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FINITE REPRESENTABILITY OF �p-SPACES

IN SYMMETRIC SPACES

S. V. ASTASHKIN

Abstract. For a separable rearrangement invariant space X on the semiaxis, F(X)

is defined to be the set of all p ∈ [1,∞] such that �p is finitely representable in X
in such a way that the standard basis vectors of �p correspond to equimeasurable
mutually disjoint functions. In the paper, a characterization of the set F(X) is
obtained. As a consequence, a version of Krivine’s well-known theorem is proved
for rearrangement invariant spaces. Next, a description of the sets F(X) for certain
Lorentz spaces is found.

§1. Introduction

In 1974, Tsirel′son constructed an example of a Banach space containing no isomorphic
copies of �p, 1 ≤ p < ∞, and c0. Two years later, Krivine proved a theorem that showed
once again the fundamental difference between the properties of infinite-dimensional
subspaces of a Banach space and subspaces of finite (though large) dimension. To state
and discuss it, we introduce some notions.

Definition. Suppose X is a Banach space, 1 ≤ p ≤ ∞, and {zi}∞i=1 is a bounded
sequence in X. The space �p is said to be block finitely representable in {zi}∞i=1 if for
every n ∈ N and ε > 0 there exist 0 = p0 < p1 < · · · < pn and αi ∈ C such that the
vectors uk =

∑pk

i=pk−1+1 αizi (k = 1, 2, . . . , n) satisfy the inequality

(1 + ε)−1‖(ak)nk=1‖p ≤
∥∥∥∥

n∑
k=1

akuk

∥∥∥∥
X

≤ (1 + ε)‖(ak)nk=1‖p

for arbitrary a1, a2, . . . , an ∈ C. Here, as usual,

‖(ak)nk=1‖p :=

( n∑
k=1

|ak|p
)1/p

if p < ∞, and ‖(ak)nk=1‖∞ := max
k=1,2,...,n

|ak|.

Definition. Let X be a Banach space, and let 1 ≤ p ≤ ∞. The space �p is said to be
finitely representable in X if for every n ∈ N and ε > 0 there exist x1, x2, . . . , xn ∈ X
such that

(1.1) (1 + ε)−1‖(ak)nk=1‖p ≤
∥∥∥∥

n∑
k=1

akxk

∥∥∥∥
X

≤ (1 + ε)‖(ak)nk=1‖p

for arbitrary a1, a2, . . . , an ∈ C.

By the celebrated Dvoretzky theorem (see [2] or [3, Theorem 5.8]), �2 is finitely rep-
resentable in an arbitrary infinite-dimensional Banach space X. Clearly, if �p is block
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finitely representable in some sequence {zi}∞i=1 ⊂ X, then �p is finitely representable inX.
Therefore, the following statement proved by Krivine in [4] is an important supplement
to the Dvoretzky theorem.

Theorem 1 (see [5, Theorem 11.3.9]). Let {zi}∞i=1 be an arbitrary normalized sequence
in a Banach space X such that the vectors zi do not form a relatively compact set. Then
�p is block finitely representable in {zi}∞i=1 for some p, 1 ≤ p ≤ ∞.

Undoubtedly, this statement is a central result in the geometric theory of Banach
spaces. It has numerous applications (see, e.g., [5] and [3]). In this connection, it is
natural to look for a description of all p ∈ [1,∞] such that �p is finitely representable in
a given Banach space. It has turned out that the (Rademacher) type and cotype of the
space play an important role here. Denote by rn : [0, 1] → R (n ∈ N) the Rademacher
functions, i.e., rn(t) = sign(sin 2nπt). A Banach spaceX is said to have type p, 1 ≤ p ≤ 2,
if there exists a constant K > 0 such that for every n ∈ N and arbitrary x1, . . . , xn we
have ∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥ dt ≤ K

( n∑
k=1

‖xk‖p
)1/p

.

A Banach space X is said to have cotype q ≥ 2 if there is a constant K > 0 such that
for every n ∈ N and arbitrary x1, . . . , xn we have( n∑

k=1

‖xk‖q
)1/q

≤ K

∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥ dt.
If q = ∞, the left-hand side of the last inequality must be replaced by max1≤k≤n ‖xk‖.
The space X is said to have trivial type (trivial cotype) if X only has type 1 (only has
infinite cotype). Detailed information about these notions can be found in [6] and [7].
We introduce the notation

pX := sup{p ∈ [1, 2] : X has type p}
and

qX := inf{q ∈ [2,∞] : X is of cotype q}.
It can easily be checked that if �p is finitely representable in a Banach space X, then
p ∈ [pX , qX ]. Moreover, Maurey and Pisier proved the following refinement of Theorem 1
(see [8]).

Theorem 2 (Maurey–Pisier). For every infinite-dimensional Banach spaceX, the spaces
�pX

and �qX are finitely representable in X.

Suppose now that a Banach space X is endowed with a partial order making X a Ba-
nach lattice. If �p is finitely representable in X and, moreover, the images x1, x2, . . . , xn

in X of the basis vectors of �p can be chosen mutually disjoint, we say that �p is lattice
finitely representable in the Banach lattice X. In this case, the role of the type and
cotype is played by the upper and lower estimates for the lattice.

We recall that a Banach lattice X admits an upper p-estimate if there exists a constant
M such that for every n ∈ N and arbitrary mutually disjoint vectors x1, . . . , xn ∈ X we
have ∥∥∥∥

n∑
k=1

xk

∥∥∥∥ ≤ M

( n∑
k=1

‖xk‖p
)1/p

(p < ∞)

and ∥∥∥∥
n∑

k=1

xk

∥∥∥∥ ≤ M max
1≤k≤n

‖xk‖ (p = ∞).
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A Banach lattice X is said to admit a lower q-estimate if there exists a constant M > 0
such that for every n ∈ N and arbitrary mutually disjoint vectors x1, . . . , xn ∈ X we have

( n∑
k=1

‖xk‖q
)1/q

≤ M
∥∥∥

n∑
k=1

xk

∥∥∥ (q < ∞)

and

max
1≤k≤n

‖xk‖ ≤ M
∥∥∥

n∑
k=1

xk

∥∥∥ (q = ∞).

Let

s(X) := sup{p ≥ 1 : X admits an upper p-estimate}
and

σ(X) := inf{q ≥ 1 : X admits a lower q-estimate}.
If �p is lattice finitely representable in a Banach lattice X, then p ∈ [s(X), σ(X)]. Fur-
thermore, the following lattice version of the Maurey–Pisier and Krivine theorems was
proved in [9].

Theorem 3 (Schep). If X is an infinite-dimensional Banach lattice, then �s(X) and
�σ(X) are finitely representable in X.

In what follows, we shall consider a special class of Banach function lattices, specif-
ically, the symmetric (in other terminology, rearrangement invariant) spaces. See the
next section for the definition. If x(t) is a measurable function on [0, α) (0 < α ≤ ∞),
we denote nx(τ ) := m({s ∈ [0, α) : |x(s)| > τ}). Here and in the sequel m denotes the
Lebesgue measure.

Definition. Let X be a symmetric space on [0,∞). We denote by F(X) the set of
p ∈ [1,∞] with the property that for every n ∈ N and every ε > 0 there exist xk ∈ X
(k = 1, 2, . . . , n) such that supp xi ∩ supp xj = ∅ for (i 
= j), nxk

(τ ) = nx1
(τ ) (k =

1, 2, . . . , n; τ > 0), and for every ak ∈ C we have

(1.2) (1 + ε)−1‖(ak)nk=1‖p ≤
∥∥∥∥

n∑
k=1

akxk

∥∥∥∥
X

≤ (1 + ε)‖(ak)nk=1‖p

(with a natural modification for p = ∞).

If αX and βX are the Boyd indices of a symmetric space X, it can easily be shown
that F(X) ⊂ [1/βX , 1/αX ]. Next, in the monograph [7] the following version of Krivine’s
theorem was stated without proof (see also the remark after Theorem 3.3 in [10]).

Theorem 4 (see [7, Theorem 2.b.6]). If X is an arbitrary symmetric space, then
maxF(X) = 1/αX and minF(X) = 1/βX .

The last theorem and, in general, the structure of F(X) play an important role in
the study of geometric properties of symmetric spaces (see, e.g., [11]) and also in the
study of normal solvability and invertibility of operators between function spaces, which,
in its turn, is important for the theory of functional-differential equations, the theory of
dynamical systems, etc. (see [12] and references therein).

The following notion will be important in what follows.

Definition. Let A : X → X be a bounded linear operator, X being a Banach space
over C. A sequence {un}∞n=1 ⊂ X, ‖un‖ = 1 (n = 1, 2, . . . ) is called an approximate
eigenvector corresponding to an approximate eigenvalue λ ∈ C for A if ‖Aun−λun‖ → 0.
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It can easily be shown (see [3, 12.1]) that every bounded linear operator has at least one
approximate eigenvalue. The main result of this paper is the following characterization
of the set F(X) for an arbitrary separable symmetric space on [0,∞). Theorem 4 will
turn out to be an easy consequence of it.

Theorem 5. Let X be an arbitrary separable symmetric space on [0,∞). Then p ∈
F(X) if and only if λ := 21/p is an approximate eigenvalue for the dilation operator
Tx(t) := x(t/2).

The proof of this theorem is the main topic of §3 (in §2 we introduce the necessary
definitions and notation). As a consequence, we shall prove Theorem 4 (we remind the
reader that it was stated without proof in [7]). In the second part of the paper (§5),
we describe F(X) completely in the case where X is a Lorentz space. It will be shown
that, depending on the function that generates this space, either F(X) is the entire
interval [1/βX , 1/αX ] or F(X) is the union of two intervals. In the proof, the results of
[13] are used substantially; that paper contains a thorough description of the image of
Sλ = S−λI (S is the shift operator, I is the identity, and λ ∈ C) in a weighted �p-space.
This description is presented in detail in §4. Finally, §6 contains examples and remarks.

§2. Definitions and notation

A Banach space (X, ‖ · ‖X ) of complex-valued and Lebesgue measurable functions on
the interval [0, α) (0 < α ≤ ∞) is said to be symmetric (or rearrangement invariant)
if, whenever y ∈ X and x∗(t) ≤ y∗(t) (t ∈ [0, α)), we have x ∈ X and ‖x‖

X
≤ ‖y‖

X
.

Here and below, x∗(t) is the right continuous nondecreasing rearrangement of |x(s)|, i.e.,
x∗(t) = inf{τ ≥ 0 : nx(τ ) ≤ t} (t > 0).

A symmetric space (s.s. for short) X is said to be maximal (or to have the Fatou
property) if the conditions {fn}∞n=1 ⊆ X, fn → f a.e. on [0, α) and supn ‖fn‖X

< ∞
imply f ∈ X and ‖f‖

X
≤ lim infn→∞ ‖fn‖X

. As in [7], in what follows we assume that
X is either separable or maximal.

For every s.s. X on [0,∞) we have the following continuous embeddings:

L1 ∩ L∞ ⊆ X ⊆ L1 + L∞.

We denote by X0 the closure of L1 ∩L∞ in X; this set is called the separable part of X.
If X 
= L1 ∩ L∞, then X0 is separable.

Let X be a symmetric space. The function ϕX(t) := ‖χA‖X , where A ⊂ (0,∞),
λ(A) = t, and χA is the characteristic function of A, is called the fundamental function
of X. Another important characteristic of a symmetric space X is its Boyd indices. We
recall their definition in the case of a space on [0,∞). For any τ > 0, the dilation operator
στx(t) := x(t/τ ) is bounded in any s.s. X and ‖στ‖X→X ≤ max(1, τ ) (τ > 0); see [14,
Theorem 2.4.4]. The numbers

αX := lim
τ→0

ln ‖στ‖X→X

ln τ
and βX := lim

τ→∞

ln ‖στ‖X→X

ln τ

are called the Boyd indices of X; we always have 0 ≤ αX ≤ βX ≤ 1.
The dilation function of a positive function ψ(t), t ∈ (0,∞), is defined by the formula

Mψ(s) = sup
t>0

ψ(st)

ψ(t)
, 0 < s < ∞.

Next, the numbers

γψ = lim
s→0+

lnMψ(s)

ln s
and δψ = lim

s→∞

lnMψ(s)

ln s
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are called the lower and the upper dilation indices of ψ(t). If ψ is quasiconcave, that is,
ψ(t) is monotone increasing and ψ(t)/t is monotone decreasing for t > 0, then 0 ≤ γψ ≤
δψ ≤ 1 (see [14, §2.1.2]).

Important examples of symmetric spaces are the Lp-spaces (1 ≤ p ≤ ∞) and their
generalization, the Orlicz spaces. Let Φ be an Orlicz function on [0,∞), i.e., Φ is a convex
continuous monotone increasing function on [0,∞) with Φ(0) = 0 and Φ(∞) = ∞. The
Orlicz space LΦ on the semiaxis consists of all measurable functions f on [0,∞) for
which the norm ‖f‖LΦ

= inf{ρ > 0 :
∫∞
0

Φ(|f(t)|/ρ) dt ≤ 1} is finite.
The Lorentz spaces, considered in the second part of the paper, constitute another

class of symmetric spaces. Let 1 ≤ q < ∞, and let ψ be a positive function on (0,∞)
satisfying the following conditions:

(a) the dilation indices of ψ are nontrivial, i.e., 0 < γψ ≤ δψ < 1;
(b) the function ψ(t)q/t is monotone decreasing.
The Lorentz space Λq(ψ) consists of all functions x(t) measurable on (0,∞) and sat-

isfying

(2.1) ‖x‖Λq(ψ) :=

(∫ ∞

0

x∗(t)qψ(t)q
dt

t

)1/q

< ∞.

This a separable s.s., and it can easily be checked that its Boyd indices coincide with
the corresponding dilation indices for ψ, i.e., αΛq(ψ) = γψ, βΛq(ψ) = δψ. Next, since the
dilation indices are nontrivial, the function ψ is equivalent to its least concave majorant
(see [14, Corolary 2.1.2]) and, consequently, we may assume that ψ is quasiconcave. See
the monographs [7, 14, 15] for more details.

Finally, we present the definitions and notation to be used in the proof of Theorem 5.
Let E be a space of complex sequences in which the standard unit vectors en (n ∈ N)
form a symmetric basis. Throughout, we denote by c0,0 the set of all finitely supported
sequences, i.e., x = (xn)

∞
n=1 ∈ c0,0 if xn = 0 for all sufficiently large n. For arbitrary

x = (xn), y = (yn) ∈ c0,0, we denote by x ⊕ y their disjoint sum. This is an arbitrary
vector in c0,0 whose nonzero coordinates coincide with all nonzero coordinates of x and
y. For instance, if n0 = max{n ∈ N : xn 
= 0}, then for the disjoint sum of x and y we
can take the vector:

x⊕ y =

n0∑
n=1

xnen +
∞∑

n=n0+1

yn−n0
en.

Since the basis {en}∞n=1 is symmetric in E, the norm ‖x ⊕ y‖E does not depend on a
specific choice for x⊕ y.

We say that a vector x is replaceable (ε-replaceable) by a vector y if for arbitrary u,
v ∈ c0,0 we have

‖u⊕ x⊕ v‖E = ‖u⊕ y ⊕ v‖E
(respectively, ∣∣ ‖u⊕ x⊕ v‖E − ‖u⊕ y ⊕ v‖E

∣∣ < ε).

All Banach spaces are assumed to be complex. We write f  g if cf ≤ g ≤ Cf for
some constants c > 0 and C > 0 that do not depend on the values of all (or some) of the
arguments of f and g.

§3. Characterization of F(X) for s.s. on the semiaxis

Proof of Theorem 5. Observe that the operator T is bounded on X and 1 ≤ ‖T‖X→X ≤
2 (see the preceding section).

First, let p ∈ F(X). Then for every n ∈ N there exists a collection {xk}2
n

k=1 of
equimeasurable and mutually disjoint functions (i.e., supp xi∩ supp xj = ∅ for i 
= j and
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nxk
(τ ) = nx1

(τ ) for τ > 0 and k = 1, 2, . . . , 2n) such that

(3.1)
1

2

( 2n∑
k=1

|ak|p
)1/p

≤
∥∥∥∥

2n∑
k=1

akxk

∥∥∥∥
X

≤ 2

( 2n∑
k=1

|ak|p
)1/p

(we assume that p < ∞; the case of p = ∞ is treated similarly). Consider the functions

y0 := x1, ys :=

2s∑
i=2s−1+1

xi (s = 1, 2, . . . , n).

They are also disjoint; moreover,

(3.2) nys
(τ ) = 2s−1ny0

(τ ) (τ > 0), s = 1, 2, . . . , n.

Since X is separable and symmetric, we always can ensure by approximation that
supp y0 = supp x1 ⊂ [0, A] for some A > 0. Putting

z0(t) := y∗0(t), zs(t) := z0
(
21−st−A

)
(s = 1, 2, . . . , n),

we have supp zs ⊂ [2s−1A, 2sA] for s = 1, 2, . . . , n (in particular, the zs are mutually
disjoint). Next, by (3.2), nzs(τ ) = nys

(τ ) = 2s−1ny0
(τ ) (τ > 0). Therefore, since X is

symmetric, we obtain

(3.3)

∥∥∥∥
n∑

s=1

bszs

∥∥∥∥
X

=

∥∥∥∥
n∑

s=1

bsys

∥∥∥∥
X

for arbitrary bs ∈ C. From the definition of the functions ys and relation (3.1), we deduce
that

1

2
2(s−1)/p ≤ ‖ys‖X ≤ 2 · 2(s−1)/p and

1

2
n1/p ≤

∥∥∥∥
n∑

s=1

2(1−s)/pys

∥∥∥∥
X

≤ 2n1/p.

By (3.3), it follows that the functions szs(t) := 2(1−s)/pzs(t) satisfy

(3.4)
1

2
≤ ‖szs‖X ≤ 2 and

1

2
n1/p ≤

∥∥∥∥
n∑

s=1

szs

∥∥∥∥
X

≤ 2n1/p.

Thus, putting

vn(t) := n−1/p
n∑

s=1

szs(t) (n = 1, 2, . . . ),

we have

(3.5)
1

2
≤ ‖vn‖X ≤ 2 (n = 1, 2, . . . ).

Moreover, since szs(t/2) = 21/pszs+1(t) (s = 1, 2, . . . , n− 1) by the definition of szs, we see
that for λ = 21/p the operator Tλ := T − λI (I is the identity) satisfies

Tλvn(t) = n−1/p

( n∑
s=1

szs(t/2)− λ
n∑

s=1

szs(t)

)

= n−1/p

(
21/p

n−1∑
s=1

szs+1(t) + szn(t/2)− 21/p
n∑

s=1

szs(t)

)

= n−1/p
(

szn(t/2)− 21/psz1(t)
)
.

Therefore, taking the first inequality in (3.4) into account, we obtain ‖Tλvn‖X ≤ 8n−1/p,
whence ‖Tλvn‖X → 0 as n → ∞. Putting svn := vn/‖vn‖, by (3.5) we see that also
‖Tλsvn‖X → 0. So, λ = 21/p is an approximate eigenvalue for T .
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Now, we prove the converse. We start with some notation. For n = 0, 1, 2, . . . and
k = 1, 2, . . . , we introduce the intervals Δn

k = [2−n(k − 1), 2−nk) and the functions

fn
k :=

1

ϕX(2−n)
· χΔn

k
, where ϕX(2−n) = ‖χΔn

k
‖X .

Next, let Xn be the linear hull of the sequence {fn
k }∞k=1, and let U denote the linear

mapping of c00 to Xn determined by the condition Uek = fn
k (k = 1, 2, . . . ). Given a

symmetric space X, for n ∈ N we introduce the norm ‖a‖En
:= ‖Ua‖X on c00. The

completion of c00 under this norm is a symmetric sequence space En, and {ek}∞k=1 is a
normalized symmetric basis in it.

We observe that

Tfn
k =

1

ϕX(2−n)
·
(
χΔn

2k−1
+ χΔn

2k

)
= fn

2k−1 + fn
2k

for all n = 0, 1, 2, . . . and k = 1, 2, . . . . Therefore, whenever a =
∑

akek ∈ c00, for every
b ∈ c00 and d ∈ c00 we have

‖b⊕ a⊕ a⊕ d‖En
= ‖Ub⊕ Ua⊕ Ua⊕ Ud‖X
= ‖Ub⊕

∑
ak(f

n
2k−1 + fn

2k)⊕ Ud‖X
= ‖Ub⊕ TUa⊕ Ud‖X ,

(3.6)

because {fn
k }∞k=1 is a symmetric basic sequence in X. Let λ be an approximate eigenvalue

of T , and let {gl}∞l=1 ⊂ X, ‖gl‖ = 1 (l = 1, 2, . . . ), be the corresponding approximate
eigenvector. Since X is separable, there is no loss of generality in assuming that gl ∈ Xnl

for some n1 < n2 < · · · and

‖Tgl − λgl‖X ≤ 1

l
(l = 1, 2, . . . ).

We show that the vector U−1gl ⊕U−1gl is 1/l-replaceable by λU−1gl in Enl
. Indeed, let

b, d ∈ c00. Choosing due representatives for disjoint sums, by (3.6) and the preceding
inequality we obtain∣∣ ‖b⊕ U−1gl ⊕ U−1gl ⊕ d‖Enl

− ‖b⊕ λU−1gl ⊕ d‖Enl

∣∣
=

∣∣‖Ub⊕ Tgl ⊕ Ud‖X − ‖Ub⊕ λgl ⊕ Ud‖X
∣∣

≤ ‖Tgl − λgl‖X ≤ 1

l
.

(3.7)

For every l ∈ N, we introduce a new sequence space Fl, namely, the completion of c00
with respect to the norm

(3.8)

∥∥∥∥
m∑
j=1

ajej

∥∥∥∥
Fl

:= ‖a1U−1gl ⊕ a2U
−1gl ⊕ · · · ⊕ amU−1gl‖Enl

(m ∈ N).

Clearly, the sequence {ek}∞k=1 of unit vectors in Fl is isometric to a sequence of disjoint
functions in Xnl

that are equimeasurable with gl.

We arrange all vectors in c00 with rational coordinates in a sequence (a
(k)
1 , . . . , a

(k)
rk )∞k=1

and construct a decreasing family (lki )
∞
i=1 (k = 1, 2, . . . ) of infinite sequences of natural

numbers such that for every k = 1, 2, . . . the limit

lim
i→∞

∥∥∥∥
∑
j

a
(m)
j ej

∥∥∥∥
F

lk
i

exists for all 1 ≤ m ≤ k. The standard diagonal procedure yields a sequence (ls)
∞
s=1

included in each subsequence (lki )
∞
i=1 up to finitely many terms. The usual arguments
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based on the density of the rationals in the set of reals show that the limit

lim
s→∞

∥∥∥∥
∑
j

ajej

∥∥∥∥
Fls

exists for arbitrary a = (aj) ∈ c00. Therefore, we can introduce a new norm ‖a‖F on c00
which is equal to this limit. We denote by F the completion of c00 in this norm. By the
definition and [5, Lemma 11.1.11], it is clear that for every ε > 0 and m ∈ N there exists
s0 ∈ N such that for all s ≥ s0 and arbitrary aj ∈ C we have

(3.9) (1 + ε)−1

∥∥∥∥
m∑
j=1

ajej

∥∥∥∥
Fls

≤
∥∥∥∥

m∑
j=1

ajej

∥∥∥∥
F

≤ (1 + ε)

∥∥∥∥
m∑
j=1

ajej

∥∥∥∥
Fls

.

We prove that the sum e1 + e2 is replaceable in F by λe1. Indeed, let b, d ∈ c00 be
arbitrary. Relations (3.7) and (3.8) show that∣∣ ‖b⊕ e1 + e2 ⊕ d‖Fls

− ‖b⊕ λe1 ⊕ d‖Fls

∣∣
=

∣∣ ‖b′ ⊕ U−1gl ⊕ U−1gl ⊕ d′‖Enls
− ‖b′ ⊕ λU−1gl ⊕ d′‖Enls

∣∣ ≤ 1

ls

for all s ∈ N. Thus, by (3.9), for every δ > 0 and all s ∈ N sufficiently large, we have∣∣‖b⊕ e1 + e2 ⊕ d‖F − ‖b⊕ λe1 ⊕ d‖F
∣∣

≤
∣∣‖b⊕ e1 + e2 ⊕ d‖Fls

− ‖b⊕ λe1 ⊕ d‖Fls

∣∣+ δ
(
‖b⊕ e1 + e2 ⊕ d‖F + ‖b⊕ λe1 ⊕ d‖F

)
≤ 1

ls
+ δ

(
‖b⊕ e1 + e2 ⊕ d‖F + ‖b⊕ λe1 ⊕ d‖F

)
.

Since the right-hand side in the last inequality can be made arbitrarily small, we see
that

‖u⊕ e1 + e2 ⊕ v‖F = ‖u⊕ λe1 ⊕ v‖F .
Now, if λ = 1, then ‖e1 + e2 + · · · + en‖F = 1 (n ∈ N), and F is isometric to c0.
Furthermore, (3.6), (3.8), and (3.9) show that for arbitrary ε > 0 and n ∈ N there exists
a collection of mutually disjoint and equimeasurable functions w1, w2, . . . , wn in X such
that

(3.10) (1 + ε)−1

∥∥∥∥
n∑

k=1

akek

∥∥∥
F
≤

∥∥∥∥
n∑

k=1

akwk

∥∥∥∥
X

≤ (1 + ε)

∥∥∥∥
n∑

k=1

akek

∥∥∥∥
F

for arbitrary a1, a2, . . . , an ∈ C. Consequently, p = ∞ ∈ F(X).
Assume that 1 < λ ≤ 2, i.e., λ := 21/p with 1 ≤ p < ∞. Then, by Lemmas 11.3.11 and

11.3.12(ii) in [5], there exists a sequence {bn}∞n=1 ⊂ c00 with ‖bn‖F = 1 (n = 1, 2, . . . )
such that the vectors bn ⊕ bn and bn ⊕ bn ⊕ bn are 1/n-replaceable by 21/pbn and 31/pbn,
respectively. Acting in the same way as in the passage from Enl

to F , we obtain a space
G in which e1 + e2 and e1 + e2 + e3 will be replacable by 21/pe1 and 31/pe1, respectively.
But then G is isometric to �p, see [5, Lemma 11.3.11]. As before, for every ε > 0 and
n ∈ N, we can find a collection of mutually disjoint equimeasurable functions in X such
that a formula similar to (3.10) is valid for the unit vectors {ek}nk=1 in G and arbitrary
a1, a2, . . . , an ∈ C. This means that p ∈ F(X), and the theorem is proved. �

A statement similar to the following one (but for the inverse of Tλ) can be found in
[16] (Theorem 3.2).

Proposition 1. Let X be a symmetric space on [0,∞) with Boyd indices αX and βX .
Then the operator Tλ = T − λI (as before, Tx(t) := x(t/2)) is an isomorphism of X for
|λ| 
∈ [2αX , 2βX ].
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Proof. Let |λ| > 2βX . Suppose that the equation Tλx = y or, equivalently,

(3.11) x(t/2)− λx(t) = y(t) (t > 0)

has a solution x = x(t) ∈ X for arbitrary y = y(t) ∈ X. Then

λ−1x(t/22)− x(t/2) = λ−1y(t/2).

Adding the last two identities, we obtain

λ−1x(t/22)− λx(t) = y(t) + λ−1y(t/2),

whence
x(t) = −λ−1

(
y(t) + λ−1y(t/2)

)
+ λ−2x(t/22).

Proceeding in the same way, we arrive at the relation

(3.12) x(t) = −
n∑

k=1

λ−ky(2−k+1t) + λ−nx(2−nt) (t > 0),

which is valid for arbitrary n. Take ε > 0 with 2βX+ε < |λ|. By the definition of the
Boyd indices,

‖στ‖X→X ≤ CτβX+ε (τ ≥ 1);

therefore,
‖x(2−nt)‖X ≤ C2n(βX+ε)‖x‖X .

Consequently,

‖λ−nx(2−nt)‖X ≤ C
(
|λ|−12βX+ε

)n‖x‖X → 0 as n → ∞,

and, by (3.12),

(3.13) x(t) = −
∞∑
k=1

λ−ky(2−k+1t) (t > 0).

Thus, if a solution x ∈ X of equation (3.11) exists, it must have the form (3.13)
(the series on the right in (3.13) converges absolutely because |λ| > 2βX ). On the other
hand, it is straightforward that the function (3.13) is a solution of equation (3.11). To
summarize, this equation has a unique solution x ∈ X for an arbitrary y ∈ X on the
right. Thus, the operator Tλ : X → X is an isomorphism.

The case where |λ| < 2αX is treated similarly. �
We present a consequence of the above statement and Theorem 5.

Corollary 1. The spectrum σ(T ) of T lies inside the annulus {λ ∈ C : |λ| ∈ [2αX , 2βX ]},
and the set F(X) lies inside the interval [1/βX , 1/αX ].

We show that all boundary points of this annulus are approximate eigenvalues for T .

Theorem 6. Let αX and βX be the Boyd indices of a symmetric space X. Then any
λ ∈ C with |λ| = 2βX or |λ| = 2αX is an approximate eigenvalue for T . In particular,
the spectral radius r(T ) is 2βX .

Proof. First, let λ = 2βX . The definition of the Boyd indices (see [14, §§2.1.1 and 2.4.3])
shows that

βX = inf
τ≥1

ln ‖στ‖X→X

ln τ
.

Therefore,

(3.14) ‖Tn‖X→X = ‖σ2n‖X→X ≥ 2nβX (n ∈ N),

and we can argue as in the proof of Theorem 11.3.12 in [5]. We give the details for
completeness.



266 S. V. ASTASHKIN

By (3.14) we have

lim
n→∞

‖(n+ 1)2−nβXTn‖X→X = ∞,

and the uniform boundedness principle implies the existence of f0 ∈ X, ‖f0‖X = 1, such
that

(3.15) lim sup
n→∞

‖(n+ 1)2−nβXTnf0‖X = ∞.

Clearly, the function f0 may be assumed to be nonnegative.
By Corollary 1, the operator T − rI is invertible in X if r > 2βX . Consequently,

(T − rI)−2 can be represented as follows (the series converges):

(T − rI)−2 =
1

r2

∞∑
n=0

(n+ 1)r−nTn.

Since f0 ≥ 0 and T ≥ 0, we conclude that

‖(T − rI)−2f0‖X ≥ r−2‖(n+ 1)r−nTnf0‖X
for every r > 2βX and every n ∈ N. By (3.15),

lim
r→2βX

‖(T − rI)−2f0‖X = ∞.

Therefore, there exists a sequence {rn} with rn → 2βX such that either

lim
n→∞

‖(T − rnI)
−1f0‖X = ∞,

or

lim
n→∞

‖(T − rnI)
−2f0‖X

‖(T − rnI)−1f0‖X
= ∞.

In either case, it is easy to find a sequence {gn}∞n=1 ⊂ X, ‖gn‖X = 1, such that

lim
n→∞

‖(T − rnI)gn‖X = 0.

Surely, this implies that 2βX is an approximate eigenvalue for T .
If λ = 2αX , then, again by [14], we have

αX = sup
0<τ≤1

ln ‖στ‖X→X

ln τ
,

implying that the operator T−1f(t) = f(2t) satisfies

‖(T−1)n‖X→X = ‖σ2−n‖X→X ≥ 2−nαX (n ∈ N).

Arguing as in the preceding case, we deduce that 2−αX is an approximate eigenvalue for
T−1 = σ1/2, i.e.,

lim
n→∞

‖(T−1 − 2−αX I)hn‖X = 0

for some sequence {hn}∞n=1 ⊂ X with ‖hn‖X = 1. Since 1/2 ≤ ‖T−1hn‖X ≤ 1 for all
n ∈ N (see §2), and for gn := T−1hn/‖T−1hn‖ we have

‖(T − 2αX I)gn‖X =
2αX

‖T−1hn‖
‖(T−1 − 2−αX I)hn‖X ,

we see that 2αX is an approximate eigenvalue for T .
Now, let λ ∈ C, and let, for instance, |λ| = 2βX . Then λ = 2βX eiθ for some 0 ≤ θ ≤

2π. If {gn}∞n=1 ⊂ X is an approximate eigenvector corresponding to the approximate
eigenvalue 2βX , then it can easily be checked that the functions fn(t) := t−iθ log2 egn(t)
(n ∈ N) satisfy the formula

(T − λI)fn = eiθ(T − 2βX I)gn.
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Since ‖fn‖X = ‖gn‖X = 1, we see that λ is an approximate eigenvalue for T . The case
where |λ| = 2αX is treated similarly.

Since 2βX is an approximate eigenvalue for T , we have 2βX ∈ σ(T ), and the second
statement of the theorem follows from Corollary 1 and the definition of the spectral
radius. �

We show that, in the case of symmetric spaces on the semiaxis, Theorem 4 is an
immediate consequence of the results obtained (we recall that Theorem 4 was stated in
[7, theorem 2.b.6] without proof).

Proof of Theorem 4. If X is separable, the claim follows from Theorems 5, 6 and Corol-
lary 1. Otherwise, X is maximal. It is easily seen that then ‖στ‖X→X = ‖στ‖X0→X0

for every τ > 0, where X0 is the separable part of X (see § 2). Thus, αX = αX0
and

βX = βX0
. If X 
= L1∩L∞, then X0 is separable and, consequently, maxF(X0) = 1/αX

and minF(X0) = 1/βX . Since X0 is a subspace of X, this implies the claim by Corollary
1. If X = L1 ∩ L∞, the result is obvious. �

Theorems 5 and 6 allow us to completely describe the sets F(X) if X is a Lorentz
space. In doing this, we shall crucially need the results of [13], so first we summarize
them.

§4. The closedness of the operator Sλ in a weighted �q-space

For a numerical sequence μ = (μk)
∞
k=−∞ satisfying the conditions

(4.1) 0 < μk ≤ μk+1 ≤ 2μk (k = 0,±1,±2, . . . ),

we introduce the weighted space �q(μ) with the norm

‖(ak)‖�q(μ) :=
( ∞∑

k=−∞
|ak|qμq

k

)1/q

(1 ≤ q < ∞).

Next, for every λ ∈ C we put Sλ = S − λI, where S(ak) := (ak−1) is the shift operator
and I is the identity. The operator Sλ is linear and bounded on �q(μ).

Basically, the paper [13] is devoted to the real interpolation method for subcouples of
codimension 1 generated by a linear functional bounded on the intersection of the spaces
of the initial couple. As an application, the following problem was resolved completely
in [13]: if the weight sequence μ = (μk)

∞
k=−∞ satisfies (4.1), determine when the range

of Sλ is closed in �q(μ). (In what follows, we say that an operator is closed if its image
is closed.) To state the result, we need some definitions and notation.

Let ψ(t) be a quasiconcave function on (0,∞). We introduce three dilation functions:

M(t) = sup
s>0

ψ(ts)

ψ(s)
, M0(t) = sup

0<s≤min(1,1/t)

ψ(ts)

ψ(s)
, M∞(t) = sup

s≥max(1,1/t)

ψ(ts)

ψ(s)
.

They are submultiplicative on (0,∞) and, consequently, we can introduce the following
six numbers:

α = lim
t→0

log2 M(t)

log2 t
, α0 = lim

t→0

log2 M0(t)

log2 t
, α∞ = lim

t→0

log2 M∞(t)

log2 t
,

β = lim
t→∞

log2 M(t)

log2 t
, β0 = lim

t→∞

log2 M0(t)

log2 t
, β∞ = lim

t→∞

log2 M∞(t)

log2 t
,

which are called the dilation indices for ψ (observe that α and β coincide with α0 and
β0 defined in §2). It is easily seen that 0 ≤ α ≤ α0 ≤ β0 ≤ β ≤ 1 and 0 ≤ α ≤ α∞ ≤
β∞ ≤ β ≤ 1. Moreover, α = min(α0, α∞) and β = max(β0, β∞), see [13, Lemma 1]. Let
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μk := ψ(2k) (k = 0,±1,±2, . . . ). Since ψ is quasiconcave, the numbers μk satisfy (4.1).
Next, the above dilation indices can also be calculated by the following formulas:

α = − lim
n→∞

1

n
log2 sup

k∈Z

μk

μn+k
, β = lim

n→∞

1

n
log2 sup

k∈Z

μk

μk−n
,

α0 = − lim
n→∞

1

n
log2 sup

k≤0

μk−n

μk
, β0 = lim

n→∞

1

n
log2 sup

k≤0

μk

μk−n
,

α∞ = − lim
n→∞

1

n
log2 sup

k≥0

μk

μn+k
, β∞ = lim

n→∞

1

n
log2 sup

k≥0

μk+n

μk
.

Therefore, applying [13, Theorem 5 and Proposition 2], we obtain the following statement
(we formulate it in a slightly more general but equivalent form).

Theorem 7. Suppose λ ∈ C and 1 ≤ q < ∞. Then the operator Sλ is closed in �q(μ) if
and only if

|λ| ∈ [0, 2α) ∪ (2β0 , 2α∞) ∪ (2β∞ , 2α0) ∪ (2β ,∞).

Moreover, if |λ| ∈ [0, 2α) ∪ (2β∞ , 2α0) ∪ (2β,∞), then ImSλ = �q(μ); if |λ| ∈ (2β0 , 2α∞),
then ImSλ is a closed subspace of codimension 1 in �q(μ). The operator Sλ is invertible
if and only if |λ| ∈ [0, 2α) ∪ (2β ,∞). If |λ| ∈ (2β0 , 2α∞), this operator is injective, but if
|λ| ∈ (2β∞ , 2α0), it is not.

It should be noted that a weaker result, involving only four indices, was proved in [17].
In the next section, we shall apply Theorem 7 in order to deduce a similar result for

the dilation operator defined on a Lorentz space.

§5. Description of the set F(X) for Lorentz spaces

Let 1 ≤ q < ∞, ψ a positive function on (0,∞) satisfying conditions (a) and (b) in §2,
and Λq(ψ) the Lorentz space whose norm in defined by (2.1). As has been mentioned, this
is a separable s.s. whose Boyd indices coincide with the corresponding dilation indices
of ψ, i.e., αΛq(ψ) = γψ, βΛq(ψ) = δψ. Moreover, by condition (a), we may assume that ψ
is quasiconcave.

We put Δk := [2k, 2k+1) (k = 0,±1,±2, . . . ) and for an arbitrary sequence a = (ak)
∞
k=1

of complex numbers introduce the function

ha(t) :=

∞∑
k=−∞

akχΔk
(t).

By [18, Proposition 5.1(2)], we have

‖ha‖Λq(ψ) 
( ∞∑

k=−∞
|ak|q

∫
Δk

ψ(t)q
dt

t

)1/q

with constants independent of (ak). Since ψ is quasiconcave, we obtain∫
Δk

ψ(t)q
dt

t
 ψ(2k)q (k = 0,±1,±2, . . . ),

whence

‖ha‖Λq(ψ) 
( ∞∑

k=−∞
|ak|qψ(2k)q

)1/q

with constants depending only on ψ and q. Thus, putting μk = ψ(2k) (k = 0,±1,±2, . . . ),
in the notation of the preceding section we obtain

(5.1) ‖ha‖Λq(ψ)  ‖(ak)‖�q(μ),
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i.e., �q(μ) is isomorphic to the subspace [χΔk
] spanned in Λq(ψ) by the system of the

characteristic functions of dyadic intervals.
As before, let Tx(t) = x(t/2) and Tλ := T − λI (λ ∈ C), where I is the identity

operator on Λq(ψ). We show that Tλ and Sλ = S − λI (see §4) are related in a simple
way. First, for an arbitrary sequence (ak) we have

Tλha(t) =

∞∑
k=−∞

akχΔk
(t/2)− λ

∞∑
k=−∞

akχΔk
(t)

=

∞∑
k=−∞

akχΔk+1
(t)− λ

∞∑
k=−∞

akχΔk
(t)

=
∞∑

k=−∞

(
Sλa

)
k
χΔk

(t).

(5.2)

In particular, by (5.1) it follows that

(5.3) ‖Tλha‖Λq(ψ)  ‖Sλa‖�q(μ).

In the sequel, we shall also need the following statement.

Proposition 2. For arbitrary λ ∈ C, the following assertions are true:
(i) Tλ is injective if and only if Sλ is injective;
(ii) if Tλ is closed, then Sλ is closed;
(iii) if Sλ is injective and closed, then Tλ is closed.

Proof. First, we verify that it suffices to prove the proposition for λ ≥ 0. Indeed, let
λ = |λ| · eiθ, where θ ∈ [0, 2π]. For every x ∈ Λq(ψ), we introduce the function y(t) =
t−iθ log2 e · x(t). Then y ∈ Λq(ψ), ‖y‖Λq(ψ) = ‖x‖Λq(ψ), and

Tλy(t) = t−iθ log2 e2iθ log2 ex(t/2)− t−iθ log2 eλx(t) = t−iθ log2 eeiθT|λ|x(t).

Consequently, ‖Tλy‖Λq(ψ) = ‖T|λ|x‖Λq(ψ), and we see that Tλ is injective (closed) if and
only if T|λ| is injective (closed).

A similar statement is true for Sλ and S|λ|. In this case, if a = (ak) ∈ �q(μ) and

b = (bk), bk := ake
−iθk, again we have b ∈ �q(μ) and ‖b‖�q(μ) = ‖a‖�q(μ). Furthermore,

(Sλb)k = ak−1e
−iθkeiθ − λake

−iθk = e−iθ(k−1)(S|λ|a)k,

whence ‖Sλb‖�q(μ) = ‖S|λ|a‖�q(μ), and the claim follows.

(i) The fact that the injectivity of Tλ implies the injectivity of Sλ is a direct conse-
quence of (5.3). Since T and S are injective, it suffices to prove the converse for λ > 0.

Suppose x ∈ Λq(ψ), x 
= 0, and Tλx = 0. Since |Tλx| ≥
∣∣ |x(t/2)| − λ|x(t)|

∣∣, we may
assume that x(t) is nonnegative. Outside a set of zero measure, we have

(5.4) x(t/2) = λ · x(t)

for t > 0, whence it follows that∫
Δk

x(t) dt =
1

λ

∫
Δk

x(t/2) dt =
2

λ

∫
Δk−1

x(t) dt

or ∫
Δk

x(t) dt =
( 2

λ

)k
∫
Δ0

x(t) dt (k = 0,±1,±2, . . . ).
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Since the space Λq(ψ) is separable, it is an interpolation space with respect to the
couple (L1, L∞) (see [14, the corollary to Theorem 2.4.10]. Therefore, the averaging
operator

(5.5) Qy(t) :=

∞∑
k=−∞

2−k

∫
Δk

y(s) ds · χΔk
(t)

is bounded on Λq(ψ) (see [14, §2.3.2]). Hence, by (5.1), the sequence

a(x) :=
(
2−k

∫
Δk

x(s) ds
)∞

k=−∞

belongs to �q(μ). Thus, by the preceding formula, the sequence a = (ak) with ak :=
λ−k

∫
Δ0

x(s) ds also belongs to this space. At the same time, it is easily seen that

Sλa = 0. Since x ≥ 0 and x 
= 0, by (5.4) we deduce that a 
= 0. Therefore, Sλ is not
injective, and statement (i) is proved.

(ii) If an = (ank )
∞
k=−∞ ∈ �q(μ) (n = 1, 2, . . . ) and Sλa

n → b = (bk) in �q(μ), then,
by (5.3), the functions {Tλhan} form a Cauchy sequence in Λq(ψ). By assumption,
Tλhan → y := Tλx, where x ∈ Λq(ψ). Formula (5.2) shows that y = hb.

Next, arguing in the same way as we did to deduce (5.2), we obtain

(5.6) x(t) = T−1
λ hb(t) =

∞∑
k=−∞

(
S−1
λ b

)
k
χΔk

(t),

where S−1
λ b = (bk+1−λ−1bk)k. Since x ∈ Λq(ψ), relation (5.1) shows that c :=

(
S−1
λ b

)
k
∈

�q(μ). Thus, b = Sλc, i.e., b ∈ ImSλ. Consequently, Sλ is a closed operator.

(iii) Suppose that Tλ is not closed. Then there exists a sequence {xn} ⊂ Λq(ψ) with
the following properties:

(5.7) ‖xn‖Λq(ψ) = 1 (n = 1, 2, . . . ) and ‖Tλxn‖Λq(ψ) → 0.

Since Λq(ψ) is an interpolation space with respect to the couple (L1, L∞), by [14,
Lemma 2.4.6] we obtain

‖Tλxn‖ ≥ ‖x∗
n(t/2)− λx∗

n(t)‖ = ‖Tλx
∗
n‖.

Consequently, we may assume that every function xn satisfies (5.7) and is nonnegative
and monotone nonincreasing. Next, if Q is the averaging operator defined by (5.5), then
for every x ∈ Λq(ψ) we have

QTλx =
∞∑

k=−∞
2−k

∫
Δk

Tλx(s) ds · χΔk

=
∞∑

k=−∞
2−k

(∫
Δk

x(s/2) ds− λ

∫
Δk

x(s) ds

)
· χΔk

=

∞∑
k=−∞

2−k

(
2

∫
Δk−1

x(s) ds− λ

∫
Δk

x(s) ds

)
· χΔk

=

∞∑
k=−∞

(
ak−1(x)− λak(x)

)
· χΔk

=

∞∑
k=−∞

(
Sλa(x)

)
k
· χΔk

,

where, as before, a(x) =
(
2−k

∫
Δk

x(s) ds
)∞
k=−∞. Since

‖Qx‖Λq(ψ) ≤ C‖x‖Λq(ψ)
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for some C > 0, from (5.1) and (5.7) it follows that ‖Sλa(xn)‖�q(μ) → 0 as n → ∞.
Furthermore, the same relation and the monotonicity of xn imply the inequalities

‖a(xn)‖�q(μ) ≥ c

∥∥∥∥
∞∑

k=−∞
2−k

∫
Δk

xn(s) ds · χΔk

∥∥∥∥
Λq(ψ)

≥ c

∥∥∥∥
∞∑

k=−∞
xn(2

k+1) · χΔk

∥∥∥∥
Λq(ψ)

≥ c‖σ1/2xn‖ ≥ c

2
‖xn‖ =

c

2
.

Since, by assumption, Sλ is injective, we see that Sλ is not closed, which contradicts the
assumptions. �

The next statement is a direct consequence of Theorem 7 and Proposition 2.

Corollary 2. Suppose λ ∈ C and 1 ≤ q < ∞. Then Tλ is injective and closed on Λq(ψ)
if and only if

|λ| ∈ [0, 2α) ∪ (2β0 , 2α∞) ∪ (2β,∞).

Moreover, it is invertible on Λq(ψ) if and only if |λ| ∈ [0, 2α) ∪ (2β ,∞).

Now we are in a position to completely describe the set F(X) in the case where X is
a Lorentz space Λq(ψ).

Theorem 8. Let 1 ≤ q < ∞, and let ψ be a positive function on (0,∞) satisfying
conditions (a) and (b) in §2. If α∞ ≤ β0, then F(Λq(ψ)) = [1/β, 1/α]; if α∞ > β0, then
F(Λq(ψ)) = [1/β, 1/α∞] ∪ [1/β0, 1/α].

Proof. First, if p 
∈ [1/β, 1/α], then λ := 21/p 
∈ [2α, 2β ]. By Proposition 1, Tλ is invertible
in this case, so λ is not an approximate eigenvalue of T . Consequently, by Theorem 5,
p 
∈ F(Λq(ψ)), and F(Λq(ψ)) ⊂ [1/β, 1/α].

Suppose that α∞ ≤ β0 and p ∈ [1/β, 1/α]. Then λ = 21/p ∈ [2α, 2β], and, by
Corollary 2, Tλ is either noninjective or nonclosed. In both cases, λ is an approximate
eigenvalue of T . Thus, p ∈ F(Λq(ψ)) by Theorem 5. So, [1/β, 1/α] ⊂ F(Λq(ψ)) in the
case in question.

Now, suppose that α∞ > β0 and p ∈ (1/α∞, 1/β0). Then λ = 21/p ∈ (2β0 , 2α∞) and,
again by Corollary 2, Tλ is closed and injective. Therefore, there exist c > 0 with

‖Tλx‖Λq(ψ) ≥ c‖x‖Λq(ψ) (x ∈ Λq(ψ)).

Consequently, λ is not an approximate eigenvalue for T , and p 
∈ F(Λq(ψ)) by Theorem 5.
�

Remark 1. It can easily be shown (see [13]) that for arbitrary four numbers a, b, c, and
d with 0 < a ≤ min(b, c) ≤ max(b, c) ≤ d < 1 there exists a function ψ quasiconcave
on (0,∞) and such that α(ψ) = a, β0(ψ) = b, α∞(ψ) = c, and β(ψ) = d. Thus,
by Theorem 8, for every 1 ≤ q < ∞ we have F(Λq(ψ)) = [1/d, 1/a] if c ≤ b and
F(Λq(ψ)) = [1/d, 1/c] ∪ [1/b, 1/a] if c > b.

§6. Concluding examples and remarks

Example 1 (see also [9]). For arbitrary 1 < p < r < ∞, consider the quasiconcave
functions ψ1(t) = max

(
t1/p, t1/r

)
and ψ2(t) = min

(
t1/p, t1/r

)
. It is easy to verify that

M(ψi) = ψi (i = 1, 2), M0(ψ1)(t) = M∞(ψ2)(t) = t1/r, and M∞(ψ1)(t) = M0(ψ2)(t) =
t1/p. Therefore, α(ψi) = 1/r, β(ψi) = 1/p (i = 1, 2), α0(ψ1) = β0(ψ1) = α∞(ψ2) =
β∞(ψ2) = 1/r, and α∞(ψ1) = β∞(ψ1) = α0(ψ2) = β0(ψ2) = 1/p. Thus, by Theorem 8,
F(Λq(ψ1)) = {p, r} and F(Λq(ψ2)) = [p, r] for every 1 ≤ q < ∞. Observe that

Λq(ψ1) = Λq(t
1/p) ∩ Λq(t

1/r) and Λq(ψ2) = Λq(t
1/p) + Λq(t

1/r).
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Example 2. Now, let 1 ≤ p < r ≤ ∞, and let X = Lp(0,∞)∩Lr(0,∞), Y = Lp(0,∞)+
Lr(0,∞) with the usual norms:

‖f‖X := max(‖f‖Lp
, ‖f‖Lr

),

|f‖Y = inf{‖g‖Lp
+ ‖h‖Lr

: f = g + h, g ∈ Lp, h ∈ Lr}.

Then ψ1(t) = max
(
t1/p, t1/r

)
and ψ2(t) = min

(
t1/p, t1/r

)
are the fundamental functions

for X and Y , respectively; so, as in the preceding example, we have αX = αY = 1/r and
βX = βY = 1/p. By Proposition 1, Tλ = T −λI is an isomorphism in Ls(0,∞) provided
that λ 
= 21/s. Consequently, for every λ different from 21/p and 21/r there exists c > 0
such that

‖Tλf‖Lp
≥ c‖f‖Lp

(f ∈ Lp) and ‖Tλf‖Lr
≥ c‖f‖Lr

(f ∈ Lr).

Thus, ‖Tλf‖X ≥ c‖f‖X and we see that no such λ is an approximate eigenvalue for T
on X. By Theorem 4 and 5, F(X) = {p, r}.

In order to find F(Y ), we show that Tλ is not injective on Y for 21/r < λ < 21/p.
Indeed, let f0 be an arbitrary positive function belonging to L∞[1, 2]. It can easily be
verified that Tλf = 0 if

f(t) =

∞∑
n=−∞

λ−nf0(2
−nt)χ[2n,2n+1)(t) (t > 0).

Next, by the definition of the norm on a sum of spaces, we have

‖f‖Y ≤
∥∥∥∥

−∞∑
n=0

λ−nf0(2
−nt)χ[2n.2n+1)(t)

∥∥∥∥
Lp

+

∥∥∥∥
∞∑

n=1

λ−nf0(2
−nt)χ[2n.2n+1)(t)

∥∥∥∥
Lr

=

( −∞∑
n=0

λ−np

∫ 2n+1

2n
|f0(2−nt)|p dt

)1/p

+

( ∞∑
n=1

λ−nr

∫ 2n+1

2n
|f0(2−nt)|r dt

)1/r

≤
{( −∞∑

n=0

λ−np2n
)1/p

+

( ∞∑
n=1

λ−nr2n
)1/r}

‖f0‖L∞[1,2]

(we consider the case where r < ∞; for r = ∞ the arguments are similar). Since
21/r < λ < 21/p, the two series on the right in the last inequality converge. Consequently,
f ∈ Y and Tλ is not injective on Y . Thus, an arbitrary λ ∈ (21/r, 21/p) is an eigenvalue
of T . Applying Theorems 5 and 4, we deduce that F(Y ) = [p, r].

Remark 2. If we denote by α, α0, α∞, β, β0, β∞ the dilation indices of the fundamental
function of a symmetric space, then, formally, the results of the preceding example fit
into the pattern of Theorem 8 (though it is not applicable because X and Y are not
Lorentz spaces). It seems quite natural to conjecture that the domain of applicability of
Theorem 8 is wider than the class of Lorentz spaces. In particular, it would be interesting
to prove a similar result for Orlicz spaces on the semiaxis (the spaces of Example 2 belong
to this class). Note that for the Orlicz spaces X = LM [0, 1] on an interval we always
have F(X) = [1/βX , 1/αX ] (see [19, Theorem 4.a.9] and [7, remark on pp. 140–141]).
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