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SINGULAR POINTS OF THE SUM

OF A SERIES OF EXPONENTIAL MONOMIALS

ON THE BOUNDARY OF THE CONVERGENCE DOMAIN

O. A. KRIVOSHEYEVA

Abstract. Singular points for the sum of a series of exponential monomials are stud-
ied. The main statement contains results of Hadamard, Fabry, V. Bernstein, Polya,
Carlson and Landau as particular cases. Moreover, a special function is constructed
that has no singular points on the boundary of the convergence domain of its series.
This function generalizes a certain special function in the theory of Dirichlet series
to the case of series of exponential monomials. The existence of this special function
shows the necessity of a condition in the main theorem; in V. Bernstein’s theorem,
a similar role is played by the requirement that the condensation index should be
equal to zero.

§1. Introduction

Let Λ = {λk,mk}∞k=1 be a multiple sequence, where the λk are complex numbers
whose moduli are monotone nondecreasing with k, |λk| → ∞, and the mk are natural
numbers. We consider the series of exponential monomials generated by Λ, i.e., the series
of the form

(1.1)

∞,mk−1∑
k=1,n=0

dk,nz
n exp(λkz).

The distribution of singular points for the sum of this series on the boundary of the
domain of convergence is studied.

Let d = {dk,n}∞,mk−1
k=1,n=0 be a sequence of complex numbers. We denote by gd(z) the

sum of the series (1.1), and by D(Λ, d) the interior of the set of all points z ∈ C at which
the series converges. Generally speaking, the set D(Λ, d) may fail to be convex (see [1])
or even connected (see [2]). But if

m(Λ) = lim sup
k→∞

mk

|λk|
= 0, σ(Λ) = lim sup

j→∞

ln j

ξj
= 0,

where {ξj} is the sequence with monotone nondecreasing moduli formed by the λk in such
a way that each λk occurs precisely mk times, then the Cauchy–Hadamard theorem for
series of exponential monomials (see [2]) shows that D(Λ, d) is a convex domain (which
may be empty) admitting a description in terms of the coefficients {dk,n}. Moreover,
under the same conditions, by the Abel theorem (see [2]) for series of this sort, the
expansion (1.1) converges absolutely and uniformly on every compact subset of D(Λ, d).
In particular, its sum gd(z) is analytic in D(Λ, d).

We shall denote by A(Λ) the set of all coefficient sequences d = {dk,n}∞,mk−1
k=1,n=0 for the

series (1.1) such that the set D(Λ, d) is not empty and the functions gd(z) are analytic
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in D(Λ, d). Let d ∈ A(Λ). A point z ∈ ∂D(Λ, d) is said to be singular for gd(z) if this
function does not admit analytic continuation to any domain containing z and including
D(Λ, d).

The problem of describing the singular points on the boundary of D(Λ, d) counts a
long history. It originates in the investigation (started as early as in the 19th century)
of domains of existence for functions representable by power series. They are a partial
case of the Dirichlet series, specifically, of the series (1.1) with mk ≡ 1 and λk negative.
The substitution w = exp(−z) converts a power series into a Dirichlet series. In 1892,
Hadamard proved that if g is representable by a power series

(1.2) g(w) =

∞∑
n=1

dnw
k(n)

with gaps, k(n + 1) − k(n) ≥ αk(n), where α is a positive number independent of n,
then the boundary of the convergence disk for this series is the natural boundary of the
domain of existence for g, i.e., every point of this boundary is singular for g. In 1896,
Fabry [4] proved (among other things) that Hadamard’s theorem remains true under a
less restrictive condition on the sequence of exponents, namely, under the requirement
that the sequence {k(n)} have zero density:

lim
n→∞

n

k(n)
= 0.

Polya [5, 6] and also Carlson and Landau (see, e.g., [7, Chapter II, §5.2]) extended this
result to the case of Dirichlet series. They showed that if g is representable by a Dirichlet
series

(1.3) g(z) =
∞∑
k=1

dk exp(−λkz)

with a sequence Λ = {λk} of positive exponents that has zero density and satisfies
λk+1−λk ≥ h > 0, k = 1, 2, . . . , then either g(z) is an entire function or the convergence
line (the vertical line that bounds the half-plane of convergence for the Dirichlet series)
is the natural boundary of the domain of existence for g. This result is a partial case of
a more general statement by V. Bernstein, see [8]. He proved that, under the conditions

lim
k→∞

k

λk
= τ, γ(Λ) = lim sup

k→∞

1

λk
ln

∣∣∣∣ 1

L′(λk)

∣∣∣∣ = 0,

where

L(λ) =

∞∏
k=1

(
1− λ2

λ2
k

)
,

every interval of length 2π on the convergence line for the series (1.3) (if this line exists)
contains at least one singular point for g(z). In particular, this implies a refinement of
the Fabry theorem: if the sequence {k(n)} for the series (1.2) has density τ = limn/k(n),
then every closed arc of length 2πτ on the circle of convergence contains at least one sin-
gular point for g(w). It should be noted that Polya had proved V. Bernstein’s statement
prior to him, but under a stronger restriction (compared to γ(Λ) = 0) on the sequence
Λ = {λk}: λk+1 − λk ≥ h > 0, k = 1, 2, . . . . In [9, Chapter II, §3.3] a special function
was constructed which is the sum of a Dirichlet series and, together with γ(Λ) �= 0, has
no singular points on the convergence line. The existence of such a function shows that
the condition γ(Λ) = 0 is necessary in V. Bernstein’s theorem.

Leont′ev [9] generalized the results of Fabry, Polya, and V. Bernstein to the case of
series of exponentials (i.e., series of the form (1.1) with mk ≡ 1) whose sequence of
exponents has zero density. He proved that, under this condition and the supplementary
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condition γ(Λ) = 0, the domain of convergence for the series of exponentials coincides
with the domain of analyticity for the sum of this series. In particular, this implies that
the latter domain is convex.

In connection with the problem under discussion, we mention also the papers [10] by
Ostrowski and [11, 12] by Lunts, which stay somewhat apart. In the first paper, Dirichlet
series were studied whose sequence of exponents has finite upper density:

lim sup
k→∞

k

λk
= α > 0.

A well-known theorem by Ostrowski (see also [20] and [7, Theorem 2.4.7]) says that,
under the condition

(1.4) lim inf
k→∞

(λk+1 − λk) = h,

the function (1.3) has a singular point in every closed disk of radius r(α, h) = πα∗ +
3(3− ln(hα))α and centered at the convergence line. Here α∗ is the averaged upper
density of the sequence {λk} (see [7]); it satisfies the estimates α∗ ≤ α ≤ eα∗. Note
that the definition of the upper density implies the inequality α ≤ 1/h. Under condition
(1.4), the sequence {λk} can be completed up to a sequence with density not exceeding
1/h (see, e.g., [1]). By Polya’s (or Bernstein’s) theorem, the function (1.3) has at least
one singular point on each interval of lengths at least 2π/h on the convergence line. If
the upper density α is not too distant from 1/h, then 2π/h is much smaller than r(α, h).
In this case the Polya theorem yields more than that of Ostrowski. So, in the context of
the problem under study, the results of [10] become substantial only for Dirichlet series
of special type, when the upper density α of the sequence {λk} is much smaller than
1/h. In this case, the exponents of the series must mainly be concentrated in groups
that lie fairly far from one another on the line. In this connection, a natural question
arises about the applicability of Ostrowski’s result to the problem of the distribution of
singular points for the sum of a Dirichlet series on its convergence line.

In the papers by Lunts, more general series of exponentials were treated. He proved
interesting and subtle results about the distribution of singular points on the boundary
of the convergence domain for a series of exponentials. However, the singular points of all
“partial sums” g(z,Γ) of this series were treated rather than those of its sum g(z). The
function g(z,Γ) is the sum of the terms of the series whose exponents lie in the angle Γ.
The set of all singular points of the functions g(z,Γ) (including g(z) = g(z,C)) is much
larger than that of g(z). As an example, consider the series

(1.5)

∞∑
k=1

exp(λkz)

L′(λk)
,

where

L(λ) =
sinλ sin(iλ)

λ2

and Λ = {λk} is the sequence of zeros of L(λ) formed by the points ±πn and ±iπn,
n = 1, 2, . . . , on the real and the imaginary axis. The domain of convergence of the series
(1.5) is the square with vertices at 1 + i, i − 1, 1 − i, −1 − i, but its sum is identically
zero, consequently, has no singular points (see [9, Chapter II, §2.3]). At the same time,
each of the four “partial sums” g(z,Γ) for the series (1.5) that correspond to the λk lying
on a particular coordinate semiaxis, has at least one singular point on the side of the
square that corresponds to this semiaxis. Indeed, let g(z,Γ) be the sum of the Dirichlet
series corresponding to the negative λk. The sequence of exponents for this series has
density τ = 1/π and the distance between neighboring exponents is 1. Then, by Polya’s
theorem cited above, the function g(z,Γ) has at least one singular point on each interval
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of length 2 on the convergence line (the vertical line containing the interval [−1−i, i−1]).
The same is applicable to the remaining three partial sums of the series (1.5).

In this paper, singular points for a general series of the form (1.1) are studied. The
result obtained implies the statements mentioned above except for those in the last three
papers. Moreover, a special function is constructed that has no singularities on the
boundary of the convergence domain for its series. This function is a generalization of
the special function in the theory of Dirichlet series mentioned above to the case of series
of exponential monomials. Its existence proves the necessity of an assumption in the main
theorem (this assumption is similar in nature to the condition γ(Λ) = 0 in Bernstein’s
theorem). In the next to the last section of the paper, a complete answer is given to
the question about conditions that guarantee that the domain of existence for the sum
of the series (1.1) is convex and coincides with the domain where the series converges.
As a consequence, the converse to Fabry’s theorem mentioned above is proved. It is
spectacular that the condition limn→∞ n/k(n) = 0 is not only sufficient but also necessary
for the domain of the sum of an arbitrary series (1.2) to coincide with the convergence
disk for this series. This statement is a particular case of more general results by Fuchs
and Malliavin (see [21]). Finally, in the last section, the question mentioned above about
Ostrowski’s theorem is answered. By an example, we show that, under the assumptions
of that theorem, the distance between singular points of the sum of a Dirichlet series on
its convergence line may even be like O(1/h) (rather than like O(− lnh), as we have for
r(α, h)). This means that, in essence, the Ostrowski theorem is related to singular points
of the sum of a Dirichlet series that lie in a neighborhood of the convergence line rather
than on this line itself. Moreover, the example in question provides a lower estimate for
the size of this neighborhood. It turns out that the upper density α of the sequence {λk}
is responsible for this estimate.

§2. Characteristics of a complex sequence

In this section, we consider some well-known characteristics for the distribution of
points of a complex sequence, and study their interrelations.

As in [13, 14], for a sequence Λ = {λk,mk}∞k=1, we introduce a quantity describing
how densely the points λk are situated. We put

qΛ(z, w, δ) =
∏

λk∈B(w,δ|w|)

(
z − λk

3δ|λk|

)mk

,

qjΛ(z, δ) = qΛ(z, λj , δ)

(
z − λj

3δ|λj |

)−mj

.

Here B(w, r) is the open disk centered at w and of radius r. The modulus of the
function qΛ(z, w, δ) can be interpreted as the measure of concentration of the points
λk ∈ B(w, δ|w|) near z. If the disk B(w, δ|w|) does not contain any λk, we agree that
qΛ(z, w, δ) ≡ 1. It should be noted that, on the disk B(w, δ|w|), the absolute value
of each factor in the definition of qΛ does not exceed the quantity 2(3(1 − δ))−1 (for
δ ∈ (0, 1)), i.e., it is less than or equal to 1 if δ ∈ (0, 1/3). Moreover, if δ1 ≤ δ2 and
B(w1, δ1|w1|) ⊆ B(w2, δ2|w2|), then the number of factors in the definition of qΛ(z, w1, δ1)
does not exceed that in the definition of qΛ(z, w2, δ2). Thus,

|qΛ(z, w1, δ1)| ≥ |qΛ(z, w2, δ2)|, z ∈ C,

if 0 < δ1 ≤ δ2 < 1/3 and B(w1, δ1|w1|) ⊆ B(w2, δ2|w2|). A similar inequality is true for

qjΛ(z, δ) if 0 < δ1 ≤ δ2 < 1/3:

(2.1) |qjΛ(z, δ1)| ≥ |qjΛ(z, δ2)|, z ∈ C.
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We put SΛ = 0 if Λ is finite and

SΛ = lim
δ→0

lim inf
k→∞

ln |qkΛ(λk, δ)|
|λk|

otherwise. This definition is consistent because, by (2.1), the limit as δ → 0 always
exists. By the said above, we have SΛ ≤ 0. The quantity SΛ resembles somewhat the
classical condensation index of Λ, see [7, 15]. As in [14], we introduce also the quantity

MΛ = lim
δ→0

lim sup
k→∞

MΛ(λk, δ)

|λk|
,

where MΛ(w, δ) =
∑

λk∈B(w,δ|w|) mk. We agree that MΛ = 0 if Λ is finite. Clearly,

MΛ ≥ 0 and

(2.2) MΛ(w1, δ1) ≤ MΛ(w2, δ2) if B(w1, δ1|w1|) ⊆ B(w2, δ2|w2|).
This implies that MΛ is well defined. It can easily be observed that m(Λ) ≤ MΛ (the
quantity m(Λ) was defined in the Introduction).

Suppose that the sequence Λ has finite upper density, i.e.,

N(Λ) = lim sup
l→∞

l

|ηl|
< ∞,

where the sequence {ηl} is built of the points {λk} and each λk occurs precisely mk times
in this sequence. This assumption is equivalent (see, e.g., [15]) to the statement that Λ
constitutes part of the zeros of an entire function f of exponential type. In other words,
f vanishes at each λk with multiplicity of at least mk. It is easily seen that MΛ ≤ N(Λ).

We illustrate the quantities introduced above by an example. Put λ2k = k and
λ2k−1 = k − e−εk, k = 1, 2, . . . , where ε > 0. It is easily seen that, in this case,
N(Λ) = 2 and

MΛ ≤ lim
δ→0

lim sup
k→∞

2δ|λk|
|λk|

= 0.

We calculate SΛ. Let δ ∈ (0, 1/3). Then the numbers (z− λk)/3δ|λk| do not exceed 1 in
modulus, so we have

|q2kΛ (λ2k, δ)| ≤
∣∣∣∣
(
λ2k − λ2k−1

3δ|λ2k−1|

)∣∣∣∣ ≤ e−εk

3δ(k − e−εk)
.

Consequently,

SΛ = lim
δ→0

lim inf
l→∞

ln |qlΛ(λl, δ)|
|λl|

≤ lim
δ→0

lim inf
k→∞

k−1 ln

(
e−εk

3δ(k − e−εk)

)
= −ε.

Thus, in this example the quantity SΛ is negative and characterizes the distance
between the neighboring points λ2k and λ2k−1. This distance tends to zero like e−εk,
where −ε ≥ SΛ. The next example shows that the mere convergence to zero for the
distance between neighboring points does not guarantee that SΛ is negative.

This time we take λ2k = k and λ2k−1 = k− e−ε(k)k, k = 1, 2, . . . , where ε(k) → 0 and

e−ε(k)k → 0 as k → ∞ (for instance, we may put ε(k) = 1/
√
k). The quantities N(Λ)

and MΛ are the same as in the preceding example. We find SΛ. We have

ln |q2kΛ (λ2k, δ)| ≥
∑

λl∈B(λ2k,δ|λ2k|)
λl �=λ2k

ln

∣∣∣∣λ2k − λl

3δ|λl|

∣∣∣∣ .
Let δ ∈ (0, 1/3). Then all summands on the right in this inequality are negative. In-
creasing their number will not destroy the inequality. So, if we add (if necessary) the
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summands constructed by the λl that lie in B(λ2k, δ|λ2k|+2) but outside B(λ2k, δ|λ2k|),
we obtain

ln |q2kΛ (λ2k, δ)| ≥
∑

−2r(k)−1≤l≤2r(k)

ln

∣∣∣∣λ2k − λ2k+l

3δ|λ2k+l|

∣∣∣∣ ,
where δ|λ2k|− 1 < r(k) < δ|λ2k|+1. Let e−ε(k)k < 1/2. By the definition of λk, we have
|λ2k −λ2k−1| = e−ε(k)k, |λ2k −λ2k+l| = m if l = 2m, and |λ2k −λ2k+l| ≥ m− 1/2 ≥ m/2
if l = 2m− 1. Consequently,

ln |q2kΛ (λ2k, δ)| ≥ −ε(k)k + ln
(r(k)!)4

4r(k)(3δ((1 + δ)k + 2))4r(k)
.

Here we have also used the estimate |λ2k+l| ≤ (1 + δ)|λ2k| + 2 = (1 + δ)k + 2, which is
valid because all λ2k+l involved belong to the disk B(λ2k, δ|λ2k|+ 2). Since k! ≥ 3−kkk

for all k = 1, 2, . . . , and δ ∈ (0, 1/3), we obtain

ln |q2kΛ (λ2k, δ)| ≥ −ε(k) + 4r(k) ln
r(k)

3
√
2(3δ((1 + δ)k + 2))

≥ −ε(k)k + 4r(k) ln
r(k)

12(k + 1)
.

Since δ|λ2k| − 1 < r(k) < δ|λ2k| + 1, the value of the logarithm on the right in the last
inequality is negative. Therefore,

ln |q2kΛ (λ2k, δ)|
|λ2k|

=
ln |q2kΛ (λ2k, δ)|

k
≥ −ε(k) +

4(δ|λ2k|+ 1)

k
ln

δ|λ2k| − 1

12(k + 1)

= −ε(k) +
4(δk + 1)

k
ln

δk − 1

12(k + 1)
.

Similarly, we obtain

ln |q2k−1
Λ (λ2k−1, δ)|
|λ2k−1|

≥ − ε(k)k

k − e−ε(k)k
+

4(δk + 1)

k − e−ε(k)k
ln

δk − 1

12(k + 1)
.

Thus, by the choice of ε(k), we have

SΛ = lim
δ→0

lim inf
k→∞

ln |qkΛ(λk, δ)|
|λk|

≥ lim
δ→0

4δ ln
δ

12
= 0.

We present yet another example to illustrate the quantity SΛ. By the way, this example
will be required later on. Let Λ = {λk}, where the λk are positive numbers such that
λk+1 − λk ≥ h. We calculate SΛ. We have

ln |qkΛ(λk, δ)| =
∑

1≤l≤s(k)

ln

∣∣∣∣λk − λk−l

3δ|λk−l|

∣∣∣∣ + ∑
1≤l≤p(k)

ln

∣∣∣∣λk − λk+l

3δ|λk+l|

∣∣∣∣ ,
where s(k) is the number of the points λl that belong to B(λk, δ|λk|) and lie to the right
of λk. By construction, |λk − λk+l| ≥ lh. Consequently, for all δ ∈ (0, 1/3) we have

ln |qkΛ(λk, δ)| ≥ ln
hs(k)s(k)!

(3δ(1 + δ)|λk|)s(k)
+ ln

hp(k)p(k)!

(3δ(1 + δ)|λk|)p(k)

≥ ln
hs(k)s(k)!

(6|λk|)s(k)
+ ln

hp(k)p(k)!

(6|λk|)p(k)

≥ ln
hs(k)(s(k))s(k)

(18|λk|)s(k)
+ ln

hp(k)(p(k))p(k)

(18|λk|)p(k)

≥ s(k) ln
hs(k)

18|λk|
+ p(k) ln

hp(k)

18|λk|
.
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Observe that the definitions of s(k), p(k), and λl imply

s(k)

|λk|
≤ MΛ(λk, δ)

|λk|
≤ 2δ|λk|

h|λk|
=

2δ

h
,

p(k)

|λk|
≤ MΛ(λk, δ)

|λk|
≤ 2δ

h
.

Next, the function x ln(hx/18) is monotone decreasing when hx/18 < 1. Therefore,
taking the preceding inequalities into account, we obtain

SΛ = lim
δ→0

lim inf
k→∞

ln |qkΛ(λk, δ)|
|λk|

≥ lim
δ→0

lim inf
k→∞

(
s(k)

|λk|
ln

hs(k)

18|λk|
+

p(k)

|λk|
ln

hp(k)

18|λk|

)

≥ lim
δ→0

(
2δ

h
ln

2δ

18
+

2δ

h
ln

2δ

18

)
= 0.

Now, we explore the relationship between the characteristics of the sequence Λ intro-
duced above. First, we observe that MΛ = 0 in all examples discussed. At the same
time, SΛ may be negative and may be equal to zero. The situation changes if MΛ > 0.

Lemma 2.1. Let δ ∈ (0, 1). We have

ln |qkΛ(λk, δ)| ≤ ln
1

3(1− δ)
(MΛ(λk, δ)−mk), k = 1, 2, . . . .

If the sequence Λ = {λk,mk}∞k=1 satisfies m(Λ) = 0 and MΛ ≥ τ > 0, then SΛ ≤ −τ ln 3.

Proof. The definition of the function qkΛ(λk, δ) shows that

ln |qkΛ(λk, δ)| =
∑

λl∈B(λk,δ|λk|)
λl �=λk

ml ln

∣∣∣∣λk − λl

3δ|λl|

∣∣∣∣ ≤ ∑
λl∈B(λk,δ|λk|)

λl �=λk

ml ln
δ|λk|

3δ(1− δ)|λk|

= ln
1

3(1− δ)

∑
λl∈B(λk,δ|λk|)

λl �=λk

ml = ln
1

3(1− δ)
(MΛ(λk, δ)−mk).

Suppose that MΛ ≥ τ > 0 and m(Λ) = 0. Since the coefficient − ln(3(1− δ)) is negative
for small δ > 0, the above shows that

SΛ = lim
δ→0

lim inf
k→∞

ln |qkΛ(λk, δ)|
|λk|

≤ lim
δ→0

ln
1

3(1− δ)
lim sup
k→∞

(MΛ(λk, δ)−mk)

|λk|

= − ln 3 lim
δ→0

lim sup
k→∞

MΛ(λk, δ)

|λk|
= −τ ln 3.

The lemma is proved. �

Let Γ be an angle with vertex at the origin. We introduce the quantities

N(Λ,Γ, t) =
∑

λk∈Γ∩B(0,t)

mk, N(Λ,Γ) = lim sup
t→∞

N(Λ,Γ, t)

t
.

It can easily be observed that N(Λ,C) = N(Λ). For ξ ∈ S (S is the unit circle with
center at the origin) and δ ∈ (0, 1), we denote by Γ(ξ, δ) the angle with vertex at the
origin generated by the disk B(ξ, δ). Also, we put

MΛ,ξ,δ = lim sup
t→∞

MΛ(tξ, δ)

t
.

Lemma 2.2. If ξ ∈ S, δ ∈ (0, 1), and the sequence Λ = {λk,mk}∞k=1 satisfies the
condition N(Λ,Γ(ξ, δ))<∞, then

δN(Λ,Γ(ξ, δ)) ≤ MΛ,ξ,2δ ≤ (1 + 2δ)N(Λ,Γ(ξ, 2δ)).
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Proof. First, we observe that the disk B(tξ, 2tδ) includes the part of the angle Γ(ξ, δ)
that belongs to the annulus B(0, t) \ B(0, (1− δ)t). Indeed, by the definition of Γ(ξ, δ),
for all w ∈ Γ(ξ, δ) with (1− δ)t ≤ |w| ≤ t we have

|w − tξ| ≤ |w − |w|ξ|+
∣∣ |w|ξ − tξ

∣∣ ≤ |w|δ + δt ≤ 2tδ.

Consequently,

N(Λ,Γ(ξ, δ), t)

t
≤ N(Λ,Γ(ξ, δ), (1− δ)t)

t
+

MΛ(tξ, 2δ)

t
.

It follows that

N(Λ,Γ(ξ, δ)) = lim sup
t→∞

N(Λ,Γ(ξ, δ), t)

t

≤ lim sup
t→∞

N(Λ,Γ(ξ, δ), (1− δ)t)

t
+ lim sup

t→∞

MΛ(tξ, 2δ)

t

= (1− δ) lim sup
r→∞

N(Λ,Γ(ξ, δ), r)

r
+MΛ,ξ,2δ

= (1− δ)N(Λ,Γ(ξ, δ)) +MΛ,ξ,2δ .

This yields the first inequality claimed. The second is a consequence of the estimate

MΛ(tξ, 2δ)

t
≤ N(Λ,Γ(ξ, δ), (1 + 2δ)t)

t
.

The lemma is proved. �

§3. Construction of a special function

Along with the condensation index, the quantity SΛ influences the presence of singular
points on the boundary of the convergence domain for the series of exponential mono-
mials. If SΛ is negative, then there exists a sequence d ∈ A(Λ) such that gd(z) has no
singular points on the boundary of the set D(Λ, d). We present a statement in which a
function with this property is constructed. This function is a generalization of a special
function in the theory of Dirichlet series (see [9]). We need some notation. For a convex
domain D and a subset Θ of the circle S, we put

D(Θ) = {z ∈ C : Re(zλ) < HD(λ), λ ∈ Θ},
where

HM (λ) = sup
z∈M

Re(zλ)

is the support function for M (more precisely, for the complex conjugation of M). The
set D(Θ) is convex, being an intersection of convex sets (specifically, hyperplanes). Since
the support function of an arbitrary set is lower semicontinuous (see [16]), the set D(Θ)
is a convex domain. The definitions of D(Θ) and HD(λ) readily imply the inclusion
D ⊆ D(Θ). We denote by Θ(Λ) the set of limit points of the sequence {λk/|λk|} (except
the point λk = 0 if it occurs). Clearly, Θ(Λ) is a convex subset of S.

Theorem 3.1. Suppose a sequence λ = {λk,mk}∞k=1 is such that m(Λ) = 0 and for

some subsequence rΛ = {λk(p)}∞p=1 we have the inequality

(3.1) lim sup
p→∞

ln |qk(p)Λ (λk(p), δp)|
|λk(p)|

≤ −β < 0,

where {δp} is a sequence on the interval (0, 1/4) monotone decreasing to zero. Then for
every bounded convex domain D there exists a sequence d ∈ A(Λ) such that the set D(Λ, d)

coincides with D(Θ(rΛ)) and the function gd(z) is analytic in Dβ = D(Λ, d) +B(0, β).
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Remark. If SΛ ≤ −β then, by the definition of SΛ, there exists a subsequence {λk(p)} of
{λk} satisfying (3.1).

Proof. We shall look for the required function in the form

(3.2) g(z) =

∞∑
p=1

cpgp(z).

To begin with, we “rarefy” the sequence Λ = {λk,mk}∞k=1 duly, i.e., from elements of Λ
we construct a new sequence with special properties. To lighten the notation, we use the
same symbols for the new sequence as for the initial one.

We proceed to extracting the subsequence. We start with the observation that, passing
to a subsequence, we may assume that

(3.3) |λk(p+1)| ≥ 2|λk(p)|, p = 1, 2, . . . .

Moreover, this can be achieved without reducing the set Θ(rΛ). To ensure this, we employ

some countable dense subset of Θ(rΛ) when taking the subsequence. Next, we remove all
“irrelevant” points from Λ. At the beginning, we discard all λk that do not belong to
any of the disks Bp = B(λk(p), δp|λk(p)|), p = 1, 2, . . . . Next, if p satisfies

(3.4) MΛ(λk(p), δp)−mk(p) ≥ β|λk(p)|+ 1,

then, without touching λk(p), we remove some of λk’s from Bp (or reduce their multiplic-
ities mk) so that the following inequalities be fulfilled:

(3.5) β|λk(p)| ≤ MΛ(λk(p), δp)−mk(p) < β|λk(p)|+ 1.

This leads to a sequence Λ = {λk,mk}∞k=1 satisfying the following conditions:
1) each point λk belongs to precisely one disk among the Bp, p = 1, 2, . . . ;
2) the series

∑∞
p=1 exp(−α|λk(p)|) converges for every α > 0;

3) inequality (3.1) holds true;
4) m(Λ) = 0;
5) N(Λ) < ∞.
We show that conditions 1)–5) are satisfied indeed. By construction, each λk belongs

to some Bp, p = 1, 2, . . . . Next, (3.3) is true. Since δp < 1/4, (3.3) shows that

(3.6) (1 + δp)|λk(p)| ≤ (1− δp+1)|λk(p+1)|, p = 1, 2, . . . .

Therefore, the disks Bp, p = 1, 2, . . . , are mutually disjoint, and 1) follows. Property 2) is
an immediate consequence of (3.3). We prove 3). If (3.4) fails for a particular p, then all

points λk in Bp have remained where they were, and the quantity ln |qk(p)Λ (λk(p), δp)| has
not changed. Let p be an index satisfying (3.4). After discarding some λk’s belonging to

Bp (or after reducing their multiplicities λk), the quantity ln |qk(p)Λ (λk(p), δp)| increases,
because every factor in the formula defining q

k(p)
Λ (λk(p), δp) does not exceed 1 in modulus.

However, this increase cannot lead to the violation of the required upper estimates.
Indeed, by Lemma 2.1 we have

ln |qk(p)Λ (λk(p), δp)| ≤ ln
1

3(1− δp)
(MΛ(λk(p), δp)−mk(p)).

By this formula and (3.5), for large p we obtain

ln |qk(p)Λ (λk(p), δp)| ≤ −(MΛ(λk(p), δp)−mk(p)) ≤ −β|λk(p)|.

So, inequality (3.1) is still fulfilled for the new sequence.
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Condition 4) is satisfied because the limit of a subsequence coincides with the limit of
the original sequence, and the relation m(Λ) = 0 remains true if we reduce some of the
mk > 0. We verify condition 5). By construction, for every p = 1, 2, . . . we have

(3.7) MΛ(λk(p), δp)−mk(p) < β|λk(p)|+ 1.

Let t ∈ [(1 + δp)|λk(p)|, (1− δp+1)|λk(p+1)|]. By (3.6) and condition 1), we obtain

t−1N(Λ,C, t) = t−1N(Λ,C, (1 + δp)|λk(p)|) = t−1

p∑
j=1

MΛ(λk(j), δj)

≤ ((1 + δp)|λk(p)|)−1

p∑
j=1

MΛ(λk(j), δj).

By (3.3) and (3.7), it follows that

t−1N(Λ,C, t) ≤ ((1 + δp)|λk(p)|)−1

p∑
j=1

(β|λk(j)|+ 1 +mk(j))

≤ |λk(p)|−1

p∑
j=1

(2j−pβ|λk(p)|+ 1) +

p∑
j=1

2j−p|λk(j)|−1mk(j).

By (3.3), the sequence {p|λk(p)|−1} is bounded. Condition 4) shows that the sequence

{|λk(j)|−1mk(j)} is also bounded. Thus, by the above, we obtain

t−1N(Λ,C, t) ≤
p∑

j=1

(2j−pβ + |λk(p)|−1) +

p∑
j=1

2j−p|λk(j)|−1mk(j)

≤ p|λk(p)|−1 + β

p∑
j=1

2j−p + c1

p∑
j=1

2j−p ≤ c2 + β + c1.

Now, let t ∈ [(1− δp)|λk(p)|, (1 + δp)|λk(p)|]. Then

N(Λ,C, t)

t
≤

N(Λ,C, (1 + δp)|λk(p)|)
t

≤
N(Λ,C, (1 + δp)|λk(p)|)

(1− δp)|λk(p)|
≤ 2|λk(p)|−1N(Λ,C, (1 + δp)|λk(p)|) ≤ 2(c2 + β + c1).

So, N(Λ) = N(Λ,C) < ∞.
Now, we define functions gp(z), p = 1, 2, . . . , by the formula

gp(z) =
1

2πi

∫
S(λk(p),4δp|λk(p)|)

exp(λz) dλ

ap(λ− λk(p))q
k(p)
Λ (λ, δp)

,

where S(b, r) is the circle of radius r and with center b, and the quantities ap ≥ 1 will be
specified later. We estimate these functions from above. Since ap ≥ 1, we have

|apqk(p)Λ (λ, δp)| ≥ |qk(p)Λ (λ, δp)| =
∣∣∣∣ ∏
λk∈B(λk(p),δp|λk(p)|)

λk �=λk(p)

(
λ− λk

3δp|λk|

)mk
∣∣∣∣

≥
∣∣∣∣ ∏
λk∈B(λk(p),δp|λk(p)|)

λk �=λk(p)

(
3δp|λk|
3δp|λk|

)mk
∣∣∣∣ = 1,

λ ∈ S(λk(p), 4δp|λk(p)|).
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Consequently,

|gp(z)| =
∣∣∣∣ 1

2πi

∫
S(λk(p),4δp|λk(p)|)

exp(λz) dλ

ap(λ− λk(p))q
k(p)
Λ (λ, δp)

∣∣∣∣
≤

8π|λk(p)|δp
2π

sup
λ∈S(λk(p),4δp|λk(p)|)

∣∣∣∣∣ exp(λz)

ap(λ− λk(p))q
k(p)
Λ (λ, δp)

∣∣∣∣∣
≤ 4π|λk(p)|δp sup

λ∈S(λk(p),4δp|λk(p)|)

∣∣∣∣ exp(λz)

(λ− λk(p))

∣∣∣∣
≤ sup

λ∈S(λk(p),4δp|λk(p)|)
|exp(λz)|

≤ exp(Re(λk(p)z) + 4δp|λk(p)| |z|), z ∈ C.

(3.8)

Now, we define the coefficients cp. LetD be a bounded convex domain, and let {Kl}∞l=1

be a strictly exhausting sequence of compact convex sets for D (i.e., for every l = 1, 2, . . .
the interior of Kl+1 includes Kl, and D is the union of all Kl). Put

cp = exp(−HKp
(λk(p))− β|λk(p)|), p = 1, 2, . . . .

We find the domain of convergence of the series (3.2). Set

rD = {z ∈ C : Re(zλ) < HD(λ) + β, λ ∈ Θ(rΛ)}.

We show that the series (3.2) converges uniformly on compact subset of rD. Fixing

a compact set K ⊂ rD, we take z ∈ K and λ ∈ Θ(rΛ). By the definition of rD, we
have Re(zλ) < HD(λ) + β. Since {Kl}∞l=1 is an exhausting sequence for D, we have
HKl

(λ) → HD(λ) as l → ∞, by the definition of the support function. Therefore, there
exists an index l(z, λ) such that Re(zλ) < HKl(z,λ)

(λ) + β. Since the support function of

a compact set is continuous (see [16]), it follows that the last inequality is valid in some
neighborhoods U(z) and V (λ) of z and λ, respectively:

(3.9) Re(wξ) < HKl(z,λ)
(ξ) + β, w ∈ U(z), ξ ∈ V (λ).

The sets U(z)×V (λ), z ∈ K, λ ∈ Θ, cover the compact set K×Θ, allowing us to extract
a finite subcovering U(z(j)) × V (λ(j)), j = 1, . . . , s. Let r be the greatest among the
indices l(z(j), λ(j)), j = 1, . . . , s. The union of the sets U(z(j))× V (λ(j)), j = 1, . . . , s,
includes a set of the form K × V , where V is a neighborhood of the compact set Θ. Let
z ∈ K, λ ∈ V . By (3.9), for some j = 1, . . . , s we have Re(zλ) < HKl(z(j),λ(j))

(λ). Since

{Kl} is a monotone increasing sequence of sets, we have

HKl(z(j),λ(j))
(λ) ≤ HKr

(λ).

Thus, we have obtained the estimate

(3.10) Re(zλ) < HKr
+ β, z ∈ K,λ ∈ V.

Using the definition of Θ(rΛ), we choose an index p0 such that λk(p)/|λk(p)| belongs to V
for all p ≥ p0. Since a support function is positive homogeneous of order 1, from (3.8)
and (3.10) we deduce that

|gp(z)| ≤ exp

(
|λk(p)|Re

(
λk(p)z

|λk(p)|

)
+ 4δp|λk(p)| |z|

)

< exp

(
|λk(p)|

(
HKr

(
λk(p)

|λk(p)|

)
+ β

)
+ 4δp|λk(p)| |z|

)
= exp(HKr

(λk(p)) + β|λk(p)|+ 4δp|λk(p)| |z|).

(3.11)
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Since Kr lies in the interior of Kr+1 and the sequence {Kl}∞l=1 is monotone increasing,
there is αr > 0 with

(3.12) HKr
(λ) + 2αr|λ| ≤ HKr+1

(λ) ≤ HKl
(λ), λ ∈ C, l ≥ r + 1.

We choose p1 ≥ max{p0, r + 1} such that 4δp|z| ≤ αr for z ∈ K and p ≥ p1. Then
(3.11), (3.12), and the definition of the coefficients cp show that

|cpgp(z)| ≤ exp(−HKp
(λk(p))− β|λk(p)|) exp(HKr

(λk(p)) + β|λk(p)|+ 4δp|λk(p)| |z|)
≤ exp(−2αr|λk(p)|+ 4δp|λk(p)| |z|)
≤ exp(−2αr|λk(p)|+ αr|λk(p)|) = exp(−αr|λk(p)|)

for all z ∈ K and p ≥ p1. Therefore,

∞∑
p=p1

|cpgp(z)| ≤
∞∑

p=p1

exp(−αr|λk(p)|), z ∈ K.

Property 2) of the sequence Λ implies that the last series converges and, with it, the

series (3.2) also converges, and even uniformly on compact subsets of rD. It should be
noted that the above arguments are valid for any choice of ap ≥ 1, p = 1, 2, . . . .

Now we show that, for a suitable choice of ap ≥ 1, p = 1, 2, . . . , the function g(z)

expands in a series of the form (1.1) in some subdomain of rD. By the residue calculus,
for every p = 1, 2, . . . we have

gp(z) = a−1
p

(
bk(p),0 exp(λk(p)z) +

∑
λk∈B(λk(p),δp|λk(p)|)

λk �=λk(p)

mk−1∑
n=0

bk,nz
n exp(λkz)

)
,

where bk(p),0 = (q
k(p)
Λ (λk(p), δp))

−1. We also put bk(p),n = 0, n = 1, . . . ,mk(p) − 1. We
define the coefficients dk,n as follows. Let λk ∈ Bp for some p = 1, 2, . . . . Then

dk,n = cpbk,n(ap)
−1, n = 0, 1, . . . ,mk − 1.

By property 1) of the sequence Λ, this definition is consistent.
Now we choose the numbers ap, p = 1, 2, . . . . By property 3),

lim inf
p→∞

Yp ≥ β,

where Yp = max{|λk(p)|−1 ln |bk,n|} and the maximum is taken over all k with λk ∈ Bp

and all n = 0, 1, . . . ,mk − 1. If Yp ≤ β, we put ap = 1, otherwise we choose ap ≥ 1 with
Yp − |λk(p)|−1 ln ap = β. Thus, we have

(3.13) lim
p→∞

max
k :λk∈Bp

0≤n≤mk−1

{|λk(p)|−1 ln |dk,n/cp|} = β.

We find the domain of convergence for the series

(3.14)

∞,mk−1∑
k=1,n=0

dk,nz
n exp(λkz).

Property 5) shows that σ(Λ) = 0. Then, by property 4) and the Cauchy–Hadamard
theorem for series of exponential monomials, the series (3.14) converges in the convex
domain

D(Λ, d) = {z ∈ C : Re(zλ) < h(d, λ), λ ∈ Θ(Λ)}
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and diverges at any point of its exterior, with a possible exception of the origin. The
function h(d, λ) is defined by the formula (see [2])

h(d, λ) = inf lim inf
l→∞

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λls |

, λ ∈ Θ(Λ),

where the infimum is taken over all subsequences {λs(l)} of the sequence {λk} such that
λs(l)/|λs(l)| tends to λ as l → ∞.

We want to calculate the quantity h(d, λ), λ ∈ Θ(Λ). But before we show that Θ(Λ) =

Θ(rΛ). The inclusion Θ(rΛ) ⊂ Θ(Λ) follows directly from the definitions. Let λ ∈ Θ(Λ).
Then there exists a subsequence {λs(l)} of {λk} with λs(l)/|λs(l)| → λ. By property 1),
every point λs(l) belongs to some disk Bp(l). Consequently, |λs(l)−λk(p(l))| < δp(l)|λk(p(l))|.
It follows that∣∣∣∣ λs(l)

|λs(l)|
−

λk(p(l))

|λk(p(l))|

∣∣∣∣ ≤
∣∣∣∣ λs(l)

|λs(l)|
−

λs(l)

|λk(p(l))|

∣∣∣∣ +
∣∣∣∣ λs(l)

|λk(p(l))|
−

λk(p(l))

|λk(p(l))|

∣∣∣∣
=

∣∣ |λk(p(l))| − |λs(l)|
∣∣

|λk(p(l))|
+

|λk(p(l)) − λs(l)|
|λk(p(l))|

≤ δp(l) + δp(l) = 2δp(l) → 0, l → ∞.

This means that λ ∈ Θ(rΛ), implying the required inclusion Θ(Λ) ⊂ Θ(rΛ).
Suppose λ ∈ Θ(Λ), a sequence {λs(l)} has the property that λs(l)/|λs(l)| tends to λ,

and λs(l) ∈ Bp(l), l = 1, 2, . . . . We have

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

≥ min
k :λk∈Bp(l)

0≤n≤mk−1

ln(1/|dk,n|)
|λk|

= − max
k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n|
|λk|

= − max
k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n|
|λk(p(l))|

|λk(p(l))|
|λk|

≥ − 1

1± δp(l)
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n|
|λk(p(l))|

.

Here the sign in the denominator is opposite to the sign of the maximum. By the
definition of cp, we obtain

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

≥ − 1

1± δp(l)
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n/cp(l)|+ ln |cp(l)|
|λk(p(l))|

= − 1

1± δp(l)

(
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n/cp(l)|
|λk(p(l))|

−HKp(l)

(
λk(p(l))

|λk(p(l))|

)
− β

)
.

(3.15)

The sequence λk(p(l))/|λk(p(l))| tends to λ along with λs(l)/|λs(l)|, the sequence {Kr} is
monotone increasing, and the support function of a compact set is continuous. Conse-
quently,

lim inf
l→∞

HKp(l)

(
λk(p(l))

|λk(p(l))|

)
≥ lim inf

l→∞
HKr

(
λk(p(l))

|λk(p(l))|

)
= HKr

(λ), r = 1, 2, . . . .

Next, the sequence {Kr} exhausts the domain D. Therefore,

lim inf
l→∞

HKp(l)

(
λk(p(l))

|λk(p(l))|

)
≥ lim

r→∞
HKr

(λ) = HD(λ).
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By (3.13) and (3.15), we obtain

lim inf
l→∞

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

≥ − lim
p→∞

1

1± δp(l)
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n/cp(l)|
|λk(p(l))|

+ lim inf
l→∞

HKp(l)

(
λk(p(l))

|λk(p(l))|

)
+ β ≥ −β +HD(λ) + β = HD(λ).

Since the sequence {λs(l)} has been taken arbitrarily so as to ensure that λs(l)/|λs(l)|
tend to λ, the definition of h(d, λ) implies

h(d, λ) ≥ HD(λ), λ ∈ Θ(Λ) = Θ(rΛ).

We claim that, in fact, equality occurs here. Suppose λ ∈ Θ(rΛ) and a sequence
{λk(p(l))} is such that λk(p(l))/|λk(p(l))| tends to λ. For every p(l), l = 1, 2, . . . , we denote
by s(l) and n(l) the indices k and n of the coefficient dk,n at which the maximum in
(3.13) is attained. Then

lim
l→∞

|λk(p(l))|−1 ln |ds(l),n(l)/cp(l)| = β.

It follows that

lim sup
l→∞

ln(1/|ds(l),n(l)|)
|λs(l)|

= lim sup
l→∞

−(ln |ds(l),n(l)/cp(l)|+ ln |cp(l)|)|λk(p(l))|
|λs(l)| |λk(p(l))|

= lim sup
l→∞

−(ln |ds(l),n(l)/cp(l)|+ ln |cp(l)|)
|λk(p(l))|

= −β + lim sup
l→∞

− ln |cp(l)|)
|λk(p(l))|

= lim
l→∞

HKp(l)

(
λk(p(l))

|λk(p(l))|

)
.

Since Kp(l) ⊂ D and the function HD is continuous, we have

lim sup
l→∞

ln(1/|ds(l),n(l)|)
|λs(l)|

≤ lim sup
l→∞

HD

(
λk(p(l))

|λk(p(l))|

)
= HD(λ).

Since λs(l) ∈ Bp(l), as above we see that λs(l)/|λs(l)| tends to λ. Then, by the definition
of h(d, λ), we have

h(d, λ) ≤ HD(λ), λ ∈ Θ(Λ) = Θ(rΛ).

Thus, we have proved the identity

(3.16) h(d, λ) = HD(λ), λ ∈ Θ(Λ) = Θ(rΛ).

Hence, by the definition of D(Λ, d) andD(Λ(rΛ)), these two domains coincide. Suppose
z ∈ Dβ and λ ∈ Θ(Λ). Then z = w + y, where y ∈ B(0, β) and w ∈ D(Λ, d). Together
with the definitions of D(Λ, d) and of the support function for the disk, (3.16) yields

Re(zλ) = Re(wλ) + Re(yλ) < HD(λ) + β|λ| = HD(λ) + β.

Consequently, Dβ ⊆ rD. It remains to show that gd(z) coincides with g(z) in D(Λ, d).
Since m(Λ) = σ(Λ) = 0, the Abel theorem for series of exponential monomials shows that
the series (3.14) converges absolutely in D(Λ, d). But the series (3.2) can be obtained
from (3.14) by uniting terms into groups; therefore, on the joint domain of convergence
D(Λ, d), it has the same sum as (3.14). The theorem is proved. �
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§4. Singular points

By Theorem 3.1, under the condition m(Λ) = 0, if SΛ is negative, then there exist
analytic functions representable by a series of the form (3.14) with an arbitrarily large
domain of convergence that have no singularities on the boundary of this domain. It turns
out that, under a certain additional condition on Λ, the negativity of SΛ is necessary for
the existence of such functions. We shall present the corresponding result in the sequel.
But before that, we introduce still more notation and definitions, and also prove two
auxiliary results.

A sequence Λ = {λk,mk}∞k=1 is said to be proper if it is part of a properly distributed
sequence at order 1. This is equivalent to the statement (see [7, Theorem 1.4.2]) that Λ is
part (with the multiplicities mk) of the zero set of an entire function of exponential type
and completely regular growth. We denote by F (Λ) the collection of all entire functions
of exponential type and completely regular growth whose zero sets contain Λ.

Let f(z) be an entire function of exponential type. Its (upper) indicator is defined to
be the function

hf (λ) = lim sup
t→∞

ln |f(tλ)|
t

, λ ∈ C.

If K is the convex compact set coinciding with the conjugate diagram of f , then by the
Polya theorem (see, e.g., [9, Theorem 5.4]) we have

hf (λ) = HK(λ), λ ∈ C.

We denote by hf the lower indicator of f (see [17, Chapter 4]):

hf = lim
δ→0

lim inf
t→∞

1

πδ2

∫
B(tλ,t|λ|)

ln |f(z)|
t

dx dy, z = x+ iy.

The definitions show that the lower indicator does not exceed the upper. The function
f is of completely regular growth (see [17, Chapter 4]) if and only if

hf (λ) = hf (λ), λ ∈ C.

Lemma 4.1. Let Λ be a proper sequence. Then σ(Λ) = 0 and MΛ = 0.

Proof. By assumption, Λ is part of the zero set of an entire function of exponential type.
Therefore, N(Λ) < ∞ (see, e.g., [7, Theorem 1.1.2]). This directly shows that σ(Λ) = 0.
We prove that MΛ = 0. We argue by contradiction.

Suppose that MΛ ≥ τ > 0. Using the definition of MΛ, we choose a subsequence
{λk(p)} of {λk} such that

(4.1) lim inf
p→∞

MΛ(λk(p), 1/p)

|λk(p)|
≥ τ.

Another passage to a subsequence with (2.2) taken into account allows us to assume
that the sequence {λk(p)/|λk(p)|} converges to a point ξ ∈ S. Let f ∈ F (Λ) and ε > 0.
The properties of the indicators (see, e.g., [18, Chapter 1, §6, Subsection 2]) imply the
existence of positive numbers T and δ < 1 with

(4.2)
ln |f(tη)|

t
≤ hf (ξ) + ε, η ∈ B(ξ, 3δ), t ≥ T.

Since f is of completely regular growth, we have (see [7, Chapter. I, §4, Subsection 1])

(4.3) lim
t→∞,t/∈E

ln |f(tξ)|
t

= hf (ξ),
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where E is a set of zero relative measure, i.e.,

(4.4) lim
r→∞

meas(E ∩ [0, r])

r
= 0.

Outside E, we choose an unbounded monotone increasing sequence {tl} positive numbers
with

(4.5) lim
l→∞

tl+1

tl
= 1.

This can be done because, by (4.19), for every α > 1 we have

lim
r→∞

meas(E ∩ [r, αr])

r
= 0,

i.e., every interval [r, αr] with r sufficiently large contains points not belonging to E. By
(4.3), we can find l0 such that

(4.6) ln |f(tlξ)| ≥ (hf (ξ)− ε)tl

and tl ≥ T for every l ≥ l0. Consider the functions

fl(ς) =
f(tlξ + ς)

f(tlξ)
, l ≥ l0.

Formulas (4.2) and (4.6) show that

ln |fl(ς)| ≤ 2εtl, ς ∈ B(0, 3δtl), l ≥ l0.

Let n(l) be the number of zeros (with multiplicities) of the function fl(ς) in the disk
B(0, 3δtl/e). By the theorem on the zeros of an analytic function in a disk (see [9,
Theorem 2.1]), we have

(δtl)
n(l)

|ς1ς2 . . . ςn(l)|
≤ exp(2εtl), l ≥ l0,

where ς1, . . . , ςn(l) are the zeros of fl in the disk B(0, 3δtl/e). Since |ςj | ≤ 3δtl/e, it
follows that

en(l) ≤ (3δtl)
n(l)

|ς1ς2 . . . ςn(l)|
≤ exp(2εtl), l ≥ l0.

Thus, recalling (2.2) and the definition of fl(ς), we arrive at

(4.7) MΛ(tlξ, δ) ≤ 2εtl, l ≥ l0.

By (4.5), increasing l0 if necessary, we may assume that

tl+1 ≤ (1 + δ/4)tl.

We choose an index p0 such that

|λk(p)/|λk(p)| − ξ| ≤ δ/4, |λk(p)| ≥ tl0

for all p ≥ p0. Fixing p ≥ p0, we choose l(p) ≥ l0 with

tl(p) ≤ |λk(p)| ≤ tl(p)+1.

Let λ be an arbitrary point of the disk B(λk(p), δ|λk(p)|/4). Then
|λ− tl(p)ξ| ≤ |λ− λk(p)|+ |λk(p) − tl(p)ξ|

≤ δ|λk(p)|/4 +
∣∣λk(p) − |λk(p)|ξ

∣∣ + ∣∣|λk(p)|ξ + tl(p)ξ
∣∣

≤ δ|λk(p)|/2 + |λk(p)| − tl(p) ≤ δtl(p)/2 + tl(p) − tl(p)

≤ δ(1 + δ/4)tl(p)/2 + δtl(p)/4 < δtl(p).
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Consequently, the disk B(λk(p), δ|λk(p)|/4) is included in B(tl(p)ξ, δtl(p)). Therefore, by
(2.2) and (4.7), we have

MΛ(λk(p), δ|λk(p)|/4) ≤ MΛ(tl(p)ξ, δ) ≤ 2εtl(p) ≤ 2ε|λk(p)|.

Together with (2.2), this implies that

MΛ(λk(p), 1/p) ≤ 2ε|λk(p)|

for p sufficiently large. This contradicts (4.1) because ε > 0 can be chosen arbitrarily
small. The lemma is proved. �

The next statement is an immediate consequence of Theorem 5.2 in [14].

Lemma 4.2. Let Λ be a proper sequence, and let SΛ = 0. Next, let f ∈ F (Λ), let
K be the conjugate diagram of f , and let w ∈ C and r > 0. Suppose that g can be
approximated, uniformly on compact sets in D = K +B(w, r), by linear combinations of

elements of the system E = {zn exp(λkz)}∞,mk−1
k=1,n=0. Then, in this domain, g is uniquely

representable by the series (1.1).

Proof. We show that the assumptions of Theorem 5.2 in [14] are satisfied. Let W denote
the closure of the linear hull of E in the space H(D) of functions analytic in D, with the
topology of uniform convergence on compact sets. Then W is a closed subspace of H(D)
invariant under differentiation, admitting spectral synthesis, and having Λ = {λk,mk}∞k=1

as the spectrum.
We put f1(λ) = f(λ) exp(λw). SinceK is the conjugate diagram of f , by the definition

of D we obtain

hf1(λ) = Re(λw) + hf (λ) = Re(λw) +HK(λ) < HD(λ), λ ∈ C, λ �= 0.

By the Polya theorem (see, e.g., [18]) this inequality suffices for the existence of a contin-
uous linear functional μ on H(D) whose Laplace transform pμ(λ) = (μ, exp(λz)) coincides
with f1(λ). It is easily seen that the value of this functional at the function zn exp(λkz)

is equal to f
(n)
1 (λk). By the definition of F (Λ), this means that the nonzero functional

μ vanishes at all functions of the system E and, consequently, on W . Therefore, W is a
proper subspace of H(D).

Let f2(λ) be an entire function of exponential type and completely regular growth
whose indicator hf2(λ) is equal to the support function of the disk B(w, r), i.e.,

hf2(λ) = HB(w,r)(λ) = Re(λw) + r|λ|, λ ∈ C.

The existence of such a function was established, e.g., in a theorem in [7]. We put
ϕ(λ) = f2(λ)f(λ), λ ∈ C. Since ϕ is a product of two functions of completely regular
growth, ϕ itself is of completely regular growth (this follows directly from the definition),
i.e.,

hϕ(λ) = hϕ(λ), λ ∈ C.

Moreover, by the theorem on addition of indicators (see, e.g., [7, Theorem 1.4.3]), we
have

hϕ(λ) = hf2(λ) + hf (λ) = HB(w,r)(λ) +HK(λ) = HD(λ), λ ∈ C.

Note that SΛ = 0 by assumption, and m(Λ) ≤ MΛ = 0 by Lemma 4.1. Thus, the
hypotheses of Theorem 5.2 in [14] are fulfilled. By that theorem, every function in W (in
particular, g) is representable by a series of the form (1.1). Also in [14], it was proved
that such a representation is unique. The lemma is proved. �



338 O. A. KRIVOSHEYEVA

For an open set D and a compact set K, we denote by Ω(D,K) the collection of all
z such that K + z (a translate of K) is included in D. If D is a convex domain, it is
easily seen that Ω(D,K) is also a convex domain (which may be empty). Another way
to define this domain is to put

Ω(D,K) = {z ∈ C : Re(zλ) < HD(λ)−HK(λ), λ ∈ S}.
Theorem 4.1. Let Λ be a proper sequence, let f ∈ F (Λ), and let K be the conjugate
diagram of f . The following statements are equivalent.

1) For every sequence d ∈ A(Λ) with the property that the set Ω(D(Λ, d),K) is
nonempty and is different from the plane, and for every w ∈ ∂Ω(D(Λ, d),K), the function
gd(z) has at least one singular point in (w +K) ∩ ∂D(Λ, d).

2) SΛ = 0.

Proof. 1) =⇒ 2). Suppose that SΛ < 0. Let D be a bounded convex domain that
includes K. Lemma 4.1 shows that m(Λ) ≤ MΛ = 0. By Theorem 3.1 and the remark to
its statement, there exists a sequence d ∈ A(Λ) such that the set D(Λ, d) is not the entire
plane and the function gd(z) has no singular points on the boundary ∂D(Λ, d). Since the
set Ω(D(Λ, d),K) is nonempty in this case (it includes K), this contradicts statement 1).
When defining SΛ, we observed that SΛ is always nonpositive. Thus, SΛ = 0.

2) =⇒ 1). Suppose a sequence d ∈ A(Λ) has the property that Ω(D(Λ, d),K) is
nonempty. Note that σ(Λ) = m(Λ) = 0 by Lemma 4.1. Consequently, by the Cauchy–
Hadamard theorem for series of exponential monomials, the set D(Λ, d) and, with it, the
set Ω(D(Λ, d),K) are convex domains. We fix a point w0 ∈ ∂Ω(D(Λ, d),K) and suppose
that gd(z) has no singular points on the compact set (w0 + K) ∩ ∂D(Λ, d). In other
words, for every w ∈ (w0 +K) ∩ ∂D(Λ, d) the function gd admits analytic continuation
to some disk B(w, r(w)). If the disks B(w1, r(w1)) and B(w2, r(w2)) intersect, then,
since D(Λ, d) is convex, the intersection B(w1, r(w1)) ∩ B(w2, r(w2)) ∩ D(Λ, d) is also
nonempty. By the uniqueness theorem, the extensions of gd(z) to the disks B(w1, r(w1))
and B(w2, r(w2)) coincide on the intersection of these disks. Thus, gd(z) admits analytic
continuation to the domain D(Λ, d) ∪ U , where U is a neighborhood of the compact set
(w0 +K) ∩ ∂D(Λ, d).

We choose a positive number r with K +B(w0, r) ⊆ D(Λ, d)∪U . The function gd(z)
can be approximated uniformly on compact sets by linear combinations of elements of
the system E in some neighborhood of a translate of K (for instance, in D(Λ, d)). By a
result in [19], this approximation extends to the domain K + B(w0, r). By Lemma 4.2,
it follows that gd(z) is representable by a series of the form (1.1) in this domain, maybe
with coefficients different from d = {dk,n}. We show that, in fact, these coefficients
coincide with d = {dk,n}. Let rw be an arbitrary common point of the disk B(w0, r)
and the domain Ω(D(Λ, d),K). We choose rr > 0 such that the disk B( rw, rr) lies in the
intersection B(w0, r) ∩ Ω(D(Λ, d),K). Then the domain K + B( rw, rr) is included both
in K + B(w0, r) and in D(Λ, d). Hence, in K + B( rw, rr) there are two representations
of gd(z) by a series (1.1). However, by Lemma 4.2 such a representation is unique,
i.e., the coefficients of the two representations coincide. We have proved that, in the
domain D(Λ, d) ∪ (K +B(w0, r)) the function gd(z) expands in the series (1.1) with the
coefficients d = {dk,n}. This contradicts the definition of D(Λ), because the domain
D(Λ, d) ∪ (K + B(w0, r)) is wider than D(Λ, d). Consequently, our supposition is not
true, i.e., gd(z) has at least one singular point in (w0 +K) ∩ ∂D(Λ, d). The theorem is
proved. �
Remark. Theorem 3.1 implies that if SΛ �= 0, then there exists a series of the form (1.1)
with an arbitrarily large domain of convergence whose sum has no singular points on
the boundary of this domain. But if SΛ = 0 and the sequence Λ is proper, then, by
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Theorem 4.1, the sum of every series of the form (1.1) with sufficiently large domain of
convergence has some singular points on its boundary. However, if this domain is smaller
than necessary, then the sum of the series may fail to have any singular points, even
though Λ may be proper and SΛ may be equal to 0. We give an example (see [9]). Put

L(λ) =
sinλ sin(iλ)

λ2
.

The function L(λ) is entire, of exponential type, and of completely regular growth, be-
cause it is the product of two functions sin(πλ)/λ and sin(iπλ)/λ each being of completely
regular growth. By the theorem on addition of indicators, the conjugate diagram K of
L is the sum of the conjugate diagrams of these two functions, which are the intervals
[−i, i] on the imaginary axis and [−1, 1] on the real axis, respectively. Therefore, K is
the square with vertices at the points 1 + i, i − 1, 1 − i,−1 − i. The function L(λ) has
simple zeros at the points πn and iπ. Let Λ = {λk}∞k=1 be the sequence of its zeros,
and let d = {1/L′(λk)}∞k=1. Then Λ is a proper sequence. As in the examples after the
definition of SΛ, it can be shown that now this quantity is zero. Consider the series

∞∑
k=1

exp(λkz)

L′(λk)
.

In the book [9] it was proved that its sum is identically zero (therefore, has no singular
points), and its domain of convergence is the interior of K (the domain of convergence
can also easily be calculated with the help of the Cauchy–Hadamard theorem). In a
sense, this case is ultimate. Here K is not included in D(Λ, d) but coincides with its
closure.

Now we show that all results concerting singular points of the sums of exponential
series and their particular cases (Dirichlet and Taylor series) that were mentioned in
the Introduction are consequences of Theorem 4.1. At the same time, we do not touch
upon the results of Lunts [11, 12] and Ostrowski [10] for the reasons explained in the
Introduction.

We begin with the results pertaining to the Dirichlet series

(4.8) g(z) =
∞∑
k=1

dk exp(−λkz),

where Λ = {λk}∞k=1 is an unbounded monotone increasing sequence of positive numbers.
We remind the reader (see [7, 9]) that this series converges in a certain half-plane Re z > c,
the number c is called the abscissa of convergence and is calculated by the Cauchy–
Hadamard formula. The line Re z = c is called the line of convergence. In the sequel, we
assume that the domain of convergence of the series (4.8) is nonempty, i.e., c > −∞.

Corollary 4.1. Suppose the sequence Λ = {λk} possesses a density, i.e.,

τ = N(Λ) = lim
k→∞

k

λk
.

Then the following statements are equivalent.
1) Every function g(z) of the form (4.8) is either entire, or has a singular point on

every interval of length 2πτ that lies on the convergence line.
2) SΛ = 0.

Proof. Put

(4.9) L(λ) =
∞∏
k=1

(
1− λ2

λ2
k

)
.
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By Theorem 1.2.9 in the book [7], L(λ) is an entire function of exponential type and
completely regular growth, and its conjugate diagram K coincides with the interval
[−iπτ, iπτ ] on the imaginary axis. Thus, Λ is a proper sequence. In our case, the domain
Ω(D(Λ, d),K) coincides with the half-plane of convergence for the series (4.8). Therefore,
for every w ∈ ∂Ω(D(Λ, d),K), the set (w + K) ∩ ∂D(Λ, d) is an interval of length 2πτ
on the convergence line. Moreover, any such interval can be obtained in this way. To
complete the proof, it remains to apply Theorem 4.1. �

Let

γ(Λ) = lim sup
k→∞

1

λk
ln

∣∣∣∣ 1

L′(λk)

∣∣∣∣ ,
where L(Λ) is given by (4.9). The quantity γ(Λ) is called the Bernstein–Leont′ev con-
densation index.

Corollary 4.2 (Bernstein theorem). Suppose that a sequence λ has density τ , and
γ(Λ) = 0. Then every function g(z) of the form (4.8) is either entire, or has at least
one singular point on every interval of length 2πτ on the convergence line.

Proof. By Corollary 4.1, it suffices to prove that SΛ = 0 whenever γ(Λ) = 0. So, let
γ(Λ) = 0. Then for every ε > 0 there exists k0 with

(4.10) |L′(λk)| ≥ exp(−ελk), k ≥ k0.

By the properties of indicators (see, e.g., [18]), there exist α, T > 0 such that

|L(λ)| ≤ exp((hL(1) + ε)|λ|) = exp((HK(1) + ε)|λ|), λ/|λ| ∈ B(1, α), |λ| ≥ T,

where K is the conjugate diagram for L(λ), coinciding with the interval [−iπτ, iπτ ] on
the imaginary axis. Since HK(1) = 0, it follows that

|L(λ)| ≤ exp(ε|λ|), λ/|λ| ∈ B(1, 4α), |λ| ≥ T.

Let L(λ) = (λ − λk)Lk(λ). Then L′(λk) = Lk(λk). The last estimate implies the
inequality

|Lk(λk)| =
∣∣∣∣ L(λ)

λ− λk

∣∣∣∣ ≤ 4αλk exp(ε(1 + 4α)λk), λ ∈ S(λk, 4αλk), λk ≥ T.

Since

|qkΛ(λ, α)| ≥ 1

on the circle S(λk, 4αλk), we see that∣∣∣∣ Lk(λ)

qkΛ(λ, α)

∣∣∣∣ ≤ 4αλk exp(ε(1 + 4α)λk), λ ∈ S(λk, 4αλk), λk ≥ T.

By the maximum principle, this inequality extends to the interior of the disk. In partic-
ular, ∣∣∣∣ Lk(λ)

qkΛ(λ, α)

∣∣∣∣ ≤ 4αλk exp(ε(1 + 4α)λk), λk ≥ T.

Taking (4.10) into account, we obtain

|qkΛ(λ, α)| ≥ |Lk(λk)| exp(−ε(1 + 4α)λk − ln(4αλk))

= |L′(λk)| exp(−ε(1 + 4α)λk − ln(4αλk))

≥ exp(−ε(2 + 4α)λk − ln(4αλk))

for all indices k with λk ≥ T and k ≥ k0. Then the definition of SΛ shows that SΛ ≥ −ε.
Since ε > 0 is arbitrary, we see that SΛ ≥ 0. The reverse inequality SΛ ≤ 0 is always
true. Thus, SΛ = 0 and the corollary is proved. �



SINGULAR POINTS FOR THE SUM OF A SERIES OF EXPONENTIAL MONOMIALS 341

Corollary 4.3 (Polya theorem). Suppose a sequence Λ = {λk} has density τ and λk+1−
λk ≥ h > 0, k = 1, 2, . . . . Then every function g(z) of the form (4.8) either is entire or
has at least one singular point on an arbitrary interval of length 2πτ on the convergence
line.

Proof. As above, it suffices to show that SΛ = 0. But this was done in an example after
the definition of SΛ. �

It was mentioned in the Introduction that the other results quoted there are also
consequences of the facts established in this paper. In particular, this concerns the
theorems by Hadamard, Fabry, Carlson, and Landau. All of them deal with positive
sequences of zero density. Now we consider the case of an arbitrary sequence Λ =
{λk,mk}∞k=1 with zero density.

Corollary 4.4. Suppose that a sequence Λ = {λk,mk}∞k=1 has zero density. Then the
following statements are equivalent.

1) For every sequence d ∈ A(Λ), the function gd(z) either is entire or has singularities
at all boundary points of D(Λ, d). In particular, the domain of existence of gd(z) is
convex.

2) We have SΛ = 0.

Proof. Put

L(λ) =
∞∏
k=1

(
1− λ2

λ2
k

)mk

.

Since the sequence Λ has zero density, L(λ) is an entire function of minimal type (see,
e.g., [7]) and, consequently, of completely regular growth. Its conjugate diagram is the
singleton consisting of the origin. Thus, Λ is a proper sequence. As in Theorem 4.1, for
every sequence d ∈ A(Λ) the set D(Λ, d) is a convex domain. Since K is a singleton,
the domain Ω(D(Λ, d),K) is nonempty and coincides with D(Λ, d). Moreover, every
z ∈ ∂D(Λ, d) (which is also a boundary point for Ω(D(Λ, d),K)) is a unique element of
the intersection (z +K) ∩ ∂(D(Λ, d). It remains to apply Theorem 4.1. �

We state a particular case of the above corollary.

Corollary 4.5 (Leont′ev’s theorem). Suppose that a sequence Λ = {λk,mk}∞k=1 has zero
density and γ(Λ) = 0. Then for every sequence d ∈ A(Λ) the function gd(z) either is
entire, or has singularities at all boundary points of D(Λ, d). In particular, the domain
of existence of gd(z) is convex.

Proof. It suffices to show that SΛ = 0. This is done much as in Corollary 4.2. �

Theorem 4.1 implies that the case of zero density is not the only case in which all points
z ∈ D(Λ, d) are singular for gd. Indeed, the same feature occurs if every boundary point
ofD(Λ, d) coincides with a set of the form (w+K)∩∂D(Λ, d), where w ∈ ∂Ω(D(Λ, d),K).
We present some conditions guaranteeing this. In this connection, we remind the reader
that (see [16]) a convex domain has smooth boundary if and only if only one support
line passes through each boundary point. Next, a compact convex set is strictly convex
if and only if every support line meets it at a unique point. In particular, a singleton is
strictly convex, but an interval is not because two of its support lines include the entire
interval.

Lemma 4.3. Let Ω be a convex domain with smooth boundary, and let K be a strictly
convex compact set. Then every boundary point of the domain D = Ω+K coincides with
the intersection (w +K) ∩ ∂D, where w is a boundary point of Ω.
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Proof. Let z ∈ ∂D. Since D is the sum of Ω and K, there exist w ∈ ∂Ω and v ∈ K with
z = w+ v. Thus, z ∈ (w+K)∩ ∂D. If z is a unique point of this intersection, the proof
is finished. Suppose there exists z1 different from z and belonging to (w + K) ∩ ∂D.
Then z1 = w + v1, where v1 ∈ K. At least one support line for D passes through each
of the points z and z1. We denote these lines by l = {u ∈ C : Re(uξ) = HD(ξ)} and
l1 = {u ∈ C : Re(uξ1) = HD(ξ1)}, where ξ, ξ1 ∈ S. We claim that

Re(wξ) = HΩ(ξ), Re(wξ1) = HΩ(ξ1), Re(vξ) = HK(ξ), Re(v1ξ1) = HK(ξ1).

Indeed, suppose that, for instance, Re(wξ) �= HΩ(ξ). Since w belongs to the closure
of Ω, we have Re(wξ) ≤ HΩ(ξ) by the definition of the support function. Consequently,
Re(wξ) < HΩ(ξ). Then, by the same definition, there exists rw ∈ Ω such that Re(wξ) <
Re( rwξ). Since z ∈ l, we obtain

Re(( rw + v)ξ) = Re( rwξ) + Re(vξ) > Re(wξ) + Re(vξ)

= Re((w + v)ξ) = Re(zξ) = HD(ξ).

On the other hand, rw + v ∈ Ω +K = D, and the definition of the support function for
D implies the inequality Re(( rw + v)ξ) ≤ HD(ξ). This contradiction proves the above
claim. The first two identities claimed and proved mean that w ∈ ∂Ω belongs to two
support lines for Ω. But Ω is smooth by assumption, so ξ = ξ1. Then the other two
identities mean that different points v, v1 ∈ K belong to one and the same support line
for K. This is impossible because K is a strictly convex compact set by assumption.

Thus, the supposition that (w+K)∩ ∂D contains a point distinct from z is not true,
which proves the lemma. �

The following statement is an immediate consequence of Lemma 4.3 and Theorem 4.1.

Corollary 4.6. Let Λ be a proper sequence, and let f ∈ F (Λ). Denote by K the conjugate
diagram for f and take d ∈ A(Λ). Suppose that SΛ = 0, K is a strictly convex compact
set, the set Ω(D(Λ, d),K) is nonempty and differs from the entire plane, the boundary
of the domain D(Λ, d) is smooth, and D(Λ, d) = Ω(D(Λ, d),K) +K. Then all boundary
points of D(Λ, d) are singular for gd(z). In particular, the domain of existence of this
function is convex.

Remark. We give an example to show how Corollary 4.6 applies. Let K be an arbitrary
strictly convex compact set different from a singleton. Then K is the conjugate diagram
for some entire function f of exponential type, of completely regular growth, and with
simple zeros Λ = {λk}, see [9], [7, Theorem 1.3.2]. Moreover, the sequence Λ satisfies
the condition lim ln |f ′(λk)|/|λk| = 0 (as in Corollary 4.2, this condition implies SΛ = 0).
Specifically, f is the canonical function for a certain properly distributed (and even
regular) set Λ = {λk}. This set is constructed in such a way that Θ(Λ) coincides with
the circle S. Let Ω be an arbitrary convex domain with smooth boundary. Putting
D = Ω+K, we define the coefficients d = {dk} as follows:

dk = ck exp(−HKp(k)
(λk)), k = 1, 2, . . . ,

where {Kp} is a sequence of compact convex sets exhaustingD, p(k) → ∞ as k → ∞, and
{ck} is an arbitrary sequence of complex numbers satisfying the condition ln |ck|/|λk| → 0
as k → ∞. Let

g(z) =

∞∑
k=1

dk exp(λkz).

Since Θ(Λ) = S, as in Theorem 3.1 we conclude, by using the Cauchy–Hadamard theorem
for series of exponentials, that the convergence domain D(Λ, d) for this series coincides
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with D. Then Ω(D(Λ, d),K) = Ω. Thus, the assumptions of Corollary 4.6 are satisfied.
Consequently, the domain of existence for g(z) coincides with the convex domain D(Λ, d).

§5. The case of zero density

In this section we shall show that the condition N(Λ) = 0 is necessary for item 1)
in Corollary 4.4. In other words, we shall obtain a criterion for equality between the
domain of convergence for the series (1.1) and the domain of existence of its every sum.
To do this, we need two auxiliary statements.

Lemma 5.1. Suppose that a sequence Λ satisfies m(Λ) �= 0. Then there exists a sequence
d ∈ A(Λ) of coefficients such that all boundary points of D(Λ, d) are singular for gd(z).

Proof. Let m(Λ) ≥ 2ρ > 0. We may assume that ρ < 1/2e2. By the definition of m(Λ),
there exists a subsequence {λk(p)} satisfying

m(k(p)) ≥ ρ|λk(p)|, p = 1, 2, . . . .

Passing to a subsequence once again, we may assume that the sequence {λk(p)/|λk(p)|}
converges to some point ς on the circle S and that |λk(p)| ≥ p, p = 1, 2, . . . . Let n(p) be
the integral part of ρ|λk(p)|, p = 1, 2, . . . . Consider the function

(5.1) g(z) =

∞∑
p=1

cp(z − sς)n(p) exp(λk(p)z),

where cp = exp(−(1− 1/p)|λk(p)|). We show that the series converges in a neighborhood
of sς. We have

|cp(z − sς)n(p) exp(λk(p)z)| ≤ exp(−(1− 1/p)|λk(p)|+ n(p) ln r +Re(λk(p)sς) + |λk(p)|r)
≤ exp(−(1− 1/p)|λk(p)|+ (ρ|λk(p)| − 1) ln r +Re(λk(p)sς) + |λk(p)|r)

for all z ∈ B(sς, r), r ∈ (0, 1). By the choice of the subsequence, we have λk(p)/|λk(p)| =
ς + ξp, where ξp → 0 as p → ∞. Then, by the above,

|cp(z − sς)n(p) exp(λk(p)z)|
≤ exp(−(1− 1/p)|λk(p)|+ (ρ|λk(p)| − 1) ln r + |λk(p)|Re(sςλk(p)/|λk(p)|) + |λk(p)|r)
≤ exp(−(1− 1/p)|λk(p)|+ (ρ|λk(p)| − 1) ln r + |λk(p)|(1 + |ξp|) + |λk(p)|r)
= exp((1/p+ ρ ln r + |ξp|+ r)|λk(p)| − ln r) ≤ r−1

0 exp(−α|λk(p)|),

where α > 0 if ρ ln r0 < 0 and p ≥ p0. Since ρ < 1/2e2, we may assume that r0 = 2ρ.
Since |λk(p)| ≥ p by construction, we have

|cp(z − sς)n(p) exp(λk(p)z)| ≤ r−1
0 exp(−αp), p ≥ p0.

This means that the series (5.1) converges uniformly in the disk B(sς, r0). Therefore, its
sum g(z) is a function analytic in this disk. Consider the series

(5.2)

∞,n(p)∑
p=1,n=0

cp rdp,nz
n exp(λk(p)z),

obtained from (5.1) by expanding the powers of z − sς . We estimate the coefficients rdp,n.
We have

(z − sς)n(p) =

n(p)∑
n=0

rdp,nz
n.
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By the Cauchy inequality,

|rdp,n| ≤ max
|z|=1

|(z − sς)n(p)| ≤ max
z∈B(sς,2)

|(z − sς)n(p)| ≤ 2n(p) ≤ exp(ρ|λk(p)|).

Let z be an arbitrary point in the intersection of the disk B(0, 1) and the half-plane
Re(zς) < 1− ρ− β, β > 0. Then we have

∞,n(p)∑
p=1,n=0

|cp rdp,nz
n exp(λk(p)z)|

≤
∞∑
p=1

(n(p) + 1) exp((−(1− 1/p) + ρ)|λk(p)|+Re(λk(p)z))

≤
∞∑
p=1

(n(p) + 1) exp((−(1− 1/p) + ρ)|λk(p)|+ |λk(p)|Re(zλk(p)/|λk(p)|)

=

∞∑
p=1

(n(p) + 1) exp((−(1− 1/p) + ρ)|λk(p)|+ |λk(p)|Re(z(ς + ξp))

≤
∞∑
p=1

(n(p) + 1) exp((−(1− 1/p) + ρ)|λk(p)|+ (1− ρ− β)|λk(p)|+ |ξp| |λk(p)|)

≤
∞∑
p=1

(ρ|λk(p)|+ 1) exp(|λk(p)|/p− β|λk(p)|+ |ξp| |λk(p)|) < ∞.

The last estimate is a consequence of the relations |ξp| → 0 and |λk(p)| ≥ p. Consequently,
the series (5.2) converges on the set

B(0, 1) ∩ {z : Re(zς) < 1− ρ− β}.
If β < ρ, this set includes the nonempty intersection

B(0, 1− ρ− β) ∩B(sς, 2ρ).

On this intersection, the sum of the series (5.2) coincides with g(z) because the partial
sums of the series (5.1) are at the same time partial sums of the series (5.2).

We put dk,n = cp rdp,n if k = k(p), n = 0, 1, . . . , n(p), and dk,n = 0 otherwise. We have
arrived at a sequence (namely, d = {dk,n}) such that d ∈ A(Λ) and D(Λ, d) intersects
the disk B(sς, 2ρ), whereas gd = g admits analytic continuation to this disk. To finish the
proof, it suffices to show that D(Λ, d) does not contain the disk B(sς, 2ρ). Consider the
points z = rsς, r > 1. Since

|rdp,n| =
∣∣∣(n(p)

n

)
sςn(p)−n

∣∣∣ ≥ 1,

where
(
n(p)
n

)
is the binomial coefficient, we obtain

|cp rdp,nz
n exp(λk(p)z)| = rn|rdp,n| |cpzn exp(λk(p)z)| ≥ |cpzn exp(λk(p)z)|

= exp(−(1− 1/p)|λk(p)|) expRe(λk(p)z)

= exp(−(1− 1/p)|λk(p)|) expRe(λk(p)sς)

= exp(−(1− 1/p)|λk(p)|) exp r|λk(p)|Re(sςλk(p)/|λk(p)|)
= exp(−(1− 1/p)|λk(p)|) exp r|λk(p)|Re(sς(ς + ξp))

= exp(−(1− 1/p)|λk(p)|) exp(|λk(p)|(r +Re(sςξp)))

≥ exp(|λk(p)|((r − 1)− |ξp|)).



SINGULAR POINTS FOR THE SUM OF A SERIES OF EXPONENTIAL MONOMIALS 345

Since |ξp| → 0, this means that the series (5.2) diverges at all points z = rsς, r > 1, i.e.,
the disk B(sς, 2ρ) is not included entirely in D(Λ, d). This finishes the proof. �

The next statement is a version of Theorem 3.1.

Lemma 5.2. Suppose that a sequence Λ satisfies m(Λ) = 0 and N(Λ) �= 0. Then there
exists a sequence d ∈ A(Λ) of coefficients such that not all boundary points of the set
D(Λ, d) are singular for gd(z).

Proof. Passing to a subsequence, we may assume that N(Λ) < ∞ and still N(Λ,C) =
N(Λ) �= 0. By the definition N(Λ,C), it follows that for every δ ∈ (0, 1) there is ξ ∈ S

such that N(Λ,Γ(ξ, δ)) �= 0. We fix δ ∈ (0, 1/8) and ξ ∈ S with N(Λ,Γ(ξ, δ/6)) strictly
positive. Then MΛ,ξ,δ/3 > 0 by Lemma 2.2. Referring to the definition of MΛ,ξ,δ/3, we
find an unbounded monotone increasing sequence {tp} of positive numbers such that

lim
p→∞

MΛ(tpξ, δ/3)

tp
> 0.

It follows that, for all p sufficiently large, the disk B(tpξ, tpδ/3) contains at least one
point λk(p) in the sequence {λk}. It can easily be seen that

B(tpξ, tpδ/3) ⊂ B(λk(p), δ|λk(p)|).
Therefore,

lim sup
p→∞

MΛ(λk(p), δ)

|λk(p)|
≥ lim

p→∞

MΛ(tpξ, δ/3)

(1− δ/3)tp
> 0.

Since m(Λ) = 0 by assumption, we can remove (if necessary) some terms from the
sequence {λk(p)} to ensure the inequalities

MΛ(λk(p), δ)−mk(p) ≥ rβ|λk(p)|, p = 1, 2, . . .

for some rβ > 0. By Lemma 2.1, this implies the formula

(5.3) ln |qk(p)Λ (λk(p), δ)| ≤ ln
1

3(1− δ)
(MΛ(λk, δ)−mk) ≤ ln

8

21
rβ|λk(p)| = β|λk(p)|.

As in Theorem 3.1, we may assume that each λk belongs to a unique disk Bp =
B(λk(p), δ|λk(p)|), p = 1, 2, . . . . Put

gp(z) =
1

2πi

∫
S(λk(p),4δ|λk(p)|)

exp(λz) dλ

ap(λ− λk(p))q
k(p)
Λ (λ, δ)

, p = 1, 2, . . . ,

where ap ≥ 1. As in Theorem 3.1, we obtain the inequalities

(5.4) |gp(z)| ≤ exp(Re(λk(p)z) + 4δ|λk(p)| |z|), p = 1, 2, . . . , z ∈ C.

Consider the series

(5.5) g(z) =
∞∑
p=1

cpgp(z),

where cp = exp(−2β|λk(p)|), p = 1, 2, . . . . By (5.4), for all z ∈ B(0, α) with α =

2β(1 + 4δ)−1, we have
∞∑
p=1

|cpgp(z)| ≤
∞∑
p=1

exp(−2β|λk(p)|+Re(λk(p)z) + 4δ|λk(p)| |z|)

≤
∞∑
p=1

exp(−2β|λk(p)|+ (1 + 4δ)|λk(p)| |z|) < ∞.
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The last estimate holds true because N(Λ) < ∞ (i.e., |λk(p)| ≥ ck(p), c > 0). This means
that the series (5.5) converges at every point of the disk B(0, α), and the convergence is
uniform in every smaller disk. Therefore, g(z) is analytic in B(0, α).

We define the coefficients d = {dk,n}∞,mk−1
k=1,n=0 precisely as we did in Theorem 3.1. Now,

we choose ap, p = 1, 2, . . . . Specifically, ap is fixed in such a way that

(5.6) max
{
|λk(p)|−1(ln |bk,n| − ln ap)

}
= β,

where the maximum is taken over all indices k with λk ∈ Bp and all n = 0, 1, . . . ,mk−1.
Then ap ≥ 1 by (5.3).

Now, we find the convergence domain for the series

(5.7)

∞,mk−1∑
k=1,n=0

dk,nz
n exp(λkz).

As in Theorem 3.1, we conclude that this series converges in the convex domain

D(Λ, d) = {z ∈ C : Re(zλ) < h(d, λ), λ ∈ Θ(Λ)}
and diverges at each exterior point of this domain, except, possibly, the origin. Moreover,
the function h(d, λ) is defined by the formula

h(d, λ) = inf lim inf
l→∞

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

, λ ∈ Θ(Λ),

where the infimum is taken over all subsequences {λs(l)} of {λk} for which λs(l)/|λs(l)|
tend to λ as l → ∞.

We estimate the quantity h(d, λ), λ ∈ Θ(Λ). Let λ ∈ Θ(Λ), and let a subsequence
{λs(l)} have the property that λs(l)/|λs(l)| converges to λ and λs(l) ∈ Bp(l), l = 1, 2, . . . .
We have

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

≥ min
k :λk∈Bp(l)

0≤n≤mk−1

ln(1/|dk,n|)
|λk|

= − max
k :λk∈Bp(l)

0≤n≤mk−1

|λk(p(l))| ln |dk,n|
|λk(p(l))λk|

≥ − 1

1± δ
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n|
|λk(p(l))|

.

Here the sign in the denominator is opposite to the sign of the maximum. By (5.6) and
the definition of cp, we obtain

min
0≤n≤ms(l)−1

ln(1/|ds(l),n|)
|λs(l)|

≥ − 1

1± δ
max

k :λk∈Bp(l)

0≤n≤mk−1

ln |dk,n/cp(l)|+ ln |cp(l)|
|λk(p(l))|

= − 1

1± δ
max

k :λk∈Bp(l)

0≤n≤mk−1

(
ln |dk,n/cp(l)|

|λk(p(l))|
− 2β

)
=

β

1 + δ
≥ 8β

9
.

Thus, by the definition of h(d, λ), we see that

h(d, λ) ≥ 4β/5, λ ∈ Θ(Λ).

Let D = B(0, 8β/9). Then HD(λ) = 8β/9 for all λ ∈ S. The last-written inequality
implies that D(Λ, d) includes D(Θ(Λ)). As in Theorem 3.1, the function gd (the sum of
the series (5.7)) coincides with g on the intersection of the domains D(Λ, d) and B(0, α),
which is nonempty because D(Θ(Λ)) ∩B(0, α) �= ∅.

As a result of our constructions, we have obtained a sequence d = {dk,n} of coefficients
such that d ∈ A(Λ) and D(Λ, d) intersects the disk B(0, α) to which gd can be extended
analytically. To finish the proof, it remains to show thatD(Λ, d) does not include B(0, α).
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We fix a subsequence {λs(l)}, λs(l) ∈ Bp(l), l = 1, 2, . . . , of {λk} such that the numbers
λs(l)/|λs(l)| converge to a point ξ ∈ Θ(Λ) and, for k = s(l) and some n = n(l), l = 1, 2, . . . ,
the maximum in (5.6) is attained at p = p(l), i.e.,

|λk(p(l))| ln |ds(l),n(l)/cp(l)| = β.

By the definition of the numbers cp, it follows that

ln(1/|ds(l),n(l)|)
|λs(l)|

=
−(ln |ds(l),n(l)/cp(l)|+ ln |cp(l)|)|λk(p(l))|

|λk(p(l))| |λs(l)|

= β
|λk(p(l))|
|λs(l)|

≤ β

1− δ
≤ 8β

7
.

Consequently, h(d, ξ) ≤ 8β/7. Let z = rsξ, 8β/7 < r < 4β/3. Then z ∈ B(0, α) because
α = 2β(1 + 4δ)−1 ≥ 4β/3. At the same time,

Re(zξ) = Re(rsξξ) = r > 8β/7 > h(d, ξ),

that is, z /∈ D(Λ, d). The lemma is proved. �

Now we can state and prove the result announced at the beginning of the present
section.

Theorem 5.1. The relations N(Λ) = 0 and SΛ = 0 are necessary and sufficient for
the existence domain of the sum of every series (1.1) with D(Λ, d) �= ∅ to coincide with
D(Λ, d) (i.e., with the interior of the convergence domain for this series).

Proof. If N(Λ) = 0 and SΛ = 0, then the existence domain of every series in question
coincides with D(Λ, d) by Corollary 4.4. Conversely, if the last feature occurs, then
m(Λ) = 0 by Lemma 5.1. But then N(Λ) = 0 in view of Lemma 5.2, and SΛ = 0 in view
of Theorem 3.1 �

As has been shown above, SΛ = 0 provided λk = k and mk = 1. So, Theorem 5.1
leads to the converse to Fabry’s theorem.

Corollary 5.1. The existence domain of the sum of every series of the form (1.2) coin-
cides with the disk of convergence of this series if and only if

lim
n→∞

n

k(n)
= 0.

Remark. This result is a particular case of earlier results by Fuchs and Malliavin (see
Chapter IX in the monograph [21]).

§6. Towards Ostrowski’s theorem

In this final section, we present the example mentioned in the Introduction, to indicate
applicability limits for the result described in Ostrowski’s theorem. This example is yet
another version of Theorem 3.1. We start with constructing a suitable sequence {λk}.
Fix two numbers h, α > 0 with hα < 1. We chose a monotone increasing sequence {μp} of
positive numbers with μp/μp+1 → 0 as p → ∞. Then we may assume that the intervals
[(1−hα)μp, μp], p = 1, 2, . . . , are mutually disjoint. Let s(p) be the integral part of αμp.
Put k(0) = 0 and k(p) = k(p− 1) + s(p) + 1, p = 1, 2, . . . . Now, we define the sequence
{λk} in the following way:

λk(p) = μp, λk = λk(p) − (k(p)− k)h, k(p− 1) < k < k(p), p = 1, 2, . . . .
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Thus, the sequence Λ = {λk} is split into groups Λp = {λk(p−1)+1, . . . , λk(p)}, each group
belonging to the corresponding interval [(1− hα)μp, μp], p = 1, 2, . . . . Since

λk(p−1)+1 − λk(p) ≥ (1− hα)μp+1 − μp = μp+1

(
1− hα− μp

μp+1

)
→ ∞, p → ∞,

we see that lim infk→∞(λk+1 − λk) = h. Furthermore,

N(Λ) = lim sup
k→∞

k

λk
= α.

Indeed,

lim
p→∞

k(p)

λk(p)
= lim

p→∞

k(p− 1) + s(p) + 1

λk(p)
= lim

p→∞

k(p− 1) + αμp

λk(p)

= lim
p→∞

k(p− 1) + αλk(p)

λk(p)
= lim

p→∞

k(p− 1)

λk(p)
+ α.

By construction, the quantity k(p) coincides with the number of points λk on the interval
[0, μp] = [0, λk(p)]. But this quantity does not exceed λk(p)/h. Therefore,

0 ≤ lim
p→∞

k(p− 1)

λk(p)
≤ lim

p→∞

λk(p−1)/h

λk(p)
= 0,

whence

(6.1) lim
p→∞

k(p)

λk(p)
= α.

Let k(p− 1) < k < k(p); then
k

λk
=

k(p)− s

λk(p) − hs
.

Consider the function

ϕp(x) =
k(p)− x

λk(p) − hx
.

The sign of its derivative coincides with the sign of the number hk(p)−λk(p), consequently,
with the sign of k(p)/λk(p) − 1/h. Since hα < 1, the sign of the last quantity becomes
negative for p sufficiently large; see (6.1). Thus, for such p we have

ϕp(s) =
k

λk
≤ ϕp(0) =

k(p)

λk(p)
.

Together with (6.1), this implies

lim sup
k→∞

k

λk
= lim sup

k→∞

k(p)

λk(p)
= α.

Thus, Λ satisfies the assumptions of the Ostrowski theorem. We fix a positive number
δ < hα and, for every p = 1, 2, . . . , consider the function

gp(z) =
1

2πi

∫
S(λk(p),4δλk(p))

exp(λz) dλ

ap(λ− λk(p))q
k(p)
Λ (λ, δ)

,

where ap ≥ 1. In the same way as in Theorem 3.1, we obtain the inequalities

|gp(z)| ≤ exp(Re(λk(p)z) + 4δλk(p)|z|), p = 1, 2, . . . , z ∈ C.

Let

(6.2) g(z) =

∞∑
p=1

cpgp(z),
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where cp = exp(−βλk(p)), p = 1, 2, . . . , and β > 0 will be specified later. As in Lemma
5.2,

∞∑
p=1

|cpgp(z)| ≤
∞∑
p=1

exp((γ − β)λk(p) + 4δλk(p)|z|) < ∞

if z belongs to the intersection of the disk |z| < (β − γ)/4δ and the half-plane Re z < γ.
Moreover, the series (6.2) converges uniformly on the compact subsets of this intersection,
so its sum is analytic there. Furthermore, as in Lemma 5.2, the function g(z) is analytic
in the disk B(0, rα), rα = β/(1 + 4δ). By construction, the quantity MΛ(λk(p), δ)−mk(p)

(to be denoted below by s(p, δ)) coincides with the integral part of δλk(p)/h if this number
is not an integer, and with δλk(p)/h− 1 otherwise. Then, by Lemma 2.1, we obtain

ln |qk(p)Λ (λk(p), δ)| ≤ s(p, δ) ln
1

3(1− δ)
.

It follows that

lim sup
p→∞

ln |qk(p)Λ (λk(p), δp)|
λk(p)

≤ δ

h
ln

1

3(1− δ)
= −β < 0.

As in Theorem 3.1, we define numbers ap ≥ 1 and coefficients dk in such a way that

(6.3) lim
p→∞

max
k(p)−s(p,δ)≤k≤k(p)

{
(λk(p))

−1 ln |dk/cp|
}
= β.

Consider the Dirichlet series

(6.4) g(z) =

∞∑
k=1

dk exp(λkz).

As in Lemma 5.2, we use (6.3) to show that

lim inf
k→∞

ln(1/|dk|)
λk

= − 1

1± δ
lim
p→∞

max
k(p)−s(p,δ)≤k≤k(p)

ln |dk/cp|+ ln |cp(l)|
λk(p)

= − 1

1± δ
lim
p→∞

max
k(p)−s(p,δ)≤k≤k(p)

(
ln |dk/cp|
λk(p)

− β

)
= 0.

Consequently, the imaginary axis is the convergence line for the series (6.4).
It has been shown above that the sum g(z) of the series (6.4) is analytic in a neigh-

borhood of the interval [−i(β − γ)/4δ, i(β − γ)/4δ], where β = (δ/h) ln(3(1− δ)). Thus,
the distance between singular points of the sum of the series (6.4) on its convergence line
attains the magnitude of order O(1/h); for α fixed and h small, this is much larger than
the radius r(α, h) in Ostrowski’s theorem (which of order of O(− lnh). Furthermore, the
function g(z) is analytic also in the disk B(0, rα), where rα = β/(1+4δ). Since δ has been
chosen arbitrarily in the interval (0, hα), this means that Ostrowski’s theorem concerns
singular points of the series (6.4) that lie at a distance comparable with the upper density
α of Λ from the convergence line.
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