TS (w)n(e, (1)),
(u,p) = V(N - S(u)N —n-S(u)n),

(5.4) S la
! d_ LT (y,sp)N
o) =0 09 e
T
le(u, p) = (m - N+ V7P> u+ (V(y) —u(u,t) - Vep, yeg.

By S we mean the transformed rate-of-strain tensor: S(u) = (Vu) + (Vu)T, IIf =
f —n(n- f). The normals n(e,) and N are related by the formula

LTN

IZ'N|

The expression £p = —Agp + (H? — 2K)p is computed as the first variation of
H—H=-Vs n(x)lz=, + Vy - N(y)

n(ep(y)) =

with respect to p.

Theorem 5.1. If ug € WiTH(F), po € WE(G), and the compatibility and smallness

conditions V - ug = 0, IIS(ug)n = 0, t = 0, HPOHW”S/?(Q) < e < 1 are satisfied, then
2

problem ([B.3) has a unique solution with a finite norm ?T(u,q, p) (see [@21)) defined on
a certain (small) time interval (0,T).

The solvability of problem (B3] can be established by the method of successive ap-
proximations, in accordance with the usual pattern:
Wmt1,4 (Y, t) — I/V2um+1 + Vgm+1 = b (Wm, Gy pm),
V- Umt1 = lo(Wm,y pm), y € F,t >0,
HgS(um+1)N = l3(umu pm)7
= qmt1 + VN - S(Um 1) N(Y) + 0Loms1 = la(tm, pm) + I5(pm) + oH(y),
Pm+1,t + V() Vipmir — Umi1 - N(y) = ls(wm, pm), ¥ €G,
Um41(y,0) =wo(y), y €F, pmi1(y,0) =poy), y€G,

m =1,2,.... As the first approximation, we take the functions (w1, p1) satisfying the
conditions w1 (y,0) = uwo(y), p1(y,0) = po(y), and we set g3 = 0. We require that

(5.5)

ot ygonar2e g < elltollyger ey

(5.6)

2l+3/2,l/2+3/4(GT) S CHPOHWQHQ(Q)'

lolygeoraog

Then the compatibility conditions (1.3) in the linear problems (B.5]) are satisfied for all
m > 1. Moreover, estimates of nonlinear terms (we omit them) enable us to show, by
using Theorem 2.1, that

3
Yo (Ui 1y Gt Prg1) < 0 Z Vi (W @y pm)
(5.7) =
+ (lnollwgrm 4 Iolwiry + lolhyzsacr + 1Py ).

where §; is a number depending on T" and |[po||}y1+5/2 -, and going to zero as T' and the
2

(F)
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WQHS/ ?(F)-norm of py tend to zero. If 6, is sufficiently small, then inequalities (5.7) guar-
antee a uniform estimate for Y7 (um+1, Gm+1, Pm+1). The convergence of (W, @m, Pm)
to the solution of ([Z2)) is proved by similar arguments.

Estimates (5.7)) hold true if the vector field V' (z) is chosen properly. In accordance
with our calculations, it should belong to WQHB/ 2 (G) and satisfy the condition

53) sup V(@) = ol + [V = ol o) < 02 < 1.
The proof of Theorem 5.1 is given in [14].
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