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ASYMPTOTIC SHARPNESS

OF A BERNSTEIN-TYPE INEQUALITY

FOR RATIONAL FUNCTIONS IN H2

R. ZAROUF

Abstract. A Bernstein-type inequality for the standard Hardy space H2 in the unit
disk D = {z ∈ C : |z| < 1} is considered for rational functions in D having at most

n poles all outside of 1
r
D, 0 < r < 1. The asymptotic sharpness is shown as n → ∞

and r → 1.

§1. Introduction

First, we recall the classical Bernstein inequality for polynomials: let Pn denote the
class of all polynomials P =

∑n
k=0 akz

k with complex coefficients, of degree n. Let

‖P‖2 =
1√
2π

(∫
T

|P (ζ)|2 dζ
) 1

2

=

(
n∑

k=0

|ak|2
) 1

2

.

The classical inequality

(1) ‖P ′‖2 ≤ n‖P‖2
is known as Bernstein’s inequality. A great number of refinements and generalizations of
(1) have been obtained. See [RaSc, Part III] for an extensive study of that subject. The
constant n in (1) is obviously sharp (take P = zn).

Now, let σ = {λ1, . . . , λn} be a sequence in the unit disk D; consider the finite Blaschke
product Bσ = Πn

i=1bλi
, where bλ = λ−z

1−sλz
is an elementary Blaschke factor for λ ∈ D.

Also, let KBσ
be the n-dimensional space defined by

KBσ
= Lin(kλi

: i = 1, . . . , n),

where σ is a family of distinct elements of D, and kλ = 1
1−sλz

is the Szegő kernel associated

with λ. An obvious modification allows us to generalize the definition of KBσ
to the case

where the sequence σ admits multiplicities.
Notice that in terms of the scalar product ( · , · )H2 on H2, an equivalent description

of this space looks like this:

KBσ
= (BσH

2)⊥ = H2 �BσH
2,

where H2 stands for the standard Hardy space of the unit disk D,

H2 =

{
f =

∑
k≥0

pf(k)zk : sup
0≤r<1

∫
T

|f(rz)|2 dm(z) < ∞
}
,

m being the normalized Lebesgue measure on T. We notice that the case where λ1 =
λ2 = · · · = λn = 0 gives KBσ

= Pn. Our goal in this paper is to generalize the classical
Bernstein inequality (1) to the spaces KBσ

. Observe that every rational function with
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poles outside of D lies in a space KBσ
. It was already proved in [Z1] that if r = maxj |λj |,

and f ∈ KBσ
, then

(2) ‖f ′‖H2 ≤ 5

2

n

1− r
‖f‖H2 .

In fact, inequality (2) is a partial case (p = 2) of the following Dyakonov’s result [Dya1]
(which, in its turn, is a generalization of Levin’s inequality [L] corresponding to p = ∞):
for every p, 1 < p ≤ ∞ there exists a constant cp > 0 such that

‖f ′‖Hp ≤ cp‖B′‖∞‖f‖Hp

for all f ∈ KB , where B is a finite Blaschke product (of order n) and ‖.‖∞ means the
norm in L∞(T). For our partial case, our proof (in [Z1]) is different and the constant
is slightly better. We note that, in general, Bernstein type inequalities have already
been the subject of a lot of papers. Among others, Chapter 7 of the book [BoEr] by
P. Borwein and T. Erdélyi was devoted to such inequalities. This is also the case for
Baranov’s papers [B1, B2] and [B3], and also for the book [DeLo] by R. A. DeVore and
G. G. Lorentz.

Now a natural question arises: is the constant 5
2

n
1−r in (2) sharp? For r = 0 (the

classical Bernstein case), we know that this is not the case, because constant n is sharp.
Below we show that the growth order n

1−r as n → ∞ and r → 1 is sharp and give loose
bounds for the numerical constants that arise.

§2. The result

Theorem. Let n ≥ 1, let σ = {λ1, . . . , λn} be a sequence in the unit disk D, and let Bσ

be the finite Blaschke product Bσ = Πn
i=1bλi

, where bλ = λ−z
1−sλz

is an elementary Blaschke

factor for λ ∈ D. Let KBσ
be the n-dimensional subspace of H2 defined by

KBσ
= (BσH

2)⊥ = H2 �BσH
2.

Denote by D the operator of differentiation on (KBσ
, ‖.‖2):

D : (KBσ
, ‖.‖2) → (H2, ‖.‖2)

f 
→ f ′,

where ‖f‖2 = ‖f‖H2 = 1√
2π

(∫
T
|f(ζ)|2 dζ

) 1
2 . For r ∈ [0, 1) and n ≥ 1, we set

Cn, r = sup
{
‖D‖KBσ→H2 : 1 ≤ #σ ≤ n, |λ| ≤ r for all λ ∈ σ

}
.

(i) If n = 1 and σ = {λ}, we have

‖D‖KBσ→H2 = |λ|
(

1

1− |λ|2

) 1
2

.

If n ≥ 2, then

a(n, r)
n

1− r
≤ Cn, r ≤ A(n, r)

n

1− r
,

where

a(n, r) ≥ 1

1 + r

(
1 + 5r4 − 4r4

n
−min

(
3

4
,
2

n

)) 1
2

and

A(n, r) ≤ 1 + r +
1√
n
.

(ii) Moreover, the sequence (
1

n
Cn, r

)
n≥1
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is convergent, and

lim
n→∞

1

n
Cn, r =

1 + r

1− r
for all r ∈ [0, 1).

Proof of (i). The case where n = 1. In this case, KB = Ce1, where

e1 =
(1− |λ|2) 1

2

(1− sλz)
, |λ| ≤ r

(e1 being of norm 1 in H2). Calculating

e′1 =
sλ(1− |λ|2) 1

2

(1− sλz)2

and

‖e′1‖H2 = |λ|
(
1− |λ|2

) 1
2

∥∥∥∥ 1

(1− sλz)2

∥∥∥∥
H2

= |λ|(1− |λ|2) 1
2

(∑
k≥0

(k + 1)|λ|2k
) 1

2

= |λ|(1− |λ|2) 1
2

1

(1− |λ|2) = |λ|
(

1

1− |λ|2

) 1
2

,

we get

‖D|KBσ
‖ = |λ|

(
1

1− |λ|2

) 1
2

.

The case where n ≥ 2. From now on, we write ‖ · ‖2 for the H2 norm ‖ · ‖H2 . First,
we prove the left-hand side inequality. Let

en =
(1− r2)

1
2

1− rz
bn−1
r .

Then en ∈ Kbnr and ‖en‖2 = 1 (see [N1, Malmquist–Walsh Lemma, p. 116]). Moreover,

e′n =
r(1− r2)

1
2

(1− rz)2
bn−1
r + (n− 1)

(1− r2)
1
2

1− rz
b′rb

n−2
r

= − r

(1− r2)
1
2

b′rb
n−1
r + (n− 1)

(1− r2)
1
2

1− rz
b′rb

n−2
r ,

because b′r = r2−1
(1−rz)2 . Then

e′n = b′r

[
− r

(1− r2)
1
2

bn−1
r + (n− 1)

(1− r2)
1
2

1− rz
bn−2
r

]
,

and

‖e′n‖22 =
1

2π

∫
T

|b′r(w)| |b′r(w)|
∣∣∣∣ − r

(1− r2)
1
2

(br(w))
n−1

+ (n− 1)
(1− r2)

1
2

1− rw
(br(w))

n−2

∣∣∣∣
2

dm(w)

=
1

2π

∫
T

|b′r(w)| |b′r(w)|
∣∣∣∣ − r

(1− r2)
1
2

br(w) + (n− 1)
(1− r2)

1
2

1− rw

∣∣∣∣
2

dm(w).

Using the variables u = br(w), we obtain

‖e′n‖22 =
1

2π

∫
T

|b′r(br(u))|
∣∣∣∣ − r

(1− r2)
1
2

u+ (n− 1)
(1− r2)

1
2

1− rbr(u)

∣∣∣∣
2

dm(u).



312 R. ZAROUF

But 1− rbr = 1−rz−r(r−z)
1−rz = 1−r2

1−rz and b′r ◦ br = r2−1
(1−rbr)2

= − (1−rz2

1−r2 . This implies

‖e′n‖22 =
1

2π

∫
T

∣∣∣∣ (1− ru)2

1− r2

∣∣∣∣
∣∣∣∣ − r

(1− r2)
1
2

u+ (n− 1)
(1− r2)

1
2

1− r2
(1− ru)

∣∣∣∣
2

dm(u)

=
1

(1− r2)2
1

2π

∫
T

∣∣(1− ru)(−ru+ (n− 1)(1− ru))
∣∣2 dm(u).

Without loss of generality, we can replace r by −r, which gives

‖e′n‖2 =
1

(1− r2)
‖ϕn‖2,

where ϕn = (1 + rz)(rz + (n− 1)(1 + rz)). Expanding, we get

ϕn = (1 + rz)(nrz + (n− 1)) = nrz + (n− 1) + nr2z2 + (n− 1)rz

= (n− 1) + (nr + (n− 1)r)z + nr2z2,

and

‖e′n‖22 =
1

(1− r2)2
((n− 1)2 + (2n− 1)2r2 + n2r4)

=
n2

(1− r2)2

(
1 + 4r2 + r4 − 2

n
− 4r2

n
+

1

n2
+

r2

n2

)

=

(
n

1− r

)2 (
1

1 + r

)2 (
1 + 4r2 + r4 − 2

n
− 4r2

n
+

1 + r2

n2

)

=

(
n

1− r

)2 (
1

1 + r

)2 (
1 + 4r2 + r4 − 5r4 + 5r4 − 4r4

n
+

4r4

n
− 4r2

n
− 2

n
+

1 + r2

n2

)

=

(
n

1− r

)2 (
1

1 + r

)2 (
4r2(1− r2)− 4r2

n
(1− r2) +

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

=

(
n

1− r

)2 (
1

1 + r

)2 (
4r2(1− r2)

(
1− 1

n

)
+

1 + r2

n2
+ 1 + 5r4 − 4r4

n
− 2

n

)

≥
(

n

1− r

)2 (
1

1 + r

)2
{
1 + 5r4 − 4r4

n − 2
n if n > 2,

1
4 + 1 + 5r4 − 4r4

2 − 2
2 if n = 2

≥
(

n

1− r

)2 (
1

1 + r

)2 (
1 + 5r4 − 4r4

n
−min

(
3

4
,
2

n

))
,

and

a(n, r) ≥ 1

1 + r

(
1 + 5r4 − 4r4

n
−min

(
3

4
,
2

n

)) 1
2

,

which completes the proof of the left-hand side inequality.



ASYMPTOTIC SHARPNESS OF A BERNSTEIN-TYPE INEQUALITY 313

We pass to the right-hand side inequality. Let σ be a sequence in D such that 1 ≤
#σ ≤ n, |λ| ≤ r for all λ ∈ σ. Using [Z1, Proposition 4.1], we have

‖D‖KBσ→H2 ≤ 1

1− r
+

1 + r

1− r
(n− 1) +

1

1− r

√
n− 2

=
1

1− r

(
1 + (1 + r)(n− 1) +

√
n− 2

)
=

1

1− r

(
n(1 + r)− r +

√
n− 2

)
=

n

1− r

(
1 + r − r

n
+

√
1

n
− 2

n2

)

≤ n

1− r

(
1 + r +

√
1

n

)
,

which gives the result. �
Proof of (ii). Step 1. First, we prove the right-hand side inequality:

lim sup
n→∞

1

n
Cn, r ≤ 1 + r

1− r
,

which becomes obvious because

‖D‖KBσ→H2 ≤ n

1− r

(
1 + r +

√
1

n

)
.

Step 2. Now we prove the left-hand side inequality:

lim inf
n→∞

1

n
Cn, r ≥ 1 + r

1− r
.

More precisely, we show that

lim inf
n→∞

1

n
‖D‖Kbnr

→H2 ≥ 1 + r

1− r
.

Let f ∈ Kbnr . Then

f ′ = (f, e1)H2

r

(1− rz)
e1 +

n∑
k=2

(k − 1)(f, ek)H2

b′r
br
ek + r

n∑
k=2

(f, ek)H2

1

(1− rz)
ek

= r
n∑

k=1

(f, ek)H2

1

(1− rz)
ek +

1− r2

(1− rz)(z − r)

n∑
k=2

(k − 1)(f, ek)H2ek

=
r(1− r2)

1
2

(1− rz)2

n∑
k=1

(f, ek)H2bk−1
r +

(1− r2)
3
2

(1− rz)2(z − r)

n∑
k=2

(k − 1)(f, ek)H2bk−1
r

= −b′r

[
r

(1− r2)
1
2

n∑
k=1

(f, ek)H2bk−1
r +

(1− r2)
1
2

z − r

n∑
k=2

(k − 1)(f, ek)H2bk−1
r

]
.

Using the change of variables v = br(u), we get

‖f ′‖22=
∫
T

|b′r(u)||b′r(u)|
∣∣∣∣ r

(1− r2)
1
2

n∑
k=1

(f, ek)H2bk−1
r +

(1− r2)
1
2

u− r

n∑
k=2

(k − 1)(f, ek)H2bk−1
r

∣∣∣∣
2

du

=

∫
T

|b′r(br(v))|
∣∣∣∣ r

(1− r2)
1
2

n∑
k=1

(f, ek)H2vk−1+
(1− r2)

1
2

br(v)− r

n∑
k=2

(k − 1)(f, ek)H2vk−1

∣∣∣∣
2

dv.

But

br − r =
r − z − r(1− rz)

1− rz
=

z(r2 − 1)

1− rz
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and

b′r ◦ br =
r2 − 1

(1− rbr)2
= − (1− rz)2

1− r2
,

which gives

‖f ′‖2H2 =
1

1− r2

∫
T

∣∣(1− rv)2
∣∣∣∣∣∣ r

(1− r2)
1
2

n∑
k=1

(f, ek)H2vk−1

+
(1− r2)

1
2

v(r2 − 1)
(1− rv)

n∑
k=2

(k − 1)(f, ek)H2vk−1

∣∣∣∣
2

dv

=
1

(1− r2)2

∫
T

∣∣(1− rv)2
∣∣∣∣∣∣r

n∑
k=1

(f, ek)H2vk−1 − (1− rv)

n∑
k=2

(k − 1)(f, ek)H2vk−2

∣∣∣∣
2

dv

=
1

(1− r2)2

∫
T

∣∣∣∣r(1− rv)

n−1∑
k=0

(f, ek+1)H2vk − (1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∣∣∣∣
2

dv.

But∥∥∥∥r(1− rv)

n−1∑
k=0

(f, ek+1)H2vk
∥∥∥∥
2

≤ r(1 + r)

(
n−1∑
k=0

∣∣(f, ek+1)H2

∣∣2)1/2

≤ r(1 + r)‖f‖2,

and in particular, if ‖f‖2 = o(n) as n → ∞, then

lim
n→∞

1

n

∥∥∥∥r(1− rv)

n−1∑
k=0

(f, ek+1)H2vk
∥∥∥∥
2

= 0.

Now,

(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk = (1− 2rv + r2v2)

n−2∑
k=0

(k + 1)(f, ek+2)H2vk

=

n−2∑
k=0

(k + 1)(f, ek+2)H2vk − 2r

n−2∑
k=0

(k + 1)(f, ek+2)H2vk+1

+ r2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk+2

=
n−2∑
k=0

(k + 1)(f, ek+2)H2vk − 2r
n−1∑
k=1

k(f, ek+1)H2vk + r2
n∑

k=2

(k − 1)(f, ek)H2vk

= (f, e2)H2 + 2(f, e3)H2v

+
n−2∑
k=2

[
(k + 1)(f, ek+2)H2 − 2rk(f, ek+1)H2 + r2(k − 1)(f, ek)H2

]
vk

− 2r
[
(f, e2)H2v + (n− 1)(f, en)H2vn−1

]
+ r2

[
(n− 2)(f, en−1)H2vn−1 + (n− 1)(f, en)H2vn

]
= (f, e2)H2 + 2 [(f, e3)H2 − r(f, e2)H2 ] v

+

n−2∑
k=2

[
(k + 1)(f, ek+2)H2 − 2rk(f, ek+1)H2 + r2(k − 1)(f, ek)H2

]
vk

+
[
r2(n− 2)(f, en−1)H2 − 2r(n− 1)(f, en)H2

]
vn−1 + r2(n− 1)(f, en)H2vn.
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Since

1

n

1

(1− r2)

[∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

+

∥∥∥∥r(1− rv)
n−1∑
k=0

(f, ek+1)H2vk
∥∥∥∥
2

]

≥ 1

n
‖f ′‖H2

≥ 1

n

1

(1− r2)

[∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

−
∥∥∥∥r(1− rv)

n−1∑
k=0

(f, ek+1)H2vk
∥∥∥∥
2

]
,

we see that, if ‖f‖2 = o(n) as n → ∞, then

1

1 + r
lim inf
n→∞

1

n‖f‖2

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

≥ lim inf
n→∞

1− r

n

‖f ′‖2
‖f‖2

≥ 1

1 + r
lim inf
n→∞

1

n‖f‖2

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

.

This gives

lim inf
n→∞

1− r

n

‖f ′‖2
‖f‖2

=
1

1 + r
lim inf
n→∞

1

n‖f‖2

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

.

But∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

=
∣∣(f, e2)H2

∣∣2 + 4
∣∣(f, e3)H2 − r(f, e2)H2

∣∣2
+

∣∣r2(n− 2)(f, en−1)H2 − 2r(n− 1)(f, en)H2

∣∣2 + r4(n− 1)2
∣∣(f, en)H2

∣∣2
+

n−2∑
k=2

∣∣(k + 1)(f, ek+2)H2 − 2rk(f, ek+1)H2 + r2(k − 1)(f, ek)H2

∣∣2.
Now, let s = sn be a sequence of even integers such that

lim
n→∞

sn = ∞ and sn = o(n) as n → ∞.

Consider the following function f in Kbnr :

f = en − en−1 + en−2 − en−3 + · · ·+ (−1)ken−k + · · ·+ en−s − en−s−1 + en−s−2

=
s+2∑
k=0

(−1)ken−k.

With this f , we get∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

=
∣∣r2(n− 2) + 2r(n− 1)

∣∣2 + r4(n− 1)2

+

n−2∑
l=2

∣∣∣(n− l + 1)(f, en−l+2)H2 − 2r(n− l)(f, en−l+1)H2 + r2(n− l − 1)(f, en−l)H2

∣∣∣2,



316 R. ZAROUF

with l = n− k in the last sum. Finally, this gives∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

=
∣∣r2(n− 2) + 2r(n− 1)

∣∣2 + r4(n− 1)2

+

s+1∑
l=2

∣∣(n− l + 1) + 2r(n− l) + r2(n− l − 1)
∣∣2

+
∣∣(n− s− 1) + 2r(n− s− 2)

∣∣2 + ∣∣n− s− 2
∣∣2.

Thus,∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

≥
∣∣r2(n− 2) + 2r(n− 1)

∣∣2 + r4(n− 1)2

+ s
∣∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)

∣∣2
+

∣∣(n− s− 1) + 2r(n− s− 2)
∣∣2 + ∣∣n− s− 2

∣∣2.
In particular,∥∥∥∥(1− rv)2

n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

≥ s
∣∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)

∣∣2.
Now, since

‖f‖22 = s+ 3 = sn + 3,

we get

lim inf
n→∞

1

n2‖f‖22

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

≥ lim inf
n→∞

1

n2‖f‖22
(‖f‖22 − 3)

∣∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣∣2.

Since

lim
n→∞

3

n2s2n

∣∣(n− s) + 2r(n− s− 1) + r2(n− s− 2)
∣∣2 = 0,

we obtain

lim inf
n→∞

1

n2‖f‖22

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

2

≥ lim inf
n→∞

1

n2s2n
s2n

∣∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣∣2

= lim
n→∞

1

n2

∣∣(n− sn) + 2r(n− sn − 1) + r2(n− sn − 2)
∣∣2

= lim
n→∞

1

n2

∣∣n+ 2rn+ r2n
∣∣2 = (1 + r)4.

Now we can conclude that

lim inf
n→∞

1− r

n
‖D‖Kbnr

→H2 ≥ lim inf
n→∞

1− r

n

‖f ′‖2
‖f‖2

=
1

1 + r
lim inf
n→∞

1

n‖f‖2

∥∥∥∥(1− rv)2
n−2∑
k=0

(k + 1)(f, ek+2)H2vk
∥∥∥∥
2

≥ (1 + r)2

1 + r
= 1 + r.
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Step 3. Conclusion. Using Step 1 and Step 2, we get

lim sup
n→∞

1− r

n
Cn, r = lim inf

n→∞

1− r

n
Cn, r = 1 + r,

which means that the sequence
(
1
nCn, r

)
n≥1

is convergent and

lim
n→∞

1

n
Cn, r =

1 + r

1− r
.

�

Comments. (a) Using [BoEr, Theorem 7.1.7, p. 324] (or equivalently, Levin’s inequality
[L]) and complex interpolation, this Bernstein-type inequality can be extended to Hp

spaces, 2 ≤ p ≤ ∞. Of course, this was already known via Dyakonov’s result [Dya1], but
our method could give a better numerical constants cp in the inequality

‖f ′‖Hp ≤ cp‖B′‖∞‖f‖Hp .

The case where 1 ≤ p ≤ 2 can be treated by using a result of Baranov (p = 1, private
communication) and still complex interpolation.

(b) In the same spirit, it is also possible to generalize the above Bernstein-type in-
equality to the same class of rational functions f in D, replacing the Hardy space H2

by the Besov spaces Bs
2, 2, s ∈ R, of all holomorphic functions f =

∑
k≥0

pf(k)zk in D

satisfying

‖f‖Bs
2, 2

:=

(∑
k≥0

(k + 1)2s
∣∣ pf(k)

∣∣2) 1
2

< ∞.

The same spaces are also known as Sobolev, or Hardy weighted spaces, or Dirichlet
weighted spaces. (In particular, the classical Bergman space corresponds to s = − 1

2

and the classical Dirichlet space corresponds to s = 1
2 .) Using the above approach, one

can prove the sharpness of the growth order n
1−r in the corresponding Bernstein-type

inequality

(3) ‖f ′‖Bs
2, 2

≤ cs
n

1− r
‖f‖Bs

2, 2

(at least for integral values of s).
(c) One can also prove the inequality

(4) ‖f‖Bs
2, 2

≤ c′s

(
n

1− r

)s

‖f‖H2

for s ≥ 0 and for the same class of functions (essentially, this inequality can be found in

[Dya2]), and show the sharpness of the growth order
(

n
1−r

)s
(at least for integers s). An

interesting application of this inequality lies in constrained Nevanlinna–Pick interpolation
in weighted Hardy and Bergman spaces, see [Z1] and [Z2] for the details.

Notice that Dyn′kin (for example in [Dyn]), and Pekarskĭı (in [Pe1, Pe2] and [PeSt])
studied Bernstein-type inequalities for rational functions in Besov and Sobolev spaces. In
particular, they applied such inequalities to inverse theorems of rational approximation.
Our approach is different and more constructive. We are able to obtain uniform bounds
depending on the geometry of poles of order n, which allows us to obtain estimates that
are asymptotically sharp.

(d) The above comments can lead to the question what happens if we replace Besov
spaces Bs

2, 2 by other Banach spaces, for example by W , the Wiener algebra of absolutely
convergent Taylor series. In this case, we obtain

(5) ‖f‖W ≤ c(n, r)‖f‖H2
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where c(n, r) ≤ c
(

n2

1−r

) 1
2 and c is a numerical constant. We suspect that

(
n2

1−r

) 1
2 is the

right growth order of c(n, r). An interesting application of this inequality to estimating
the norm of the resolvent of a power-bounded matrix T of size m×n on a Banach space
was given in [Z3]. Inequality (5) above is linked deeply with the inequality

(6) ‖f ′‖H1 ≤ γn‖f‖H∞ ,

through Hardy’s inequality:

‖f‖W ≤ π‖f ′‖H1 + |f(0)|,

for all f ∈ W (see N. Nikolski [N2, p. 370, 8.7.4-(c)]).
Inequality (6) was (shown and) used by LeVeque and Trefethen in [LeTr] with γ = 2,

and later by Spijker in [Sp] with γ = 1 (an improvement) so as to apply it to the Kreiss
Matrix Theorem, which asserts the uniform equivalence over all (n×n) matrices of power
boundedness and a certain resolvent estimate. This allowed them to show that the ratio
of the constants in these two conditions grows linearly with n.
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