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ZETA-FUNCTIONS OF HARMONIC THETA-SERIES

AND PRIME NUMBERS

A. ANDRIANOV

Abstract. The problem of finding Euler product expansions is treated for zeta-
functions of modular forms in one variable that are presented by harmonic theta-
series. On the basis of the author’s formulas obtained earlier for the action of the
Hecke operators on harmonic theta-functions, Euler product expansions are obtained
for eigenfunctions of Hecke operators. For the theta-series of quadratic forms pro-
portional to the sum of two squares, the eigenfunctions of Hecke operators are con-
structed and the associated Euler expansions are calculated.

§1. Prime numbers and theta-series

Concerning rational prime numbers in various arithmetical sequences, it may be noted
that no essential progress has been achieved for more than century and a half, since the
famous Dirichlet theorem on prime numbers in arithmetic progressions (1837). Still
absolutely mystical is the question about prime numbers in quadratic sequences, i.e.,
about prime numbers of the form an2 + bn + c, where a, b, c are rational coprime
integers, and d = b2 − 4ac is not a rational square. The situation has not been changing
despite considerable progress of the algebro-analytic theory of integral quadratic forms
after Dirichlet. Our purpose here is to draw the attention of number theorists to some
analytic aspects of the theory of quadratic forms possibly related to the problem.

In order to be more specific, we start with the celebrated problem on prime numbers
of the form 1+n2. It is well known that this problem is closely related to reduction over
prime modules of certain elliptic curves with complex multiplications by Gauss integers
a+

√
−1b, say, of the curve

(1.1) y2 = x(x2 − 1).

Indeed, in accordance with a formula of D. S. Gorshkov (see [9, Chapter V, Question 8c]),
the decomposition of a prime number p of the form 4k + 1 into a sum of two squares of
integers can be written with help of the Legendre symbol as

p =

(
1

2

p−1∑
x=0

(
x(x2 − 1)

p

))2

+

(
1

2

p−1∑
x=0

(
x(x2 − b)

p

))2

,

where b is a quadratic nonresidue modulo p. It is easily seen that the first square in this
decomposition is odd, while the second is even. Hence, a prime p ≡ 1 (mod 4) has the
form 1 + n2 if and only if

(1.2)
1

2

p−1∑
x=0

(
x(x2 − 1)

p

)
= ±1.
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It is well known (see, e.g., [10]) that the points of the projective closure of the affine
elliptic curve (1.1) rational over the field of p elements form a finite Abelian group of the
order

Np = p+ 1 +

p−1∑
x=0

(
x(x2 − 1)

p

)
,

and so p has the form 1 + n2 if and only if Np = p+ 1± 2. Unfortunately, for the time
being the details of the behavior of the numbers Np for different primes p is an open
question, and there is no much hope to approach the problem from this side.

By the way, the criterion (1.2) can be reformulated quite elementarily in terms of
simple congruences modulo p for appropriate factorials: the well-known properties of the
Legendre symbol imply that

p−1∑
x=0

(
x(x2 − 1)

p

)
≡

p−1∑
x=0

(
x(x2 − 1)

) p−1
2 ≡

p−1∑
x=1

x
p−1
2 (x2 − 1)

p−1
2 ≡ −

(
p−1
2

p−1
4

)
(mod p),

so that the criterion (1.2) is equivalent to the congruence

−1

2

(
p−1
2

p−1
4

)
= −1

2

(
p−1
2

)
![(

p−1
4

)
!
]2 ≡ ±1 (mod p),

which can be written in the form

(1.3) 4

[(
p− 1

4

)
!

]4
≡ −1 (mod p).

This looks nice, but seems to be out of use for the problem of primes in the sequence
1 + n2, like the Wilson theorem does not help to prove that there are infinitely many
primes.

Fortunately, our problem is closely related not only to reduction of elliptic curves
modulo prime numbers or to congruences for factorials, but also to such a powerful tool
for the study of quadratic forms as modular forms for subgroups of the modular group
Γ = SL2(Z). Consider the function defined on the upper half-plane of the complex
variable

(1.4) H = {z = x+ iy ∈ C | y > 0} (i =
√
−1)

by a harmonic theta-series of the quadratic form q = 8(x2
1 + x2

2) (of the level l = 32)
(see §2):

(1.5)

F (z) = 4
∑

n1, n2∈Z

(
n2 +

1

4

)
eπiz 16((n1+

1
4 )

2+(n2+
1
4 )

2)

=
∑

m1, m2∈Z,
m1≡m2≡1 (mod 4)

m2e
πiz(m2

1+m2
2) =

∞∑
n=1

c(n)e2πizn,

where

(1.6) c(n) =
∑

m1,m2∈Z, m2
1+m2

2=2n,
m1≡m2≡1 (mod 4)

m2

are the Fourier coefficients of F . Clearly, these coefficients satisfy the relations c(1) = 1,
and c(n) = 0 unless n ≡ 1 (mod 4). In particular, c(p) = 0 if p is a prime number of
the form 4k+ 3, but if p is a prime number of the form 4k+ 1 and (a1, a2) is one of the
integral solutions of the equation x2

1 + x2
2 = p, then all integral solutions of the equation

are (±a1, ±a2) or (±a2, ±a1); hence, all integral solutions of the equation y21 + y22 = 2p
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are (±(a1−a2), ±(a1+a2)) or (±(a1+a2), ±(a1−a2)). Since, clearly, it can be assumed
that a1 ≡ 1 (mod 4) and a2 is even, from (1.6) it follows that

c(p) =

{
(a1 + a2) + (a1 − a2) = 2a1 if a2 ≡ 0 (mod 4),

(−a1 + a2) + (−a1 − a2) = −2a1 if a2 ≡ 2 (mod 4).

In any case, a prime number p of the form 4k + 1 has the form 1 + n2 if and only if

(1.7) c(p) = ±2.

The series (1.5) converges absolutely on H and uniformly on compact subsets of H.
Consequently, this series determines a holomorphic function on H. It is known that the
function F is a modular (cusp) form of weight 2 for the congruence subgroup

Γ0(32) =

{(
α β
γ δ

)
∈ SL2(Z) | γ ≡ 0 (mod 32)

}

of the modular group Γ = SL2(Z) (see, e.g., [7] or [6, Theorem 20]).
The problem about prime numbers satisfying condition (1.7) looks largely like the

problem about prime numbers p with a given value χ(p) of a Dirichlet character χ, and
the latter is closely related to the question concerning prime numbers in arithmetic pro-
gressions. In the same way as the problem on the values of characters at prime numbers
cannot be approached in terms of an individual character but requires all characters of
a given module, the problem of separating the prime numbers p with given value of the
coefficient c(p) should perhaps be considered in a wider context of similar problems for
other harmonic theta-series. In this paper we start to move in this direction.

Note, by the way, that the problem about prime numbers of the form 1+n2 is closely
related to the problem of twins in the ring O = Z[i] of Gauss integers, because if a prime
p has the form 1+n2, then the numbers in− 1 and in+1 = (in− 1)+2 are prime twins
in the ring O, although, obviously, this ring contains no rational prime twins. Possibly,
this hints that the classical problem of prime twins for the ring of rational integers has
also a quadratic nature.

Contents of the paper. In §2 we recall the basic definitions and facts about harmonic
theta-functions together with their zeta-functions. In §3 we consider the action of Hecke
operators on theta-functions. §4 is devoted to the action of (hereditary) Hecke operators
on theta-series and the deduction of the corresponding Euler products. In §5 we analyze
an example of harmonic theta-series and zeta-functions for multiples of the sum of two
squares.

Notation. As usual, we fix the letters N, Z, Q, R, and C for the set of positive rational
integers, the ring of rational integers, the field of rational numbers, the field of real
numbers, and the field of complex numbers, respectively.

Am
n denotes the set of all (m×n)-matrices with elements in A. If A is a ring with the

identity element, 1n = 1 and 0n = 0 denote the identity element and the zero element
of An

n, respectively. The transpose of a matrix M is always denoted by tM . For two
matrices A and B of appropriate size we write

A[B] = tBAB.

§2. Zeta-functions of harmonic theta-functions

In this section, we recall the definitions of the harmonic theta-functions and the cor-
responding zeta-functions.
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Let

q(X) =
∑

1≤α≤β≤m

qαβxαxβ =
1

2
tXQX =

1

2
Q[X]

(
tX = (x1, . . . , xm)

)
be a real positive definite quadratic form in m variables with the matrix

Q = Q(q) = (qαβ) +
t(qαβ).

Since the form q is real and positive definite, there exists is a real matrix S such that
Q(q) = tSS. A homogeneous polynomial of degree g in x1, . . . , xm of the form

P (X) = PQ(X) = P0(SX),

where P0 = P0(X) is a homogeneous polynomial of degree g in x1, . . . , xm satisfying the
Laplace equation ∑

1≤α≤m

∂2P0(X)

(∂xα)2
= 0,

is called a harmonic polynomial of degree g with respect to the form q. The definition can
easily be reformulated as follows: a homogeneous polynomial P of degree g in x1, . . . , xm

is harmonic with respect to the form q with matrixQ if it satisfies the differential equation∑
1≤α,β≤m

(Q−1)αβ
∂2P (X)

∂xα∂xβ
= 0.

It can be verified that a polynomial of the form

(2.1) P (X) = (tΩQX)g,

where Ω ∈ Cm is an isotropic vector of the form q with the matrix Q, i.e., a complex
m-vector satisfying

q(Ω) =
1

2
tΩQΩ = 0,

is a harmonic polynomial of order g with respect to q, and each harmonic polynomial of
order g with respect to q is a finite sum of such polynomials.

For a real positive definite quadratic form q in m variables with matrix Q and a
harmonic polynomial P of order g with respect to q, the theta-function of q (of genus
one) with harmonic polynomial P and parameters (U, V ), where U = t(u1, . . . , um), V =
t(v1, . . . , vm) ∈ Cm, is defined by the series

(2.2) ΘP (z;Q, (U, V )) =
∑

N∈Zm

P (N − V ) eπi(z Q[N−V ]+2·tUQN−tUQV ),

where z = x+ iy ∈ H. This series converges absolutely for z in the upper half-plane and
converges uniformly in each half-plane {z ∈ C | Im z ≥ ε} with ε > 0.

In accordance with a specialization of the general inversion formula, see [2, Lemma 5.1],
the theta-function (2.2) satisfies the following inversion formula:

(2.3) ΘP (−1/z; Q, (V,−U)) =
im/2

√
detQ

(−z)
m
2 +gΘP ∗(z; Q−1, Q(U, V )),

where

P ∗(X) = P (Q−1X)

is a harmonic polynomial of degree g with respect to the form q∗ and with matrix Q−1.
In order to define the zeta-function associated with the harmonic theta-function (2.2),

we use the Euler integral∫ ∞

0

ys−1e−αydy = Γ(s)α−s (α > 0, Re s > 0),
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where Γ(s) is the gamma-function. For Re s > m
2 we obtain∫ ∞

0

ys+g/2−1
(
ΘP (iy; Q, (U, V ))− eπi

tUQV ρ(V, g)
)
dy

=
∑

N∈Zm, N �=V

P (N − V ) e2πi
tUQN−πitUQV

∫ ∞

0

ys+g/2−1e−πyQ[N−V ]dy

= (2π)−(s+g/2)Γ(s+ g/2) e−πitUQV
∑

N∈Zm, N �=V

e2πi
tUQN P (N − V )

q(N − V )s+g/2
,

where

ρ(V, g) =

{
0 if V /∈ Zm or V ∈ Zm and g > 0,

P (0) if V ∈ Zm and g = 0,

and q is the quadratic form (2.1). The function

(2.4) ζP (s; Q, (U, V )) =
∑

N∈Zm, N �=V

e2πi
tUQN P (N − V )

q(N − V )s+g/2

is called the (Epstein) zeta-function of q with harmonic polynomial P and parameters
(U, V ). The zeta function converges absolutely for Re s > m/2 and converges uniformly
in every half-plane Re s > m/2 + ε with ε > 0. Thus, the zeta-function is an analytic
function for Re s > m/2.

The study of analytic continuation and the functional equation for the zeta-function
is based on Riemann’s method of deducing the analytic properties of zeta-functions from
the integral representation and the theta-inversion formula (2.3). After standard consid-
erations, this leads to the following theorem (see, e.g., Siegel’s Tata lectures [8, Chapter I,
§5]).

Theorem 1. The zeta-function ζP (s; Q, (U, V )) of a real positive definite quadratic form
q in m variables with a harmonic polynomial P of degree g and parameters (U, V ) admits
an analytic extension to the whole s-plane, which is an entire function of s if either g > 0
or g = 0 and the vector QU is not integral. If g = 0 and QU is integral, then the zeta-
function is meromorphic in the entire s-plane with the only singularity at s = m/2 where
it has a simple pole with residue (2π)m/2/

√
detQΓ(m/2). In all cases ζP (s; Q, (U, V ))

satisfies the functional equation

(2π)−sΓ(s+ g/2) e−πitUQV ζP (s; Q, (U, V ))

=
ig√
detQ

(2π)s−m/2Γ((m+ g)/2− s) eπi
tUQV ζP ∗

(
m/2− s; Q−1, (−QV,QU)

)
,

where P ∗(X) = P (Q−1X).

§3. Hecke operators

Starting with this section, we assume that a positive definite quadratic form q in m
variables is integral, i.e., it has rational integral coefficients, in which case the matrix Q of
q is even, i.e., has integral coefficients and even coefficients on the principal diagonal. The
smallest number l ∈ N such that the matrix lQ−1 is even is called the level of the form q.
As a particular case of [2, Theorems 4.2–4.3], we obtain the following transformation
formulas for the theta-function (2.2) of an integral positive definite quadratic form of
level l: for each matrix

σ =

(
α β
γ δ

)
∈ Γ0(l) =

{(
α β
γ δ

)
∈ SL2(Z)

∣∣∣ γ ≡ 0 (mod l)

}
,
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the theta-function satisfies the functional equation

(3.1) ΘP

(αz + β

γz + δ
; Q, (U, V )tσ

)
= μq(σ)(γz + δ)

m
2 +gΘP (z; Q, (U, V )),

where μq(σ) is an 8th root of unity, which is equal to 1 if l = 1, but if l > 1 and m is
even, then

μq(σ) = μq

((
α β
γ δ

))
= χq(δ),

with the character χq of the quadratic form q , i.e., a real Dirichlet character modulo l
satisfying the conditions

χq(−1) = (−1)m/2,

χq(p) =

(
(−1)m/2 detQ

p

)
(the Legendre symbol)

if p is an odd prime not dividing l, and

χq(2) = 2−m/2
∑

R∈Zm/2Zm

eπiQ[R]/2

if l is odd.
In order to approach the natural question on Euler product factorization for zeta

functions, we recall the basic definitions and the simplest properties of the (regular)
Hecke–Shimura rings and Hecke operators for the groups Γ0(l) that appeared above as
transformation groups of theta-functions. We follow the general pattern of the theory of
Hecke operators on modular forms (see, e.g., [1, Chapter 4], or [3, §2]) in the particular
case of the genus n equal to 1.

We denote by
H0(l) = H(Γ0(l), Σ0(l))

the Hecke–Shimura ring of the semigroup

Σ0(l) =

{
M =

(
a b
c d

)
∈ Z2

2

∣∣∣ detM > 0, gcd(detM, l) = 1, c ≡ 0 (mod l)

}
relative to the group Γ0(l) (over C). The ring H0(l) consists of all formal finite linear
combinations with complex coefficients of the symbols τ (M), which are in one-to-one
correspondence with the double cosets Γ0(l)MΓ0(l) ⊂ Σ0(l). It is convenient to write
each of the symbols τ (M), called also the double cosets, as the formal sum of the different
left cosets it contains (more precisely, of the corresponding symbols),

(3.2) τ (M) =
∑

M ′∈Γ0(l)\Γ0(l)M Γ0(l)

(Γ0(l)M
′) (M ∈ Σ0(l)).

Then each element T ∈ H0(l) can also be written as a formal finite linear combination
of different left cosets,

(3.3) T =
∑
α

cα(Γ0(l)Mα) (cα ∈ C).

These linear combinations can be characterized by the condition of invariance with re-
spect to right multiplication by all elements of Γ0(l):

Tσ =
∑
α

cα(Γ0(l)Mασ) = T for all σ ∈ Γ0(l).

In this notation, the product in H0(l) can be defined by

TT ′ =
∑
α

cα(Γ0(l)Mα)
∑
β

c′β(Γ0(l)M
′
β) =

∑
α,β

cαc
′
β(Γ0(l)MαM

′
β).
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The ring H0(l) is a commutative C-algebra generated over C by a countable set of
algebraically independent elements. As a set of algebraically independent generators we
can take, for example, the double cosets of the form

(3.4) T (p) = τ

((
1 0
0 p

))
, [p] = τ

((
p 0
0 p

))
,

where p runs over all prime numbers not dividing l (see, e.g., [1, Theorem 3.3.23]).
In order to define the Hecke operators on theta-functions, we introduce certain linear

spaces containing theta-functions. Let Fm denote the space of all complex-valued real-
analytic functions

F = F (z; (U, V )) : H× Cm × Cm → C,

where H is the upper half-plane of the complex variable z. For a fixed integral positive
definite quadratic form q in an even number m of variables with matrix Q and a harmonic
polynomial P with respect to q, we define an action of the semigroup Σ0(l) on the spaces
Fm by the Petersson operators

(3.5) Σ0(l) � M : F = F (z; (U, V )) 	→ F |jM = jQ,P (M, z)−1F (M〈z〉; (U, V )tM),

where

(3.6) j = jQ,P

((
a b
c d

)
, z

)
= χq(d)(cz + d)

m
2 +g,

χq is character of the quadratic form q, g is degree of P , and

M〈z〉 =
(
a b
c d

)
〈z〉 = az + b

cz + d
.

It is clear that the function cz + d does not vanish on Σ0(l) × H, so that the same is

true for each of the functions jQ,P (M, z). If the matrices M =
(
a b
c d

)
and M1 =

(
a1 b1
c1 d1

)
belong to Σ0(l) and M ′ =

(
a′ b′

c′ d′

)
= MM1, then an easy and direct computation shows

that

(c ·M1〈z〉+ d)(c1z + d1) = c′z + d′ (z ∈ H),

and

χq(d
′) = χq(cb1 + dd1) = χq(dd1) = χq(d)χq(d1),

because c ≡ 0 (mod l). These formulas imply that the functions jQ,P (M, z) satisfy the
automorphic factors relations, i.e.,

jQ,P (M, M1〈z〉)jQ,P (M1, z) = jQ,P (MM1, z) for all M,M1 ∈ Σ0(l), z ∈ H.

Therefore, the Petersson operators map the space Fm into itself and satisfy the rule

F |jM |jM1 = F |jMM1 (F ∈ Fm, M,M1 ∈ Σ0(l)).

This allows us to define the standard representation T 	→ |jT of the Hecke–Shimura ring
H0(l) = H(Γ0(l), Σ0(l)) on the subspace

(3.7) Fm(Γ0(l)) = {F ∈ Fm | F |jσ = F for all σ ∈ Γ0(l)}
of all Γ0(l)-invariant functions by Hecke operators: the Hecke operator |jT on the space
Fm(Γ0(l)) corresponding to an element of the form (3.3) is defined by

(3.8) F |jT =
∑
α

cαF |jMα (F = F (z; (U, V )) ∈ Fm(Γ0(l))),

where the |jMα are the Petersson operators (3.5) corresponding to j = jQ,P (M, z). The
Hecke operators are independent of the choice of the representatives Mα ∈ Γ0(l)Mα
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and map the space Fm(Γ0(l)) into itself. The definition of multiplication in the Hecke–
Shimura rings and relation (3.6) show that Hecke operators satisfy

|jT |jT ′ = |jTT ′ for all T, T ′ ∈ H0(l).

Hence, the map T 	→ |jT is a linear representation of the ring H0(l) on the space
Fm(Γ0(l)). The Hecke operators (3.8) on the space Fm(Γ0(l)) are called regular Hecke
operators.

The functional equations (3.1) show that the theta-function (2.2) of an integral positive
definite quadratic form q of level l in an even number m of variables with matrix Q and
a harmonic polynomial P of degree g relative to q, viewed as a function of z and U, V ,
belongs to the space Fm(Γ0(l)). Thus, this space contains the images of the theta-function
under the Hecke operators corresponding to the generators (3.2) of the ring H0(l). In
particular, this space contains the images of the theta-function under the action of the
operators |jT (p) with primes p not dividing l, i.e., it contains the functions

ΘP (z; Q, (U, V ))|jT (p) =
∑

M∈Γ0(l)\Γ0(l)
(
1 0
0 p

)
Γ0(l)

jQ,P (M, z)−1ΘP (M〈z〉;Q, (U, V )tM).

Since we can take

Γ0(l) \ Γ0(l)

(
1 0
0 p

)
Γ0(l) =

{(
1 0
0 p

)
,

(
1 1
0 p

)
, . . . ,

(
1 p− 1
0 p

)
,

(
p 0
0 1

)}
,

this image can be written in the form

(3.9)

ΘP (z; Q, (U, V ))|jT (p) = (χq(p)p
k+g)−1

p−1∑
b=0

ΘP

(
z + b

p
; Q (U, V )

(
1 0
b p

))

+ΘP

(
pz; Q, (U, V )

(
p 0
0 1

))

= (χq(p)p
k+g)−1

p−1∑
b=0

ΘP

(
z + b

p
; Q, (U + bV, pV )

)

+ΘP (pz; Q, (pU, V )) .

The following particular case of [4, Theorem 6.3] shows that, in some cases, the images
of the theta-function under the Hecke operators corresponding to T (p) with primes p
can be written as finite linear combinations with constant coefficients of similar theta-
functions.

Theorem 2. Let q be an integral positive definite quadratic form in an even number
m = 2k of variables, let l be the level of q, let χq be the character of q, and let P be a
harmonic polynomial of degree g relative to the form q. Then, for each rational prime
number p not dividing l, the following explicit formulas are valid for the action of the
Hecke operator |jT (p) with automorphic factor j = jQ,P of the form (3.5) on the theta-
function (2.2) of genus 1 with the harmonic coefficient form P and arbitrary parameters
U, V : if χq(p) = 1, then

(3.10) ΘP (z; Q, (U, V ))|jT (p) =
ξ(m)

pk−1

∑
D∈A(Q, p)/Λm

ΘP |p−1D(z; p−1Q[D], pD−1(U, V )),
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where

ξ(m) =

{
1 if k = 1,∏k−1

α=1(1 + pα−1) if k > 1,

A(Q,μ) =
{
D ∈ Zm

m

∣∣ μ−1Q[D] is even and detμ−1Q[D] = detQ
}

is the set of all automorphs of Q with multiplier μ, Λm = GLm(Z), and

(P |p−1D)(X) = P (p−1DX),

but if χQ(p) = −1 and k = 1, then

(3.11) ΘP (z; Q, (U, V ))|jT (p) = 0.

The obvious relations

ΘP |Λ(z; Q[Λ], Λ−1(U, V )) = ΘP (z; Q, (U, V )) for each Λ ∈ Λm = GLm(Z),

where (P |Λ)(X) = P (ΛX), imply that the sum on the right in (3.10) does not depend
on a particular choice of the representatives D ∈ A(Q, p)/Λm.

Generally speaking, the set A(Q,μ) can be empty, but it is not empty when μ = p is
a prime number satisfying χq(p) = 1. Clearly, A(Q,μ)Λm = A(Q,μ), so that the group
Λm operates on each of the sets A(Q,μ) by right multiplication. Since all automorphs
of A(Q,μ) are integral matrices of fixed determinants ±μm/2, it follows that each set of
right classes of automorphs A(Q,μ)/Λm modulo Λm is always finite.

Standard applications of Hecke operators to Euler factorization of zeta functions of
modular forms are based on consideration of common eigenfunctions of the operators.
Although Theorem 2 shows that some images of theta-functions under Hecke operators
are linear combinations of theta-functions, it gives no direct way to build eigenfunctions
from linear combinations of theta-functions. A possible approach can be found in the
replacement of the theta-functions with variable parameters U, V by the corresponding
theta-series obtained by suitable numerical specializations of the parameters. A version
of such a specialization will be discussed in the next section.

§4. Action of hereditary Hecke operators on theta-series,

and Euler products

Here we consider the action of the regular Hecke–Shimura rings H0(l) by Hecke op-
erators on theta-functions (2.3) with the specialized parameters (U, V ), i.e., on the cor-
responding theta-series. The resulting hereditary Hecke operators, inherited from the
operators (3.8) acting on theta-functions with variable parameters, are in general dif-
ferent from the standard Hecke operators on theta-series viewed only as functions in z
ranging in the upper half-plane, because these theta-series may fail to be invariant with
respect to the group the form Γ0(l). The Hecke operator inherited from an operator |jT
will be denoted below by |∗j T .

In §2 we saw that the zeta functions of harmonic theta-functions have good analytic
properties. In order to consider another essential feature of arithmetical zeta functions,
the Euler product factorization, we follow the classical approach to this problem, initiated
by E. Hecke in [5] and based on consideration of eigenfunctions of Hecke operators acting
on modular forms. In order to apply Hecke theory, first we need to pass from theta-
functions, which are not modular forms, to suitable modular forms.

Starting with the theta-function (2.2) of an integral positive definite quadratic forms
q in an even number m = 2k of variables of level l with an even matrix Q and with
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harmonic polynomials P of degree g relative to q, we shall specialize the parameters of
the theta-function to be rational columns of the form

(4.1) U = 0, V = l−1L with L ∈ Zm satisfying the congruence QL ≡ 0 (mod l).

Then the theta-function turns into the theta-series

(4.2) ΘP (z; Q|L) = ΘP (z; Q, (0, l−1L)) =
∑

N∈Zm

P (N − l−1L) eπiz Q[N−l−1L]

with the Fourier expansion

(4.3) ΘP (z; Q|L) =
∞∑

n=0

rQ,P (n, L) e
2πizn

l ,

where

(4.4) rQ,P (n, L) =
∑

M∈Zm,M≡L (mod l)
Q[M ]=2ln

l−gP (M)

are the Fourier coefficients. Note that the theta-series (1.5) mentioned in §1 is propor-
tional to the series (4.2) with q = 8(x2

1 + x2
2), Q = ( 16 0

0 16 ), l = 32, L =
(−8
−8

)
, and

P (( x1
x2

)) = x2.
By formula (3.9) we obtain the following formulas for the action on the theta-series

(4.2) of the (hereditary) Hecke operators |∗j T (p) with primes p not dividing the level l
of q:

(4.5)

ΘP (z; Q|L)|∗j T (p)

=
1

χq(p)pk+g

p−1∑
b=0

ΘP

(
z + b

p
;Q, (l−1bL, l−1pL)

)
+ΘP

(
pz; Q, (0, l−1L)

)

=
1

χq(p)pk+g

∑
N∈Zm

P (N − l−1pL)

p−1∑
b=0

eπi(
z+b
p Q[N−l−1pL]+2l−1btLQN−l−2bpQ[L])

+
∑

N∈Zm

P (N − l−1L) eπipzQ[N−l−1L]

=
p

χq(p)pk+g

∑
N∈Zm,q(N)≡0 (mod p)

P (N − l−1pL) e
πiz
p Q[N−l−1pL]

+
∑

N∈Zm

P (N − l−1L) eπipzQ[N−l−1L].

Indeed the readily verified identity

z + b

p
Q[N − l−1pL] + 2l−1btLQN − l−2bpQ[L]

=
z

p
Q[N − l−1pL] +

b

p
Q[N − l−1pL] + 2l−1btLQN − l−2bpQ[L]

=
z

p
Q[N − l−1pL] +

b

p
Q[N ] =

z

p
Q[N − l−1pL] +

2b

p
q(N)

shows that
p−1∑
b=0

eπi(
z+b
p Q[N−l−1pL]+2l−1btLQN−l−2bpQ[L])

= e
πiz
p Q[N−l−1pL]

p−1∑
b=0

e
2πib q(N)

p = e
2πiz

p Q[N−l−1pL] ×
{
p if p | q(N),

0 if p � q(N).
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Writing the series (4.5) as a Fourier series, in the notation (4.4) we get the formula

(4.6) ΘP (z; Q|L)|∗j T (p) =
∞∑

n=0

(
1

χq(p)pk−1+g
rQ,P (np, pL) + rQ,P (n/p, L)

)
e

2πizn
l ,

where the second term in the parenthesis is present only if p divides n.
Now we consider a linear combination of the theta-series (4.2) written in the form

(4.3) with constant coefficients Φ(L) depending on L modulo l, i.e., the function

(4.7)

F = ΘΦ, P (z; Q) =
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(L)ΘP (z; Q|L)

=
∞∑

n=0

⎛
⎜⎜⎝ ∑

L∈Zm/l Zm,
QL≡0 (mod l)

Φ(L) rQ,P (n, L)

⎞
⎟⎟⎠ e

2πizn
l

with the Fourier coefficients

(4.8) rQ,P (n, Φ) =
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(L) rQ,P (n, L) =
∑

M∈Zm, Q[M ]=2nl
QM≡0 (mod h)

l−gΦ(M)P (M).

Using (4.6), we obtain

(4.9)

F |∗j T (p) = ΘΦ, P (z; Q)|∗j T (p) =
∑

L∈Zm/l Zm,
QL≡0 (mod l)

Φ(L)ΘP (z; Q|L)|∗j T (p)

=
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(L)

∞∑
n=0

(
1

χq(p)pk−1+g
rQ,P (np, pL) + rQ,P (n/p, L)

)
e

2πizn
l

=
1

χq(p)pk−1+g

∞∑
n=0

∑
L∈Zm/lZm,

QL≡0 (mod l)

Φ(L)rQ,P (np, pL)e
2πizn

l

+

∞∑
n=0

rQ,P (n/p, Φ)e
2πizn

l .

In order to reshape the first sum to a convenient form, now we assume that the coefficient
function Φ satisfies a homogeneity condition of the form

(4.10) Φ(aL) = φ(a)Φ(L) for all a ∈ Z with gcd(a, l) = 1,

with a function φ : Z/lZ → C. If Φ is not identically zero, it is easily seen that the
function φ must satisfy the conditions

(4.11) φ(1) = 1, φ(ab) = φ(a)φ(b) if a and b are prime to l;

in particular, the value φ(a), where a is prime to l, must be a root of unity.
Returning to (4.9), we observe that if Φ satisfies condition (4.10), then, since p does

not divide l, we can replace the sum over L by the sum over p′L with p′ satisfying
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p′p ≡ 1 (mod l), obtaining∑
L∈Zm/l Zm,

QL≡0 (mod l)

Φ(L)rQ,P (np, pL) =
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(p′L)rQ,P (np, p
′pL)

= φ(p′)
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(L)rQ,P (np, L) = sφ(p)rQ,P (np, Φ),

because the number φ(p′) = φ(p)−1 = sφ(p) is complex conjugate to φ(p). Substituting
the last expression in (4.9), finally we get the formula

(4.12)

F |∗j T (p) = ΘΦ, P (z; Q)|∗j T (p)

=

∞∑
n=0

(
sφ(p)

χq(p)pk−1+g
rQ,P (np, Φ) + rQ,P (n/p, Φ)

)
e

2πizn
l .

Suppose now that the function F = ΘΦ, P (z; Q) of the form (4.7) is an eigenfunc-
tion for the operator |∗j T (p) with the eigenvalue λF (p). Then, by (4.12), the Fourier

coefficients (4.8) of F satisfy the relations

(4.13) λFΦ
(p) rQ,P (n, Φ) =

sφ(p)

χq(p)pk−1+g
rQ,P (np, Φ) + rQ,P (n/p, Φ),

provided that the function Φ satisfies condition (4.10).
Relations (4.13) with numbers n �= 0 differing by powers of a fixed prime p can be

viewed as recurrence relations; they can be used for summing formal power series of the
form

Rp, n(t) =

∞∑
δ=0

rQ,P (p
δn, Φ) tδ.

Suppose that n is not divisible by p; then by (4.12) we have

λF (p)Rp, n(t) =
sφ(p)

χq(p)pk−1+g

∞∑
δ=0

rQ,P (p
δ+1n, Φ)tδ +

∞∑
δ=1

rQ,P

(
pδ−1n, Φ

)
tδ

=
sφ(p)

χq(p)pk−1+gt
(Rp, n(t)− rQ,P (n, Φ)) + tRp, n(t),

whence

(4.14)
Rp, n(t) =

∞∑
δ=0

rQ,P (p
δn, Φ) tδ

=
(
1− pk−1+gχq(p)φ(p)λF (p)t+ pk−1+gχq(p)φ(p)t

2
)−1

rQ,P (n, Φ).

These summation formulas will be used below for Euler product factorization of the zeta-
functions corresponding to the eigenfunctions of Hecke operators on spaces spanned by
theta-series (4.2).

We recall that the zeta-function (2.4) of the theta-series (4.2) is defined by the Dirichlet
series

(4.15) ζP (s; Q|L) =
∑

N∈Zm, N �=l−1L

P (N − l−1L)

q(N − l−1L)s+
g
2

=

∞∑
n=1

rQ,P (n, L)

(n/l)s+
g
2

,
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where the rQ,P (n, L) are the Fourier coefficients (4.4) of the theta-series. Hence, the
zeta-function of the linear combination (4.7) has the form

(4.16) ζ(s, F ) =
∑

L∈Zm/lZm,
QL≡0 (mod l)

Φ(L)ζP (s; Q|L) =
∞∑

n=1

ls+
g
2 rQ,P (n, Φ)

ns+ g
2

,

where the rQ,P (n, Φ) are the Fourier coefficients (4.8) of F . This zeta-function together
with the zeta-functions (4.15) converges absolutely for Re s > k = m/2, and uniformly
in every half-plane Re s > k + ε with ε > 0. Thus, ζ(s, F ) is an analytic function for
Re s > k.

Suppose that the function F is an eigenfunction for the operator |∗j T (p) with the

eigenvalue λF (p), where p is a prime number not dividing l. Then, using identity (4.14),
we can factor the function ζ(s, F ) in the half-plane Re s > k as follows:

ζ(s, F ) =
∞∑
δ=0

∑
n≥1, n�≡0 (mod p)

ls+
g
2 rQ,P (p

δn, Φ)

(pδn)s+
g
2

=

(
1− pk−1+ g

2χq(p)φ(p)λF (p)

ps
+

pk−1χq(p)φ(p)

p2s

)−1 ∑
n�≡0 (mod p)

ls+
g
2 rQ,P (n, Φ)

ns+ g
2

.

Assuming that F is an eigenfunction for all operators |∗j T (p) with prime p not dividing l
and applying the last relation to each of the primes, we arrive at the following statement.

Theorem 3. Suppose that a linear combination F (like in (4.7)) of theta-series for an
integral positive definite quadratic form q of level l in an even number m = 2k of variables
with a harmonic polynomial P of degree g, where the coefficients Φ satisfy condition
(4.10), is a common eigenfunction of the (hereditary) Hecke operators |∗j T (p) for all

prime numbers p not dividing l with eigenvalues λF (p). Then the zeta function ζ(s, F )
of F admits factorization into an Euler product convergent absolutely and uniformly in
every half-plane Re s > k + ε with ε > 0; this Euler product looks like this:
(4.17)

ζ(s, F ) =
∞∑

n=1

ls+
g
2 rQ,P (n, Φ)

ns+ g
2

=
∏

p∈P, p�l

(
1− pk−1+ g

2χq(p)φ(p)λF (p)

ps
+

pk−1χq(p)φ(p)

p2s

)−1 ∑
n|l∞

ls+
g
2 rQ,P (n; Φ)

ns+ g
2

,

where P is the set of all positive rational prime numbers, and the notation n|l∞ means
that n divides a power of l, i.e., each prime divisor of n divides l.

§5. Eigenfunctions for theta-series of multiples

of the sum of two squares

In accordance with Theorem 3, for applications of Hecke operators to Euler factor-
izations of the zeta-functions of theta-series one needs to build common eigenfunction of
the operators and find the corresponding eigenvalues. In the case of theta-series of one
variable, so far the only way to approach this problem is to use explicit formulas, like
formulas of Theorem 2, which express the images of the theta-series under the Hecke
operators in terms of similar theta-series. In this section we apply this approach to the
simplest case of harmonic theta-series of binary quadratic forms proportional to the sum
of two squares. The general case of positive definite integral binary forms is a question
for the future.
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Here we consider the action of (hereditary) Hecke operators on the harmonic theta-
series (4.2) of a quadratic form

q(X) = t(x2
1 + x2

2) (t = 1, 2, . . . ) with the matrix Q =

(
2t 0
0 2t

)

of level l = l(Q) = 4t, where a column L ∈ Z2 satisfies QL ≡ 0 (mod l), that is L ≡ 0
(mod 2), so that L = −2T with T ∈ Z/2tZ, and where the harmonic polynomial P is
one of the binomials

P± (X) = ((1,±i)X)g = (x1 ± ix2)
g

(
X =

(
x1

x2

))
.

The character χq of the form q is defined on the prime numbers by the conditions

χq(p) = 0 if p | l and χq(p) = (−1)
p−1
2 otherwise.

Each theta-series of this sort looks like this:

(5.1) ΘP (z; Q| − 2T ) =
∑

N∈Zm

P (N + (2t)−1T )eπiz Q[N+(2t)−1T ].

In the notation and under the assumptions of Theorem 2, for the theta-series (5.1) and a
prime p not dividing the level l = 4t, in the case where χq(p) = 1, i.e., if p ≡ 1 (mod 4),
we have the identity

(5.2) ΘP (z; Q| − 2T )|∗j T (p) =
∑

D∈A(Q, p)/Λ2

ΘP |p−1D(z; p−1Q[D]
∣∣ −2pD−1T ),

and if χq(p) = −1, i.e., p ≡ 3 (mod 4), then

(5.3) ΘP (z; Q| − 2T )|∗j T (p) = 0.

Thus, when looking for eigenfunctions, it suffices to consider only the case where p ≡ 1
(mod 4). Note that in this case each right coset DΛ2 ∈ A(Q, p) contains a representative
D′ with positive determinant, and such a representative is unique up to a right factor
belonging to the modular group Γ = SL2(Z). Then it follows easily that the mapping
DΛ2 	→ D′Γ determines a bijection of the sets of the classes A(Q, p)/Λ2 and A+(Q, p)/Γ,
where A+(Q, μ) = {D ∈ A(Q, μ) | detD > 0} is the set of all proper automorphs of Q
with multiplier μ. Thus, we can rewrite formula (5.2) in the form

(5.4)

ΘP (z; Q| − 2T )|∗j T (p) =
∑

D∈A+(Q, p)/Γ

ΘP |p−1D(z; p−1Q[D]
∣∣ −2pD−1T )

=
∑
N∈Z2

∑
D∈A+(Q, p)/Γ

P (p−1D(N + (2t)−1pD−1T )) eπiz p−1Q[D][N+(2t)−1pD−1T ].

Since p does not divide l, it easily follows that for each D ∈ A+(Q, p) the matrix
p−1Q[D] has the same divisor t as the matrix Q; hence, it is of the form tQ′, where
Q′ is an even primitive matrix of determinant detQ′ = detQ/t2 = 4, which, therefore,
has the form Q′ = tU ( 2 0

0 2 )U with U ∈ Γ (the class number of the sum of two squares
is one). Thus, the representatives D of the classes A+(Q, p)/Γ can be chosen so that
p−1Q[D] = Q and the sum over A+(Q, p)/Γ can be replaced by the sum over the set
R+(Q, pQ)/E+, where

R+(Q, pQ) =
{
D ∈ Z2

2 | detD > 0, Q[D] = pQ
}

is the set of proper representations of pQ by Q, and

E+ = {U ∈ Γ | Q[U ] = Q} =

{(
1 0
0 1

)
,

(
−1 0
0 −1

) (
0 1
−1 0

)
,

(
0 −1
1 0

)}
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is the group of the proper units of Q. Thus, we can rewrite (5.4) as follows:

(5.5)

ΘP (z; Q| − 2T )|∗j T (p)

=
∑
N∈Z2

∑
D∈R+(Q, pQ)/E+

P (p−1D(N + (2t)−1pD−1T )) eπiz Q[N+(2t)−1pD−1T ].

Since p ≡ 1 (mod 4), it is easily seen that the set R+(Q, pQ) can be taken in the form

(5.6) R+(Q, pQ) =

{(
a b
−b a

)
| a, b ∈ Z, a2 + b2 = p

}

and consists of 8 matrices, while a set of representatives R+(Q, pQ)/E+ can be taken,
e.g., in the form

(5.7)
R+(Q, pQ)/E+ =

{(
a b
−b a

)
,

(
a −b
b a

)
| a, b ∈ Z, a2 + b2 = p, 0 < a < b

}
= {D1, D2}

and consists of 2 matrices. Now, consider the action of the operator |∗j T (p) on the linear

combination of theta-series (5.1) with a coefficient function Φ, which we shall write in
the form

(5.8) Φ(T ) = ϕ(t1 + it2) (T =
(
t1
t2

)
∈ T ∈ Z2/2tZ2, t1 + it2 ∈ O = Z[i]/2tO)

with, for example, P (X) = P+(X) = (x1+ix2)
g, i.e., we consider the action of the above

operator on the theta-series

(5.9)

F =
∑

T∈Z2/2tZ2

Φ(T )ΘP (z; Q| − 2T )

=
∑
N∈Z2

∑
T∈Z2/2tZ2

Φ(T )P (N + (2t)−1T )e2πiz Q[N+(2t)−1T ]

= (2t)−g
∑

n1,n2∈Z,
t1,t2∈Z/2tZ

ϕ(t1 + it2)
(
(2tn1 + t1) + i(2tn2 + t2)

)g
e

πiz
2t ((2tn1+t1)

2+(2tn2+t2)
2)

= (2t)−g
∑

m1,m2∈Z

ϕ(m1 + im2)(m1 + im2)
ge

πiz
2t (m2

1+m2
2).

Using formulas (5.5), we obtain
(5.10)

F |∗j T (p) =
( ∑

T∈Z2/2tZ2

Φ(T )ΘP (z; Q| − 2T )

)
|∗j T (p)

=
∑
N∈Z2

∑
D∈R+(Q, pQ)/E+

∑
T∈Z2/2tZ2

Φ(T )P (p−1D(N + (2t)−1pD−1T ))eπiz Q[N+(2t)−1pD−1T ]

=
∑
N∈Z2

∑
D∈R+(Q, pQ)/E+

∑
T∈Z2/2tZ2

Φ(p′DT )P (p−1D(N + (2t)−1T ))eπiz Q[N+(2t)−1T ],

where at the last step we have replaced T by p′DT with an inverse p′ of p modulo 2t.
Using the notation (5.8) for D = D1 =

(
a b
−b a

)
, D2 =

(
a −b
b a

)
in the set of representatives

(5.7), we have

Φ(p′D1T ) = Φ

(
p′
(

a b
−b a

)(
t1
t2

))
= Φ

(
p′
(

at1 + bt2
−bt1 + at2

))
= ϕ(p′(at1 + bt2 + i(−bt1 + at2))) = ϕ(p′(a+ ib)(t1 + it2))
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and

Φ(p′D2T ) = Φ

(
p′
(
a −b
b a

)(
t1
t2

))
= Φ

(
p′
(
at1 − bt2
bt1 + at2

))
= ϕ(p′(at1 − bt2 + i(bt1 + at2))) = ϕ(p′(a− ib)(t1 + it2)).

Now, suppose that the function ϕ is multiplicative, i.e.,

(5.11) ϕ(αβ) = ϕ(α)ϕ(β) (α, β ∈ O/2lO),

in particular, ϕ(1) = 1 if ϕ is not identically zero. Then the above formulas imply the
relations

Φ(p′D1T ) = ϕ(p′(a+ ib)(t1 + it2)) = ϕ(p′(a+ ib))Φ(T )

and

Φ(p′D2T ) = ϕ(p′(a− ib)(t1 + it2)) = ϕ(p′(a− ib))Φ(T ).

On the other hand, for, e.g., the harmonic polynomial P = P+(X) = ((1, i)X)g, we have

P (p−1D1X) =
(
(1, i)p−1D1X

)g
=

(
p−1(a− ib, b+ ia)X

)g
=

(
p−1(a− ib)(1, i)X

)g
=

(
p−1(a− ib)

)g
P (X),

and similarly,

P (p−1D2X) =
(
p−1(a+ ib)

)g
P (X).

Hence, if the coefficient function (5.8) satisfies the multiplicativity condition (5.11), then
formula (5.10) for, say, P = P+ can be rewritten as follows:

(5.12)

F |∗j T (p)

=
∑
N∈Z2

∑
T∈Z2/2tZ2

Φ(p′D1T )P (p−1D1(N + (2t)−1T ))eπiz Q[N+(2t)−1T ]

+
∑
N∈Z2

∑
T∈Z2/2tZ2

Φ(p′D2T )P (p−1D2(N + (2t)−1T ))eπiz Q[N+(2t)−1T ]

=
∑
N∈Z2

∑
T∈Z2/2tZ2

(
ϕ(p′(a+ ib))(p−1(a− ib))g + ϕ(p′(a− ib))(p−1(a+ ib))g

)
×Φ(T )P (N + (2t)−1T ))eπiz Q[N+(2t)−1T ]

=
ϕ(p′)

pg
(ϕ(a+ ib)(a− ib)g + ϕ(a− ib)(a+ ib)g)F = λF (p)F,

i.e., the linear combination F is an eigenfunction of the operator |∗j T (p) with the eigen-
value

(5.13) λF (p) =
ϕ(p′)

pg
(ϕ(a+ ib)(a− ib)g + ϕ(a− ib)(a+ ib)g) .

The above consideration allows us to apply Theorem 3 to the zeta-function

(5.14) ζ(s, F ) =
∑

N∈Z2, T∈Z2/2tZ2,

N+(2t)−1T �=0

Φ(T )P (N + (2t)−1T )

q(N + (2t)−1T )s+
g
2

=
∞∑

n=1

cF (n)

ns+ g
2

of the linear combination (5.9) in the case of harmonic polynomials P = P±, because,
clearly, the coefficient function Φ satisfies condition (4.10), where the function φ : Z/2tZ
is equal to the restriction to Z ⊂ Z[i] of the function ϕ. Then we see that the zeta-function
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(5.14) admits factorization in an Euler product absolutely and uniformly convergent in
every half-plane Re s > 1 + ε with ε > 0; this Euler product looks like this:

(5.15) ζ(s, F ) =
∏

p∈P, p�2t

(
1− p

g
2χq(p)ϕ(p)λF (p)

ps
+

χq(p)ϕ(p)

p2s

)−1 ∑
n|(2t)∞

cF (n)

ns+ g
2

,

where λF (p) is the eigenvalue (5.13) if p ≡ 1 (mod 4), and λF (p) = 0 if p ≡ −1 (mod 4).
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[5] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung.
I, II, Math. Ann. 114 (1937), 1–28, 316–351 (=Math. Werke, Vandenhoeck and Ruprecht, Göttingen,
1959, pp. 644–707). MR1513122; MR 1513142

[6] A. Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York–Amsterdam, 1969.
MR0256993 (41:1648)

[7] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann.
116 (1939), no. 1, 511–523, 780. MR1513241; MR1513260

[8] C. L. Siegel, Lectures on advanced analytic number theory, Tata Inst. Fund. Res. Lectures on Math.,
No. 23, Tata Inst. Fund. Res., Bombay, 1961 (Reissued, 1965). MR0262150 (41:6760)

[9] I. M. Vinogradov, Elements of number theory, GITTL, Moscow–Leningrad, 1952; English transl.,
Dover Publ., Inc., New York, 1954. MR0062138 (15:933e)
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