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DISCRETE SPECTRUM OF CRANKED, BRANCHING,

AND PERIODIC WAVEGUIDES

S. A. NAZAROV

Abstract. The variational method is applied to the study of the spectrum of the
Laplace operator with mixed boundary conditions and with Dirichlet conditions in
planar or multidimensional domains (waveguides) with cylindrical or periodic exits to
infinity. The planar waveguides of constant width are discussed completely, such as
cranked, broken, smoothly bent, or branching waveguides. For them, the existence
of eigenvalues below the continuous spectrum threshold is established. A similar
result is obtained for the multidimensional cranked and branching waveguides, and
also for some periodic ones. Several open questions are stated; in particular, they
concern problems with Neumann boundary conditions, full multiplicity of the discrete

spectrum, and planar waveguides with piecewise constant boundary.

§1. Introduction

1. Setting of two-dimensional problems. Consider the Helmholtz equation

(1.1) −Δxu(x) = λu(x), x ∈ Ω,

in a domain Ω ⊂ R2 with several exits to infinity in the form of half-strips Π1, . . . ,ΠN of
unit width. A simplest domain of this sort is depicted in Figure 1: this is a “cranked”
waveguide; for N ≥ 3 the domain Ω is a “branching”, in particular, “cross-like” waveguide
(see Figures 2a and 3a, respectively). Equation (1.1) involves the Laplace operator Δx

written in a Cartesian coordinate system x, and the spectral parameter λ. The domain
Ω is composed of “pointed” half-strips as is shown in Figure 2b, and in some situations
(but not always: cf. Figure 4, a and b) Ω can be given as follows:

(1.2) Ω = {x : dist (x, L) < 1/2},
where L is the union of rays L1, . . . , LN emanating from the origin O of the Cartesian
coordinate system x = (x1, x2) and making angles α1, . . . , αN ∈ [0, 2π) with the positive
semiaxis {x : x2 = 0, x1 > 0} = L1,

(1.3) 0 = α1 < α2 < · · · < αN−1 < αN < 2π.

It is easy to check that if the angles between the axes of any two neighboring half-strips
do not exceed π, then the definition (1.2) fits.

In §2 we study the Dirichlet problem

(1.4) u(x) = 0, x ∈ ∂Ω,

for equation (1.1), and also the mixed boundary value problem

(1.5) u(x) = 0, x ∈ ΓD, ∂νu(x) = 0, x ∈ ΓN ,
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Figure 1. Cranked waveguides with mixed boundary conditions (a and
b) and Dirichlet condition (c).

for N = 2 (a cranked waveguide). Here ∂ν is the derivative along the outward normal to
the part ΓN of ∂Ω, and ΓD = ∂Ω \ ΓN . It is checked that if α2 < π (Figure 1a), then
the discrete spectrum of problem (1.1), (1.5) is empty, but if α2 > π, then this spectrum
has at least one eigenvalue. Also, in Theorems 2.3 and 2.5 we show that the discrete
spectrum σd of problem (1.1), (1.4) is always nonempty.

In §2 we discuss also some other forms of planar waveguides of constant width (see
Figures 5, 6, and 7). In Subsection 6 of §2 we carry some of the results over to the case
of planar waveguides of piecewise-constant width. In §3 we consider multidimensional
waveguides, and in §4 we treat periodic ones. In all cases we deduce conditions ensuring
the existence of eigenvalues in the discrete spectrum; for this, we apply a variational
method collected from several sources and complemented and stated in a final form in
[2, 3], and also a new generalization of that method for waveguides with variable cross
section. We mention the publications [1] and [4]–[16], where some other methods for
tracing the discrete and the point spectrum were applied, and also for waveguides of
other forms. The survey paper [17] makes it possible to extend the list of references
substantially.

It should be emphasized that, in any of the two-dimensional problems we consider,
the Dirichlet boundary conditions are posed on the parts of the boundary that go to
infinity. I know of no example of a planar cranked or branching waveguide for which the
Neumann problem has an eigenvalue (now belonging to the point spectrum). Only for
some symmetric multidimensional waveguides such eigenvalues can be found within our
approach combined with the method (see [7]) of posing artificial boundary conditions
(see Subsection 5 in §3). The techniques used in the present paper are not adjusted to
calculation of the full multiplicity of the discrete spectrum, so that even the question as
to whether the eigenvalue λ ∈ (0, λ†) that we have found is unique remains, as a rule,
open. As an exception, we mention Theorem 2.2, showing that σd = ∅ in problem (1.1),
(1.5) for the waveguides as in Figure 1a, and also Example 2.1 and Remark 3.1, where
we check that the discrete spectrum for the waveguides in Figures 8a and 3a can consist
of at most one element. However, the particular methods we use can we applied also to
other specific problems.

2. The variational method for the search of eigenvalues below the threshold.
The variational setting of problem (1.1), (1.5) appeals to the integral identity

(1.6) (∇xu,∇xv)Ω = λ(u, v)Ω, v ∈ H̊1(Ω; ΓD)

(see [18]), where ∇x = grad, ( , )Ω is the natural scalar product in the Lebesgue space

L2(Ω), and H̊1(Ω; ΓD) is the subspace in the Sobolev space H1(Ω) formed by the func-
tions subject to the first boundary condition in (1.5). In the case of the Dirichlet con-

ditions (1.4) we have ΓD = ∂Ω, and the notation H̊1(Ω; ∂Ω) will be abbreviated to

H̊1(Ω).
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Figure 2. Branching waveguides.
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Figure 3. Cross-like waveguides.
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Figure 4. Inadequacy of the definition (1.2).

Figure 5. Broken waveguides.
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Figure 6. Connection of straight waveguides with bridges.
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a) b) c)

Figure 7. Smoothly bent waveguides.
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Figure 8. Planar waveguides with piecewise-constant width.

Due to the Dirichlet condition and the cylindrical nature of our domain near infinity,
we have

‖u;L2(Ω)‖ ≤ cΩ‖∇xu;L2(Ω)‖, u ∈ H̊1(Ω; ΓD),

Hence, the left-hand side of (1.6) is a scalar product in the Sobolev space H̊1(Ω; ΓD).
Thus, the variational problem (1.6) gives rise (see [19, Chapter 10]) to an unbounded,
positive, and selfadjoint operator A in the Hilbert space L2(Ω).

As is known (and easy to check), for a planar domain Ω going to infinity along half-
strips of unit width, the continuous spectrum

(1.7) σc = [λ†,+∞)

of the operator A has the threshold

(1.8) λ† =

®
π2/4 for conditions (1.5),

π2 for conditions (1.4).

If λ ≥ λ†, the homogeneous problem in the strip

(1.9) Π0 = {x = (x1, x2) = (y, z) : 0 < y < 1, z ∈ R}

admits an oscillating (or constant in the variable z for λ = λ†) solution1

(1.10) exp(±i(λ− λ†)
1/2z)U†(y),

with the help of which we can easily build a Weil singular sequence for the operator A
at the point λ (see, e.g., [19, §9.1]). In (1.10), i is the imaginary unit, and

(1.11) U†(y) =

®
sin(πy/2) in the case of (1.5),

sin(πy) in the case of (1.4).

Below the threshold λ†, the operator A can have a discrete spectrum σd ⊂ (0, λ†).
The continuous spectrum (1.7) coincides with the essential spectrum, so that the entire
spectrum of A is the union of two disjoint sets σd and σc.

1A running (or stationary) wave.
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Figure 9. A half-strip with curvilinear end.

We pass to the description of our variational method, which consists of several specific
technical tricks. In the half-strip

(1.12) ΠH = {x = (y, z) : y ∈ (0, 1),−H(y) < z}

with curvilinear end, we consider the mixed boundary-value problem

− Δxv(x) = μv(x), x ∈ Πh,

v(x) = 0, x ∈ �H
D , ∂νv(x) = 0, x ∈ �H

N ,
(1.13)

which gives rise (see [19, §9.1]) to an operator AH in the Hilbert space L2(Π
H). Here

H is a nonnegative, continuous, and piecewise smooth function, and

(1.14) �H
D = {0} × (−H(0),+∞)

or

(1.15) �H
D = ({0} × (−H(0),+∞)) ∪ ({1} × (−H(1),+∞)),

where �H
N = ∂ΠH \ �H

D (see Figure 9, a and b). In the situation (1.14), the Dirichlet
conditions are posed on the lower lateral side of the half-strip, while in the case of
(1.15) they are posed on both lateral sides.

In the paper [20], the following theorem was established with the help of the variational
method for the search of the discrete spectrum, as formulated in [2, 3] (see also [21, 14,
15]); we repeat the verification of this theorem for the reader’s convenience.

Theorem 1.1. 1) The discrete spectrum of the operator AH of problem (1.13) is non-
empty provided that

(1.16)

∫ 1

0

H(y) cos(πy) dy < 0

in the case of (1.14) and, in the case of (1.15), provided that

(1.17)

∫ 1

0

H(y) cos(2πy) dy < 0.

2) If the integral on the left in (1.16) (in (1.17)) is zero, but the normal derivative of
the function (1.11) is not identically zero on the arc2

(1.18) �H
0 = {x = (y, z) : y ∈ (0, 1), z = −H(y)},

then the discrete spectrum of AH is still nonempty.

2The relation ∂νU† = 0 a.e. on the set (1.18) is possible only if H(y) = const (see Remark 1.1 below).
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Proof. 1) By [19, §9.2], the lower bound σH of the spectrum σH of AH is calculated by
the formula3

(1.19) σH = inf
u∈H̊1(ΠH ;�H

D
)\{0}

‖∇xu;L2(Π
H)‖2

‖u;L2(ΠH)‖2 .

Since σH
d = σH \ σH

c and σH
c = [λ†,+∞), in the case where σH < λ† the discrete

spectrum σH
d cannot be empty, and λH

1 = σH is the lowest eigenvalue of the operator
AH .

We plug the test function

(1.20) uε(x) =

®
U†(y) if z < 0,

exp(−εz)U†(y) if z ≥ 0

in the right-hand side of (1.19), where ε is a small positive parameter. Due to the

exponential factor, the function (1.20) falls into the space H̊1(ΠH ;�H
D ). The further cal-

culations will be done in the situation (1.15) (the case of (1.14) requires only elementary
modifications). We have

‖uε;L2(Π
H)‖2 = ‖uε;L2(Π+)‖2 + ‖uε;L2(Π

H \ Π+)‖2

=

∫ 1

0

∫ ∞

0

exp(−2εz)|U†(y)|2 dz dy +

∫ 1

0

∫ 0

−H(y)

|U†(y)|2 dz dy

=
1

4ε
+

∫ 1

0

H(y) (sin(πy))2 dy,

‖∇xu
ε;L2(Π

H)‖2 =
π2

4ε
+ π2

∫ 1

0

H(y) (cos(πy))2 dy +
ε

4
.

(1.21)

Consequently,

σH ≤ ‖∇xu
ε;L2(Π

H)‖2
‖uε;L2(ΠH)‖2 ≤

1 + 4ε
∫ 1

0
H(y) (cos(πy))

2
dy + cε2

1 + 4ε
∫ 1

0
H(y) (sin(πy))

2
dy

≤ π2

Å
1 + 4ε

∫ 1

0

H(y) cos(2πy) dy + CHε2
ã
.

(1.22)

Thus, under condition (1.17), the right-hand side of (1.22) can be made less than λ† = π2

by choosing the small number ε > 0 appropriately. In other words, σH < π2, and the
discrete spectrum includes the eigenvalue σH .

2) As before, we restrict ourselves to the situation (1.15); then, by the assumption of
part 2 of the theorem, we have

(1.23)

∫ 1

0

H(y) cos(2πy) dy = 0.

For the role of the test function, we take the sum uε +
√
εv, where uε is given by (1.20),

and v is an arbitrary smooth function supported on a neighborhood of the end (1.18) of
the half-strip. If the discrete spectrum is empty, so that

(1.24) σH = λ†

3We draw the reader’s attention to the convenience of the theory presented in [19, Chapter 10]: the

infimum is calculated on the “energy” space H̊1(ΠH ;�H
D ), rather than on the domain of the operator

AH ; due to the possible singularities of the boundary, this domain may fail to coincide with H2(ΠH) ∩
H̊1(ΠH ;�H

D ).
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Figure 10. Half-strips with holes and cracks.

a) k > 0 b) k <  0
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Figure 11. Half-strips with slanted ends.

(cf. (1.8)), then, by formula (1.19), we have

(1.25) ‖uε +
√
εv;L2(Π

H)‖ ≤ π−2‖∇xu
ε +

√
ε∇xv;L2(Π

H)‖.
Using the calculations (1.21), we find that the two sides of (1.25) are equal, respectively,
to the expressions

1

4ε
+

∫ 1

0

H(y) (sin(πy))
2
dy + 2

√
ε

∫
ΠH

U†(y)v(x) dx + O(ε),

1

π2

Å
π2

4ε
+ π2

∫ 1

0

H(y) (cos(πy))
2
dy + 2

√
ε

∫
ΠH

∂yU†(y)∂yv(x) dx

ã
+ O(ε).

(1.26)

Both integrals over the set ΠH in (1.26) converge because the support supp v is compact.
Then, by (1.23) and (1.26), inequality (1.25) takes the form

2
√
ε

∫
ΠH

U†(y)v(x) dx ≤ 1

π2
2
√
ε

∫
ΠH

∂yU†(y)∂yv(x) dx + Cε.

Next we integrate by parts and use the simple equation −∂2
yU†(y) = π2U†(y) to reshape

this inequality to

(1.27) −2
√
ε

∫
�H

0

v(x)∂νU†(y) dsx ≤ Cε.

If ∓∂νU†(y
0) > 0 at a point (y0,−H(y0)) ∈ �H

0 , then, for a function ±v with small
support positive at that point, the integral in (1.27) becomes positive, and relation
(1.27) itself becomes absurd for small ε > 0. Thus, (1.24) cannot be true, and the
discrete spectrum is nonempty. �

Remark 1.1. Theorem 1.1 admits simple generalizations to the case of semibounded sets
(e.g., a half-strip with holes as in Figure 10a). The condition ∂νU† �≡ 0 on �H

0 is only
violated for the half-strip with right end itself, or for such a half-strip with a family of
cracks parallel to its end (see Figure 10b).

Example 1.1. Let H(y) = ky (Figure 11). In the case of (1.14) we have∫ 1

0

H(y) cos(πy) dy =
k

π

(
y sin(πy) +

1

π
cos(πy)

)∣∣∣∣
1

0

= − k

π2
.

Therefore, if the coefficient k (see Figure 11) is positive, Theorem 1.1 guarantees that
σH
d �= ∅. In Remark 2.1 we shall explain why σH

d = ∅ if k ≤ 0 (Figures 11b and 12d).
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a)  k  <  k
1 0

b)  k  <  k
10

c)  k  = k = 010
d)  k  = k  = 0

10

Figure 12. Half-strips with pointed (a and b), slanted (c), and right (d) ends.

Example 1.2. Let t ∈ (0, 1), and let, in accordance with Figure 12, the profile function
be given by the formulas

(1.28) H(y) =

®
k0y if y ∈ (0, t),

k0t + k1(y − t) if y ∈ (t, 1).

In the case of (1.15), where the Dirichlet condition is posed on both lateral sides of the
half-strip, we have

(1.29)

∫ 1

0

H(y) cos(2πy) dy =
1

4π2
(k1 − k0)(1 − cos(2πt)).

If k0 > k1 (Figure 12a), then the last factor is positive, so that condition (1.17) is satisfied,
and the discrete spectrum is nonempty. If k0 = k1, i.e., the integral (1.29) is equal to
zero, but k0 �= 0 (Figures 12c and 11a), then Theorem 1.1 (2) again ensures that the
discrete spectrum σH

d is nonempty. Finally, if k0 < k1 (Figure 12b), then Theorem 1.1
gives no information about the discrete spectrum.

Remark 1.2. In accordance with the arguments in Example 1.2, any slanted cut splits
the half-strip into two semibounded waveguides such that a nonempty discrete spectrum
emerges for the mixed boundary-value problem with Dirichlet conditions on the lateral
sides of slanted half-strips and Neumann conditions on their ends.

3. Description of known and new results. As has been mentioned, Theorem 1.1
is borrowed from the paper [20]. The claims about the existence of eigenvalues of the
Dirichlet problem (1.1), (1.4) below the threshold λ† = π2 of the continuous spectrum are
known (see [22, 23]) for the domains as in Figures 3a and 1c (see also Theorems 2.5 and
2.3, respectively). Note that the fact that the discrete spectrum σd is nonempty in the
case of a cross-like waveguide is a consequence of a similar property of the spectrum for
the cranked waveguide with the angle α2 equal to π/2 (see (1.3) and Remark 2.2). This
makes it possible to extend the claims in question to some waveguides with piecewise-
constant width (see Subsection 6 in §2). We mention curious observations made in [23]
in connection with the result of [22]: first, in the union Ω of two mutually orthogonal

strips of unit width, we can place the square Q√
2 with side

√
2 (see the deeply pointed

square in Figure 3b), and the first eigenvalue of the Dirichlet problem for Q√
2 is equal to

2(π/
√

2)2 = π2; second, for any bounded subdomain Ω• � Q√
2 of Ω, the first eigenvalue

lies in the interval (0, π2); and third, since this interval does not intersect the continuous
spectrum σc = [π2,∞) (cf. formulas (1.7), (1.8)) of the cross-like waveguide, such a
waveguide has an eigenvalue λ ∈ (0, π2) by the minimal principle (1.19). It should be
emphasized that, generally speaking, no similar simple arguments are a success for the
planar waveguides with piecewise constant width studied in §3 (cf. Remark 2.3 and
Example 2.1).
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Yet another series of known results on the existence of eigenvalues pertains to the
case of smoothly bent waveguides depicted schematically in Figure 7, a and b (see the
paper [1], where not only planar, but also 3-dimensional waveguides with constant cross
sections were studied). In Theorem 2.4 we give a proof different from the original one
(see [1]) and based on the variational method mentioned above. Also, this method allows
us to find eigenvalues on the interval (0, π2) in the case of broken waveguides (Figure 5).

In §2 below, we consecutively consider the three cranked waveguides as in Figure 1,
and then the broken (Figure 5), smoothly bent (Figure 7), and branching (Figures 2, 3,
and 6) waveguides. Also we discuss some noncentered waveguides (Subsection 5 in §2)
and waveguides with piecewise-constant width. In §3 we apply the same techniques to
study cranked and branching waveguides, and in §4 the variational method is generalized
to cover the case of periodic waveguides. It should be emphasized that in the last case the
results become somewhat conditional, because the eigenfunction of the model problem
on the periodicity cell that corresponds to the first eigenvalue depends on all n spatial
variables. Subsection 5 of §3 deserves special mention: here we use the method of [7] to
investigate the point spectrum (the eigenvalues embedded in the continuous spectrum)
for the Neumann problem in symmetrical many-dimensional waveguides, and also present
examples of planar branching waveguides for which the intersection of the point and the
continuous spectrum is nonempty.

§2. Two-dimensional waveguides

1. A cranked waveguide; the mixed boundary-value problem for α2 ∈ (π, 2π).
The bisector of the obtuse angle 2π − α2 with the vertex P (see Figure 13) splits our
cranked waveguide, which now is a broken strip Ω as in Figure 1b, into two slanted
half-strips Πp, p = 1, 2. In the local coordinates (yp, zp) the half-strips Πp take the
form (1.12) with one and the same profile function H(yp) = kyp and the coefficient
k = tan(α2/2) < 0. Since the test function

(2.1) uε(x) =

®
U†(yp) if x ∈ Πp, zp < 0,

exp(−εzp)U†(yp) if x ∈ Πp, zp > 0, p = 1, 2,

(cf. the definition (1.20)) turns out to be continuous everywhere, including the set where
the half-strips meet, the claim below can be verified along the lines of the proof of
Theorem 1.1 (see the calculations in Example 1.1).

Theorem 2.1. The operator A of the mixed boundary-value problem (1.1), (1.5) in
a cranked waveguide Ω as depicted in Figures 13 and 1b with the angle α2 ∈ (π, 2π)
measured between the two rays carrying the Dirichlet conditions, always has an eigenvalue
on the interval (0, π2/4), i.e., the discrete spectrum σd of the operator A is nonempty.

2. A cranked waveguide; the mixed boundary-value problem for α2 ∈ (0, π).
If α2 ∈ (0, π), then k = tan(α2/2) > 0 in the notation as above (cf. Figure 14). Hence,
condition (1.16) is violated, and Theorem 1.1 says nothing about the properties of the
discrete spectrum. Actually, we have σd = ∅; to verify this we shall need an auxiliary
claim.

Lemma 2.1. Consider a right triangle ϑh and pose the Neumann boundary conditions
on the hypotenuse and on the leg of unit length, while on the other leg τh of length h
we pose the Dirichlet condition. Then the eigenvalue βh

1 of such a mixed boundary-value
problem for the Laplace operator satisfies the inequalities

(2.2)
π2

4
< βh

1 < β0
1 ,
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Figure 13. A cranked waveguide.

where β0
1 ≈ 2.4048 . . . is the first eigenvalue of the Dirichlet problem for the Laplace

operator in the unit disk (see, e.g., [24]).

Proof. The function (0,+∞) � h �→ βh
1 is monotone decreasing. To check this, we apply

the minimal principle

(2.3) βh
1 = inf

w∈H̊1(ϑh;τh)

‖∇xw;L2(ϑ
h)‖2

‖w;L2(ϑh)‖2 .

In formula (2.3) with a perturbed parameter h+ � h > h, we substitute the test function

w(y, z) = wh
1 (h(h+ � h)−1y, z),

belonging to the space H̊1(ϑh+�h; τh+�h) and built starting with the first eigenfunction
of the problem in the triangle ϑh. Dilating the coordinate y, we obtain

βh+�h
1 ≤ ‖w;L2(ϑ

h+�h)‖−2‖∇xw;L2(ϑ
h+�h)‖2

= ‖wh
1 ;L2(ϑ

h)‖−2
(
h2(h+ � h)−2‖∂yw;L2(ϑ

h)‖2 + ‖∂zw;L2(ϑ
h)‖2

)
≤ ‖wh

1 ;L2(ϑ
h)‖−2‖∇xw

h
1 ;L2(ϑ

h)‖2 = βh
1 .

We write the one-dimensional Friedrichs inequality

(2.4)

∫ a

0

∣∣∣∣dWdy (y)

∣∣∣∣
2

dy ≥ π2

4a2

∫ a

0

|W (y)|2 dy, W ∈ C1[0, a], W (0) = 0,

we put a(z) = 1 + h−1z and integrate the result over z ∈ (−h, 0). Since π2a(z)−2 ≥ π2,
we have

(2.5) ‖∇xw;L2(ϑ
h)‖2 ≥ ‖∂yw;L2(ϑ

h)‖2 ≥ π2

4
‖w;L2(ϑ

h)‖2, w ∈ H̊1(ϑh; τh),

which yields the left inequality in (2.2).
Let 2hn be the side of the regular n-gon circumscribed about the unit circle. We

form even extensions of the function whn
1 over the hypotenuses and those legs of the

triangles ϑh and of its copies on which the Neumann conditions are posed, obtaining a
positive eigenfunction of the Dirichlet problem in the n-gon; we find that βhn

1 is the first

eigenvalue of this problem. Consequently, βhn
1 → β0

1 as h → ∞. Since monotonicity is
already checked, this makes the right inequality in (2.2) evident. �
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Figure 14. Splitting of cranked waveguide.

Theorem 2.2. The operator A of the mixed boundary-value problem in the cranked
waveguide Ω depicted in Figures 14 and 1a with the angle α2 ∈ (0, π) measured between
rays carrying the Dirichlet conditions, has the spectrum [π2/4,∞) which is continuous,
and has no discrete spectrum.

Proof. It suffices to check that there are no eigenvalues on (0, π2/4). Let u ∈ H̊1(Ω; ΓD)
be a solution of problem (1.1), (1.5) for λ < π2/4. We put Π#

p = {x ∈ Πp : zp >
cot(α2/2)} (see Figure 14) and observe that, by the Friedrichs inequality on the interval
(0, 1) (relation (2.4) with a = 1), we have

(2.6) ‖∇xu;L2(Π
#
p )‖2 ≥

∫ 1

0

∫ ∞

cot(α2/2)

∣∣∣∣ ∂u∂yp
(x)

∣∣∣∣
2

dyp dzp ≥ π2

4
‖u;L2(Π

#
p )‖2.

Also, using Lemma 2.1 and, in particular, inequality (2.5), we obtain

(2.7) ‖∇xu;L2(Πp \ Π#
p )‖2 ≥ βh

1 ‖u;L2(Πp \ Π#
p )‖2 ≥ π2

4
‖u;L2(Πp \ Π#

p )‖2.

Adding the above estimates and recalling identity (1.6), we get

λ‖u;L2(Π)‖2 = ‖∇xu;L2(Π)‖2

=
2∑

p=1

(
‖∇xu;L2(Π

#
p )‖2 + ‖∇xu;L2(Πp \ Π#

p )‖2
)
≥ π2

4
‖u;L2(Π)‖2.

It follows that ‖u;L2(Π)‖ = 0, whence u = 0, so that λ is not an eigenvalue. �

Remark 2.1. In particular, the proof of Theorem 2.2 implies the last claim in Example 1.1.

3. Cranked and broken waveguides with Dirichet conditions. The domain Ω in
Figure 13 is composed of two identical slanted half-strips Π1 and Π2 (Figure 11a or 11b).
The calculations made in Example 1.2 for the case where k0 = k1 (Figure 12c) show that
the function (2.1) defined in accordance with the lower lines in (1.8) and (1.11), satisfies

(2.8) ‖∇xu
ε;L2(Ω)‖2 − π2‖uε;L2(Ω)‖2 = O(ε).

Using this relation, we repeat the calculations used in the proof of Theorem 1.1 (2), with
minor changes caused by the presence of two exits to infinity. Thus, the inequality

(2.9) ‖uε +
√
εv;L2(Ω)‖ ≤ π−2‖∇xu

ε +
√
ε∇xv;L2(Ω)‖,
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implied by the assumption σ = λ† = π2 (cf. the previous formula (1.24)), reshapes to
the form

Cε ≥ 2
√
ε

2∑
p=1

∫
Πp

Å
∂U†
∂yp

(yp)
∂v

∂yp
(x) − π2U†(yp)v(x)

ã
dx + O(ε)

= 2
√
ε

2∑
p=1

∫
Bp

v(x) cosβp
∂U†
∂yp

(yp) dsx + O(ε).

(2.10)

Here v is an arbitrary smooth function with compact support in Ω; integration by parts
gave rise to the factor cosβp, where βp = β ∈ (0, π/2) is the angle between the axis yp
and the normal to the end Bp of the half-strip Πp. Observe that (∂U†/∂y)(y) = π cos(πy)
and dsx = (sinβ)−1dy. Consequently, the right-hand side of (2.10) is equal to

(2.11) 4
√
ε cotβ

∫ 1

0

cos(πy)v(y, y cotβ) dy + O(ε).

Now it becomes clear that an appropriate choice of the test function v makes the integral
in (2.11) positive, so that inequality (2.10) fails. This contradiction shows that σ < π2,
whence we see that there exists a point λ = σ ∈ (0, π2) belonging to the discrete spectrum.

Theorem 2.3. The discrete spectrum of the operator of the Dirichlet problem (1.1),
(1.4) in a cranked waveguide Ω as in Figure 1 is nonempty for any angle α2 �= π between
the axes of the half-strips that form this waveguide.

The approach described above works also in the case of broken waveguides as in
Figure 5. Then the test function uε involves the factor sin(πyp) in the slanted half-strips
Π1 and Π2, as well as in the trapezoid Π3 of unit height that connects Π1 and Π2 (Π3

can degenerate to a triangle). As another series of examples, we mention several parallel
waveguides as in (1.9) connected by bridges (Figure 6). The test function in the pointed
half-strips (see Figure 6) is given by the same formula as before, and in the hexagon
(or rhombus in the degenerate case) it is equal to cos(πz) (the origin of the z-axis is
marked with a bold point). Of course, the number of the waveguides and bridges may
be arbitrary.

4. Smoothly bent waveguides. Let L be a smooth arc on the plane, coinciding with
straight rays L± outside the disk BR of radius R. Let Ω be given by (1.2); we assume
that this domain Ω is a curvilinear strip of unit width (see Figure 7, a and b), i.e.,

(2.12) Ω = {x : s ∈ R,−1/2 < n < 1/2};
here (n, s) is the coordinate system near L; s is the arclength on L, and n is the oriented
distance to L. The above assumption excludes, in particular, all self-intersecting curves
(Figure 7c).

In the curvilinear coordinates, the Laplace operator takes the form

(2.13) Δx =
1

1 + nκ(s)

∂

∂n
(1 + nκ(s))

∂

∂n
+

1

1 + nκ(s)

∂

∂s

1

1 + nκ(s)

∂

∂s
,

and the Dirichlet integral looks like this:

(2.14) D(u; Ω) =

∫
R

∫ 1/2

−1/2

Å∣∣∣∂u
∂n

(n, s)
∣∣∣2 +

1

(1 + nκ(s))2

∣∣∣∂u
∂s

(n, s)
∣∣∣2
ã

(1 + nκ(s)) dn ds.

Here κ(s) is the curvature of the arc L at s. Observe that, first, we do not distinguish
notationally a point s and its coordinate on L, and second, we preserve the symbol of a
function after rewriting it in the coordinates n and s.
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We consider the test function

(2.15) uε(x) = exp(−ε|s|) cos(πn)

similar to (1.20). We have

‖uε;L2(Ω)‖2 =

∫
R

∫ 1/2

−1/2

|uε(n, s)|2(1 + nκ(s)) dn ds

=

∫
R

exp(−2ε|s|)
Å ∫ 1/2

−1/2

| cos(πn)|2(1 + nκ(s)) dn

ã
ds

=
1

2

∫
R

exp(−2ε|s|) ds

=
1

2ε
+ O(ε).

(2.16)

Since the expression | cos(πn)|2nκ(s) is even relative to the variable n ∈ (−1/2, 1/2),
the integral (2.16) is independent of the curvature κ. Similarly, for the Dirichlet integral
(2.14) we obtain

(2.17) D(uε; Ω) =
π2

2ε
+ O(ε),

the contribution of the expression

(1 + nκ(s))−1|∂suε(n, s)|2

being O(ε) due to a small factor in the exponent on the right in (2.15). So, by (2.16)
and (2.17), the test function (2.15) satisfies relation (2.8), which allows us to apply the
trick used in the proof of Theorem 1.1 (2). Namely, for the new test function uε +

√
εv

we have

π2‖uε +
√
εv;L2(Ω)‖ =

π2

2ε
+ 2

√
επ2

∫
Ω

v(x) cos(πn) dx + O(ε),

D(uε +
√
εv; Ω) =

π2

2ε
+ 2

√
ε

∫
Ω

∇xv(x) · ∇x cos(πn) dx + O(ε).

(2.18)

The assumption (1.24) about the absence of the discrete spectrum implies inequality
(2.9); using (2.18) and the Green formula, we can transform (2.9) as follows:

Cε ≥ 2
√
ε

∫
Ω

(
π2v(x) cos(πn) −∇xv(x) · ∇x cos(πn)

)
dx

= −2
√
ε

∫
Ω

v(x)
(
Δx − π2

)
cos(πn) dx.

An appropriate choice of a smooth function v with small compact support leads to the
desired contradiction, showing that the discrete spectrum σd is nonempty provided that(

Δx − π2
)
cos(πn) �= 0 for some point x0 ∈ Ω.

By (2.13), the expression on the left equals

−πκ(s)(1 + nκ(s))−1 sin(πn),

and the required point x0 can be found easily if the curvature is nonzero somewhere on L.

Theorem 2.4 (see [1]). If the smooth arc L is not a straight line, then the discrete
spectrum of the operator of the Dirichlet problem in the domain (2.12) is nonempty.
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The facts mentioned immediately after Theorem 2.3 can be interpreted as a general-
ization to the case where L is a broken line. The inequalities −1/2 < n < 1/2 in the defi-
nition (2.12) of the domain Ω can be replaced with the inequalities h−1/2 < n < h+1/2
with any h ∈ R, because∫ h+1/2

h−1/2

n
Ä
(cos(πn))2 − (sin(πn))2

ä
dn = 0,

and all the above calculations and arguments remain valid. The existence of an eigenvalue
λ ∈ (0, π2) for the waveguide depicted in Figure 7c (a self-intersecting curve L) will be
established in Subsection 5 of §2.

5. Branching waveguides with Dirichlet conditions. Consider the Dirichlet prob-
lem (1.1), (1.4) for N > 2 (Figures 2a and 3a). We split the domain Ω into half-strips
Π1, . . . ,ΠN with pointed ends, connecting by segments the origin O and the points
P 1, . . . , PN of intersection of the lateral sides of half-strips. In the local coordinates
(yp, zp), each set Πp takes the form (1.12) with the profile function (1.28), and kp0 > 0.
Since N ≥ 3, the angle βp at the vertex of the pointed end is strictly less than π, i.e.,
it is obtuse, right-angled, or acute. Thus, kp1 < kp0 (recall that the end of a half-strip is
defined by the equation zp = −Hp(yp)), and the integral (1.29) is negative for each of
the half-strips Πp. It remains to observe that the function uε given by the formula

uε(x) =

®
sin(πyp) if x ∈ Πp \ Π#

p ,

sin(πyp) exp(−εzp) if x ∈ Π#
p

is continuous and piecewise smooth in Ω, because sin(πyp) = sin(πyq) on the common
segment Bpq of the pointed ends of two neighboring half-strips Πp and Πq. The origin of
the local coordinates (yp, zp) is fixed in such a way that Π#

p = {x : yp ∈ (0, 1), zp > 0}
is the largest half-strip with right-angled end contained in Πp. As a result, we arrive at
the relation

σ ≤ ‖∇xu
ε;L2(Ω)‖2

‖uε;L2(Ω)‖2 =

∑N
p=1 ‖∇xu

ε;L2(Π
#
p )‖2 +

∑N
p=1 ‖∇xu

ε;L2(Πp \ Π#
p )‖2∑N

p=1 ‖uε;L2(Π
#
p )‖2 +

∑N
p=1 ‖uε;L2(Πp \ Π#

p )‖2

=

N∑
p=1

1∫
0

∞∫
0

e−2εzp(π2(cos(πyp))
2+ ε2(sin(πyp))

2) dzp dyp + π2
N∑

p=1

∫
Πp\Π#

p

(cos(πyp))
2dx

∑N
p=1

∫ 1

0

∫ ∞
0

e−2εzp(sin(πyp))2 dzp dyp +
∑N

p=1

∫
Πp\Π#

p
(sin(πyp))2 dx

≤
N
2επ

2 + cε + π2 ∑N
p=1

∫
Πp\Π#

p
(cos(πyp))

2 dx

N
2ε +

∑N
p=1

∫
Πp\Π#

p
(sin(πyp))2 dx

≤ π2

Å
1 +

2

N
ε

N∑
p=1

Ip + O(ε2)

ã
,

(2.19)

where

Ip =

∫
Πp\Π#

p

(cos(πyp))
2 − (sin(πyp))

2) dx +
N∑

p=1

∫
Πp\Π#

p

(sin(πyp))
2 dx

≤
∫ 1

0

∫ 0

−Hp(yp)

(cos(2πyp))
2 dzp dyp = −

∫ 1

0

Hp(yp)(cos(2πyp))
2 dyp < 0,

(2.20)

and the Hp are the convex (kp1 < kp0) piecewise linear profile functions (1.28) that describe
the ends of the pointed half-strips Πp forming the branching waveguide Ω. Using (2.20),
we choose ε > 0 so small that relation (2.19) takes the form σ < π2, thus establishing
the next claim.
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Figure 15. Noncentered branching waveguides.

Figure 16. A branching curved waveguide.

Theorem 2.5. The operator A of the Dirichlet problem (1.1), (1.4) in a domain Ω
(branching waveguide) with N > 2 exist to infinity, as depicted in Figures 2a and 3a in
the cases where N = 3 and N = 4, respectively, always has an eigenvalue on the interval
(0, π2), i.e., the discrete spectrum of A is nonempty.

Remark 2.2. Theorem 2.5 can be verified with the help of formula (1.19). Indeed, by
what is proved in Theorem 2.3, any of the cranked waveguides Ω∠ obtained by cutting off
the “excess” exits to infinity from the branching waveguide Ω, has an eigenvalue λ∠ < π2

with an eigenfunction u∠ ∈ H̊1(Ω∠). Observing that the Dirichlet problems in Ω and Ω∠

have identical continuous spectrum σc = σ∠
c = [π2,+∞), we substitute the eigenfunction

u∠ extended by zero outside of Ω∠ in formula (1.19):

(2.21) σ = inf
u∈H̊1(Ω)\{0}

‖∇xu;L2(Ω)‖2
‖u;L2(Ω)‖2 ≤ ‖∇xu

∠;L2(Ω
∠)‖2

‖u∠;L2(Ω∠)‖2 = λ∠ < π2.

As usual, this implies that σd �= ∅.

It should be emphasized that the simple approach described in Remark 2.2 may fail
to work in the case of waveguides with piecewise constant width (see Example 2.1).
On the other hand, the waveguides depicted in Figures 2 and 3a are centered, i.e., the
midlines of the strips forming them intersect at one point, but for decentered waveguides
(see Figure 15) the variational method that has led us to Theorem 2.5 is no longer
applicable, yet the simple considerations of Remark 2.2 (in particular, formula (2.21))
work well (the cranked waveguides whose eigenvalues majorize those of the corresponding
branching waveguides are deeply tinted in Figure 15).

The smoothly bent waveguides can be treated as described in Remark 2.2 for the case
of branching ones (see Figure 16). Into the self-intersecting waveguide as in Figure 7, we
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Figure 17. Part of a waveguide with piecewise constant width.

can place a cranked waveguide with α2 = π/2 (the deeply tinted fragment of the figure);
hence, the discrete spectrum is still nonempty in this case.

6. Branching waveguides with piecewise constant width. Let Π∞
1 , . . . ,Π∞

N be
strips of width l1, . . . , lN , N ≥ 3, and let the following be true for some natural m ∈
(0, N):

(2.22) 1 = l1 = · · · = lm > lm+1 ≥ · · · ≥ lN .

Suppose that the midlines of the strips intersect at the point O. From the corresponding
pointed half-strips, we build a branching waveguide (see Figure 2a). Namely, from the
point P pq of intersection of sides of two neighboring half-strips with right-angled ends, we
draw the segment Bpq to the point O (Figure 17). This segment is part of the pointed end
of half-strips Πp and Πq, which are components of the waveguide Ω; such a construction
should be done for all pairs of neighboring half-strips.

Like in the preceding subsection, we consider the Dirichlet problem (1.1), (1.4) and
define a test function uε in the half-strips Πp of unit width, p = 1, . . . ,m, by the formulas

uε(x) =

®
sin(πyp) if x ∈ Πp, zp < 0,

exp(−εzp) sin(πyp) if x ∈ Πp, zp > 0.

The origin of the local Cartesian coordinate system (yp, zp) is assumed to lie at a suf-
ficiently large distance R from the point O (Figure 17), in order that, in the junction
zone itself, the function uε coincide with sine functions without exponential factors. For
q = m + 1, . . . , N , in the half-strip Πq of width lq < 1 (see (2.22)), the test function has
the form

(2.23) uε(x) =

®
sin(l−1

q πyq) if x ∈ Πq, zq < 0,

exp(−π(l−2
q − 1)1/2zq) sin(l−1

q πyq) if x ∈ Πq, zq > 0.

The function written in the lower line in (2.23) decays exponentially at infinity and
satisfies the Helmholtz equation (1.1) with the parameter λ = π2 in the entire strip Π∞

q .

It is important that the traces of uε on Bpq = ∂Πp ∩ ∂Πq calculated from the sides of
Πp and Πq coincide. This is obvious, because the level lines of the functions sin(l−1

p πyp)

and sin(l−1
q πyq) intersect Bpq at a common point; however this fact is crucial, allowing

us to conclude that uε ∈ H̊1(Ω).
For each half-strip Πp, its contribution to the continuous spectrum σc of Ω is equal

to [π2l−2
p ,+∞), and the entire σc is determined by the half-strip of maximal width.
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Recalling (2.22), we see that σc = [π2,+∞). If σ = π2, then, by (1.19),

(2.24) I(Ω) :=

∫
Ω

(
π2|uε(x)|2 − |∇xu

ε(x)|2
)
dx ≤ 0.

We compute the above integral over the half Πq
p of the half-strip that adjoints the segment

Bpq (Figure 17). For p = 1, . . . ,m we have

I(Πq
p) =

∫ 1/2

0

∫ ∞

0

(
π2(sin(πyp))

2 − π2(cos(πyp))
2 − ε2(sin(πyp))

2
)
exp(−2πεzp) dzp dyp

+ π2

∫ 1/2

0

∫ 0

−R+yp cot βpq

(
(sin(πyp))

2 − (cos(πyp))
2
)
dzp dyp

= O(ε) − π2

∫ 1/2

0

(−R + yp cotβpq) cos(2πyp) dyp

=
1

2
cotβpq + O(ε).

Here βpq ∈ (0, π) is the angle between the axis of Πp and the segment Bpq.
If q > m and lq < 1, then

I(Πp
q) = π2

∫ lq/2

0

∫ ∞

0

(
(sin(l−1

q πyq))
2 − l−2

q (cos(l−1
q πyq))

2 − (l−2
q − 1)(sin(l−1

q πyq))
2
)

× exp(−2π(l−2
q − 1)1/2zq) dzq dyq

+ π2

∫ lq/2

0

∫ 0

−R+yq cot βqp

(
(sin(l−1

q πyq))
2 − l−2

q (cos(πyq))
2
)
dzq dyq

=
π

4
(1 − l2q)

1/2 +
π2

4
R(1 − l2q) −

π

16
(1 − l2q) cotβpq +

1

4
(1 + l2q) cotβpq

=
1

2
cotβpq + (1 − l2q)

1/2Jqp(lq).

Here Jqp is a continuous function. Finally, we get the formulas

I(Ω) = I ′(Ω) +
∑
pq

(1 − l2q)
1/2Jqp(lq) + O(ε),(2.25)

I ′(Ω) =
1

2

∑
pq

(cotβpq + cotβqp),(2.26)

where on the right-hand side of (2.26), summation is over all intersection points P pq for
the lateral sides of neighboring half-strips, and on the right in (2.25), summation is over
all P pq such that lq < 1.

Repeating the calculations in Example 1.2 and the arguments before Theorem 2.5, we
see that the sum (2.26) is negative. Thus, if the differences 1− lq, q = m+ 1, . . . , N , are
small, then the parameter ε > 0 can be chosen so that the expression (2.25) be negative.
Now, for the same reasons as before, the following statement is true.

Theorem 2.6. For any branching waveguide Ω composed of half-strips Πp of width lp,
p = 1, . . . , N , and satisfying (2.22), there exists δ > 0 such that if

lq ∈ (1 − δ, 1), q = m + 1, . . . , N,

then the Dirichlet problem (1.1), (1.4) has an eigenvalue λ ∈ (0, π2), i.e., the discrete
spectrum of the corresponding operators A is nonempty.
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Remark 2.3. 1) For the Dirichlet problem, the method of the proof of Theorem 2.6 does
not work in the case of cranked waveguides with piecewise-constant width (Figure 8c),
because the calculations in Example 1.2 (the case where k0 = k1 �= 0; see Figure 12c)
show that the sum (2.26) vanishes. Therefore, the simple trick described in Remark 2.2
allows us to find a point of the discrete spectrum for the T -like waveguide Ωh (Figure 8b)
only if the width h of the vertical half-strip is equal to 1: whenever h > 1, the continuous
spectrum σc extends up to the ray [h−2π2,∞), but if h < 1, so that σc = [π2,∞), then
no cranked waveguide of unit width fits into Ωh.

2) In the proof of Theorem 2.1, the cranked waveguide in Figure 1b (with mixed
boundary conditions) was split into two slanted half-strips, each satisfying the strict
inequality (1.16). Therefore, in the same way we can check the existence of an eigenvalue
below the continuous spectrum threshold for a cranked waveguide of the same type with
one of the sleeves slightly varied.

Example 2.1. Consider the T -like junction of a strip and a half-strip of width 1 and h,
respectively (see Figure 8b, and Remark 2.3). Theorems 2.5 and 2.6 indicate points of
discrete spectrum for h ∈ (1−h−, 1+h+); here the h± are some positive quantities (note
that, for h > 1, to apply Theorem 2.6 directly, we must perform the coordinate contrac-
tion x �→ h−1x; see the requirement (2.22)). In Remark 2.3 it was already mentioned that
no other conclusions are possible on the basis of the results obtained. Nevertheless, the
conjecture that the discrete spectrum is nonempty for any h ∈ (0, 1) is fairly plausible.
By Remark 2.2, to check this conjecture it suffices to explore the T -like waveguide in the
limit as h → +0. Apparently, the discrete spectrum is empty for h sufficiently large. We
verify that for h ≤ 1 the discrete spectrum can consist of at most one point. Let σd �= ∅
and let λ1 < π2 be the smallest eigenvalue. By the maximum principle, the correspond-
ing eigenfunction u1, which decays exponentially as |x| → +∞, can be assumed to be
positive in Ωh. We invoke the maximum principle (see [19, Theorem 10.2.2]):

(2.27) λj = max
Ej

inf
v∈Ej\{0}

‖∇xv;L2(Ω)‖2
‖v;L2(Ω)‖2 ,

where Ej is an arbitrary subspace in H̊1(Ω) of codimension j − 1; in particular, E1 =

H̊1(Ω). For j = 2, for the role of the subspace we take

(2.28) E2 =

ß
v ∈ H̊1(Ω) :

∫
Qh

v(x) sin
(
π
z

2

)
dy dz = 0

™
.

Here Qh is the rectangle {x = (y, z) : y ∈ (0, h), z ∈ (0, 1)} (the coordinate axes are
indicated in Figure 8b, and the rectangle itself is deeply tinted). The codimension of
the subspace (2.28) is one, because v is subject to one linear restriction. If the discrete
spectrum has an eigenvalue λ2 then, by (2.27), we have

(2.29) λ2 ≥ inf
v∈E2\{0}

‖∇xv;L2(Ω)‖2
‖v;L2(Ω)‖2 .

The first two eigenvalues of the mixed boundary-value problem in Qh (the Dirich-
let conditions are imposed on the lower base qh of Qh) are equal to μ1 = π2/4 and
μ2 = min{π2, h−2π2 + π2/4} = π2, and the first eigenfunction takes the form sin(πz/2).
Consequently, we can repeat the arguments from the proof of Theorem 2.2 to con-
clude that, on the subspace (2.28), we have ‖v;L2(Ω)‖2 ≤ C‖∇xv;L2(Ω)‖2 with C =
min{π2, h−2π2, π2}. The first two numbers π2 and h−2π2 arose when the Friedrichs in-
equality was applied on cross sections of half-strips of width π and h < 1 (see (2.6)), and
the last copy of π2 is due to an application of the Poincaré–Friedrichs inequality similar
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to (2.7):

‖∇xv;L2(Q
h)‖2 ≥ μ2‖v;L2(Ω)‖2, v ∈ H̊1(Qh; qh),∫

Qh

v(x) sin
(
π
z

2

)
dy dz = 0.

Thus, the left-hand side of (2.29) cannot be less than π2, so that it cannot happen that
λ2 ∈ (0, π2).

If h = 2, then we can use the trick [7] of posing an artificial Dirichlet condition on
the symmetry line {(y, z) : y = 0} and the result of Theorem 2.3 about the cranked
waveguide Ω	 with unit width and right angle, showing that the Dirichlet problems in
Ω	 and Ω2 have an eigenvalue λ	 ∈ (0, π2). However, the continuous spectrum of the
waveguide Ω2 occupies the ray [π2/4,∞), and it is not clear whether the point λ	 falls
into the interval (0, π2/4). If λ	 ∈ (0, π2/4), then the discrete spectrum of Ω2 includes
at least one eigenvalue less than λ	. Indeed, in accordance with the method of [7], an

eigenfunction u ∈ H̊1(Ω2) is obtained by the odd (relative to y) extension of a positive
eigenfunction u	, so that u changes its sign in Ω2, and therefore, cannot correspond to
the first eigenvalue of the Dirichlet problem in Ω2.

§3. Many-dimensional waveguides

1. Semicylinder with curved end. Let ω be a domain in the Euclidean space Rn−1,
with Lipschitz boundary ∂ω and compact closure sω = ω ∪ ∂ω. We split the surface
into two parts γD �= ∅ and γN . We put Π = ω × R and, similarly, define the parts
ΓD = γD ×R and ΓN = γN ×R of the cylindrical surface ∂Π. Also, let H be a Lipschitz
function on sω, let

(3.1) ΠH = {x = (y, z) : y = (y1, . . . , yn−1) ∈ ω,−H(y) < z},
and let ΓH

D and ΓH
N have similar meaning. In the semicylinder (3.1) with the curved end

ωH = {(y, z) : y ∈ ω, z = −H(y)}, we consider the boundary-value problem (1.13), in
which �H

D = ΓH
D �= ∅ and �H

N = ΓH
N ∪ ωH . The variational setting of this problem

(3.2) (∇vx,∇wx)ΠH = λ(v, w)ΠH , w ∈ H̊1(Πh; ΓH
D),

gives rise [19, Chapter 10] to an unbounded positive selfadjoints operator A in the space
L2(Π

H). The continuous spectrum σH
c of A coincides with the ray [λ†,∞), where λ† = Λ1

is the first (simple and positive) eigenvalue of the problem

(3.3) (∇yU,∇yW )ω = Λ(U,W )ω, W ∈ H̊1(ω; γD)

on the cross section. Here ∇y is the gradient operator in the coordinates y; in what
follows Δy will stand for the corresponding Laplace operator. The first eigenfunction,
normalized in L2(ω), will be denoted by U†; by the maximum principle, we may assume
that it is positive.

Theorem 3.1. 1) Under the condition

(3.4)

∫
ω

H(y)F†(y) dy < 0,

where

(3.5) F†(y) = |∇yU†(y)|2 − λ†|U†(y)|2,
the operator AH has an eigenvalue on the interval (0,Λ†), i.e., its discrete spectrum is
nonempty.

2) If the integral in (3.4) is zero, but there is a set ς ⊂ ωH of positive measure on
which the derivative ∂νU† differs from zero almost everywhere, then still σH

d �= ∅.
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Proof. 1) In the minimal principle (1.19), we plug the test function (1.20). Repeating
the calculations that led us in Subsection 2 of §2 to formula (1.22), for the lower bound
of the spectrum of the operator AH we obtain the inequality

σH ≤ λ†

Å
1 + 2ελ−1

†

∫
ω

H(y)
(
|∇yU†(y)|2 − λ†|U†(y)|2

)
dy + O(ε2)

ã
,

which ensures the first claim in the theorem.
2) If we suppose that identities (1.24) are valid and∫

ω

H(y)
(
|∇yU†(y)|2 − λ†|U†(y)|2

)
dy = 0,

then, as in the proof of Theorem 1.1, 2), the test function uε +
√
εv will satisfy rela-

tion (1.25), which turns into the formula

−2
√
ε

∫
ωH

v(x)∂νU†(y) dsx ≤ Cε

similar to (1.27). Under the assumptions of the theorem, this leads to a contradiction
with (1.24). Consequently, σ < λ† and the discrete spectrum is nonempty. �

The integral identity (3.3) shows that expression (3.5) has zero mean over the do-
main ω. This expression is positive near the part γD of ∂ω and negative in a neigh-
borhood of the point of maximum of the eigenfunction U†. Therefore, it is not hard
to construct examples of the profile function H with property (3.4), which ensures the
existence of eigenvalues below the threshold Λ† of the continuous spectrum.

Let H ∈ C1(sω), and let ΔyH ∈ L∞(ω). Observe that U† ∈ H1(ω) ⊂ L2(∂ω).

Substituting the test function W = HU† ∈ H̊1(ω; γD) in the integral identity (3.2), we
obtain

(H∇yU†,∇yU†)ω − λ†(HU†, U†)ω = −(∇yU†, U†∇yH)ω = −1

2
(∇yU

2
† ,∇yH)ω

=
1

2

∫
ω

|U†(y)|2ΔyH(y) dy − 1

2

∫
γN

|U†(y)|2∂νH(y) dsy.
(3.6)

Here ν = (ν1, . . . , νn−1) is the outward unit normal to the boundary of ω ⊂ Rn−1, and
dsy is the area element on ω. Thus, in the case of the Dirichlet problem, i.e., for γD = ∂ω
and γN = ∅, condition (3.4) is fulfilled provided that H is subharmonic.

2. Cranked many-dimensional waveguide; the mixed boundary-value prob-
lem. By (3.6), for the linear function H(y) = kyn−1, k > 0, condition (3.4) is equivalent
to

(3.7)

∫
γN

U†(y)
2νn−1(y) dsy > 0.

In particular, if on the part γN of ∂ω the projection of the outward normal to the axis
yn−1 is positive, then problem (3.2) has an eigenvalue on the interval (0,Λ†). We use
this observation to verify a claim similar to Theorem 2.1 in the many-dimensional case.

Suppose the boundary of ω is smooth, i.e., of class C2,δ. We split the cylinder ω×Rn

into two parts by the hyperplane

(3.8) {x = (y1, . . . , yn−1, z) : z = yn−1 tan(α/2)}, α ∈ (0, π/2),

and choose the part Π1 that, for R large, contains the semicylinder ω × (R,+∞). Ac-
cordingly, Γ1N = ∂Π1 ∩ (γN × R). The mirror images of Π1 and Γ1N relative to the
hyperplane (3.8) are denoted by Π2 and Γ2N . Put

sΩ = Π1 ∪ Π2, ΓD = ∂Ω \
(
Γ1N ∪ Γ2N

)
.
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To check our next statement, we can argue as in Subsection 1 of §2.

Theorem 3.2. If inequality (3.7) is fulfilled, then the discrete spectrum of problem (1.6)
in the cranked waveguide Ω described above cannot be empty.

The sufficient condition (3.7) can be ensured by taking as γN any small neighborhood
of a point where the normal ν coincides with the unit vector of the yn−1-axis. In the
constructions in Subsection 2 of §1 and Subsection 1 of §2, we acted precisely in this way.

3. Cranked many-dimensional waveguide; the Dirichlet problem. Under the
boundary conditions (1.4), i.e., for γD = ∂ω, γN = ∅, expression (3.6) with a linear
function H vanishes for each of the semicylinders with slanted ends that form the cranked
waveguide in question. Therefore, the trick [3] employing the test function uε +

√
εv (see

(1.25)–(1.27) and (2.8)–(2.11)) results in the following statement.

Theorem 3.3. The discrete spectrum of the operator A corresponding to the Dirichlet
problem (1.4) in the cranked many-dimensional waveguide occurring in Theorem 3.2 can
never be empty.

4. Branching many-dimensional waveguide; the Dirichlet problem. Suppose
∂ω is smooth as before, but the profile function H (see (3.1)) is continuous and piecewise
linear. For instance, the cross section ω of the semicylinder ΠH is split by the hyperplane
{y : yn−1 = 0} into two nonempty parts ω± = {y : ±yn−1 > 0}, and

(3.9) H(y) =

®
k+y1 + k0 if y ∈ ω+,

k−y1 + k0 if y ∈ ω−,

where k± and k0 are constants (Figure 18a). We turn to the mixed boundary-value prob-
lem (3.2), posing the Neumann boundary conditions only on the end ωH of the semi-
cylinder (3.1). The corresponding model problem (3.3) acquires the Dirichlet boundary
conditions on the entire surface ∂ω, i.e., γD = ∂ω and γN = ∅, while the sufficient
condition (3.4) for the discrete spectrum of problem (3.3) to be nonempty turns by (3.6)
into the inequality

(k+ − k−)

∫
υ

|U†(y)|2 dsy < 0,

where υ = {y ∈ ω : yn−1 = 0}. Thus, if k+ > k−, i.e., if the profile function (3.9) is
convex, inequality (3.4) is fulfilled. Any convex, continuous, piecewise linear function is
subharmonic. This observation together with formulas (3.4) and (3.6) (the latter needs
a correct interpretation) leads to the next claim.

Theorem 3.4. If the continuous piecewise linear profile function H (see the definition
(3.1) of the semicylinder ΠH) is convex, then the discrete spectrum of the operator of the
mixed boundary-value problem (3.2) with Neumann conditions on the end and Dirichlet
conditions on the lateral surface of ωH is nonempty.

As in §2, Theorem 3.4 can be used for finding eigenvalues λ ∈ (0, λ†) of the Dirichlet
problem for junctions of complicated nature. For better visibility, we restrict ourselves
to discussing 3-dimensional waveguides. If a domain ω ⊂ R2 is symmetric with respect
to the line {y = (y1, y2) : y2 = 0}, then from several identical prisms with rectangular
cross sections and pointed ends (Figure 18a) we can easily build a branching “planar”
waveguide (Figure 19a) with nonempty discrete spectrum. In the case of a rich symmetry
of the cross section ω, from “pointed stakes” as in Figure 18b we can construct a “really
spatial” junction with the desired properties (Figure 19b). Prisms with square cross
section can also be used.
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a) b)

Figure 18. Semicylinders with pointed ends.

a) b)

Figure 19. Branching 3-dimensional waveguides.

5. Neumann boundary conditions. Suppose that a cranked or branching many-
dimensional (n ≥ 3) waveguide Ω formed by slanted or pointed semicylinders with iden-
tical normal cross sections is symmetric relative to the plane Rn−1

n = {x = (x1, . . . , xn) :
x1 = 0}, and that this plane intersects each4 of the pointed semicylinders Π1, . . . ,ΠN (see
Figure 19a; the waveguide in Figure 19b does not possess the latter property). Consider
the upper half Ω+ = {x ∈ Ω : xn > 0} of Ω; following the approach of [7], on the spe-
cially formed surface Υ = {x ∈ Ω : xn = 0} we pose the Dirichlet boundary conditions,
i.e., we consider the mixed boundary-value problem (1.1), (1.5) in the domain Ω+ the
boundary ∂Ω+ of which is split into two parts ΓD = Υ and ΓN = ∂Ω+ \ sΥ = (∂Ω)+.

It is important to note that the continuous spectrum of the Neumann problem coin-
cides with the closed real half-axis R+ = [0,+∞), but the mixed boundary-value problem
constructed above has a positive threshold λ+

† of the continuous spectrum σ+
c [λ+

† ,+∞).

The basic idea of the method of [7] consists precisely in creating a positive threshold,
and the subsequent study of the discrete spectrum of the corresponding boundary-value
problem formed artificially (see also [9, 13] in connection with problems of elasticity
theory).

The threshold λ+
† is the first eigenvalue Λ+

† of problem (3.3) in the domain ω+ =

{y ∈ ω : y1 > 0} with the Dirichlet boundary condition on the union of the sets γ+
D

and υ = {y ∈ ω : y1 = 0}. The corresponding eigenfunction will be denoted by U+
† ; we

introduce the function F+
† by formula (3.5) with obvious modifications.

First, we consider problem (3.2) in the half ΠH+ of the waveguide (3.1) with the
Dirichlet boundary condition on ΥH+ = {x ∈ ΠH : x1 = 0} and the Neumann conditions
on ∂ΠH+ \ ΥH+, assuming the profile function H to be even relative to y1. The two
claims of Theorem 3.1 remain valid, with clear changes in the statements. Thus, under

4This requirement cannot be satisfied if n = 2.
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the condition

(3.10)

∫
ω+

H(y)F+
† (y) dy < 0,

where F+
† is the expression (3.5) constructed by U+

† and Λ+
† , the operator AH+ of the

mixed boundary-value problem (1.1), (1.5) in the domain Ω+ has a point λ+
1 ∈ (0, λ+

† )

of discrete spectrum. We extend the corresponding eigenfunction u+
1 ∈ H̊1(ΠH+; ΥH) as

an odd function to the entire waveguide (3.1). Since the Dirichlet conditions are posed on
the artificially created surface ΥH = {x ∈ ΠH : y1 = 0}, the odd extension turns out to
be smooth inside the waveguide, i.e., it is a nontrivial solution of the Neumann problem
for the Helmholtz operator −Δx − λ+

1 in ΠH . In other words, λ+
1 is an eigenvalue of

the operator AH lying in its point spectrum σH
p . If inequality (3.10) is replaced by the

corresponding identity, then we can apply the now usual trick involving the test function
uε +

√
εv; this leads to the following result.

Theorem 3.5. 1) Under condition (3.10), the operator AH of the Neumann problem in
the semicylinder (3.1) has an eigenvalue on the continuous spectrum [0. + ∞), i.e., its
point spectrum is nonempty.

2) If the integral in (3.10) vanishes, but there is a set ς ⊂ ωH+ of positive measure on
which the normal derivative ∂νU† is nonzero almost everywhere, then σH

p �= ∅ as before.

We return to discussing the Neumann problem in a cranked or branching waveguide.
For the half Π+

p of each of the semicylinders Πp, formula (3.6) remains valid with clear
modifications, but we cannot directly find the sign of the last integral in (3.6) (recall that
in Subsection 1 of §3 the zone of the Neumann boundary conditions was coordinated with
the form of the cross section ω, and that was the only reason why the integral mentioned
became positive). Therefore, we can use Theorem 3.5 for finding the point spectrum of
the Neumann problem in an arbitrary symmetric cranked or branding waveguide only if
the first eigenfunction U+

1 of the mixed boundary-value problem on the half ω+ of the
cross section is known to a large extent.

Consider the waveguide in Figure 19a, formed by pointed 3-dimensional prisms (as in
Figure 18a), with the rectangular cross section ω = {y = (y1, y2) : |y1| < l, |y2| < 1}.
Then

U+
† (y) = sin

(π

2
y2

)
, λ+

† = Λ+
1 =

π2

4
, F+

1 (y) =
π2

4
cos(πy2),

whence ∫ 1

0

F+
1 (y1, y2) dy2 = 0 for any y1.

Thus, the condition required in the preceding paragraph is violated: the integral corre-
sponding to each of the half-prisms is zero. Theorem 3.5 (2) also does not allow us to find
a point of the discrete spectrum, because on the ends of the half-prisms the derivative of
U+
† along the normal vanishes (the normal has projection ν = 0 to the y2-axis).

Remark 3.1. The planar branching waveguides as in Figures 2a and 3a with the angles
αk = 2(k−1)π/3 and αk = (k−1)π/2 (respectively) can be obtained by repeated mirror
reflection of cranked waveguides with width 1/2 and angle α2 = 2π/3 or α2 = π/2.
Unfortunately, since Theorem 2.2 ensures the absence of the discrete spectrum in the
case where the Neumann conditions are posed on the “inner” part of the boundary and
the Dirichlet conditions are posed on the “exterior” part, the trick of [7] does not yield
any eigenvalue of the Neumann problem in such waveguides. If we interchange the loca-
tion of the boundary conditions on the sides of cranked waveguides (Figure 16), then by



374 S. A. NAZAROV

+

a) b)

-1 0 1

Figure 20. A quasicylinder and a semibounded periodic waveguide.

Theorem 1.1, a discrete spectrum point will arise, and the even extension of the corre-
sponding eigenfunction will lead to an eigenfunction for the first eigenvalue λ1 ∈ (0, π2)
for branching waveguides with the Dirichlet condition; this was already established in
Theorem 1.1. The points of the discrete spectrum for the Dirichlet problems in cranked
waveguides (Figure 1c) and the odd extensions of the corresponding eigenfunctions guar-
antee the presence of an element λ• of the point spectrum different from λ1 (the eigen-
function constructed in this way changes its sign inside the branching waveguide). Since
the first positive eigenvalue of the Neumann problem in the unit square5 is equal to π2,
the arguments of Example 2.1 prove the absence of the second eigenvalue in the discrete
spectrum of a cross-like waveguide, i.e., λ• is a point of the continuous spectrum.

§4. Periodic waveguides

1. Spectrum of a periodic waveguide. Let θ be a bounded open set in the layer
{x = (y, z) : z ∈ (0, 1)}, and let Θ be the domain with periodic cross section (a qua-
sicylinder, see Figure 20a) composed of the periodicity cells θj = {x : (y, z − j) ∈ θ},
j ∈ Z, i.e., its closure is given by the formula

(4.1) sΘ =
⋃
j∈Z

θj .

We suppose that the boundary ∂Θ is an (n − 1)-dimensional Lipschitz surface and, in
particular, the quasicylinder is connected (otherwise Θ cannot be a domain). Let Ω be
yet another Lipschitz domain such that

Θ+ := {x ∈ Θ : z > 0} ⊂ Ω ⊂ {x ∈ Θ : z > −1}
(cf. Figure 20b). In other words, the semiinfinite waveguide Ω includes the cells
θ0, θ1, θ2, . . . , and also a part of the cell θ−1. In the domain Ω we consider the mixed
boundary-value problem (1.1), (1.4).

Unlike the cylindrical waveguides and their combinations treated in the preceding
sections and having the ray (1.7) as the continuous spectrum, for a periodic waveguide
we have a “band-gap” structure of the essential6 spectrum σe, which is the union of
infinitely many segments Υk, k ∈ N,

(4.2) σe =
⋃
k∈N

Υk, Υk = {λ = Λk(η) | η ∈ [0, 2π)}.

Here, Λk(η) is an element of the sequence

(4.3) Λ1(η),≤ Λ2(η) ≤ · · · ≤ Λk(η) ≤ · · · → +∞

5Unfortunately, in the book [24] the author has not found any formula for the first positive eigenvalue
for the Neumann problem in the isosceles triangle and therefore, was unable to make a similar conclusion
for the waveguides with the angles 2π/3 in Figure 2a.

6The author does not know whether a problem in the quasicylinder Θ can have an eigenvalue of
infinite multiplicity. If there are no such numbers (none of the segments Υk degenerates to a point),
then the essential spectrum coincides with the continuous one.
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of eigenvalues of the following model problem on the periodicity cell

−Δxu(x; η) = Λ(η)U(x; η), x ∈ θ,(4.4)

U(x; η) = 0, x ∈ ∂θ \ (ε0 ∪ ε1),(4.5)

U(y, 0; η) = exp(iη)U(y, 1; η),

∂zU(y, 0; η) = exp(iη)∂zU(y, 1; η), (y, 0) ∈ ε0.
(4.6)

Note that the quasiperiodicity conditions (4.6) are posed on the “ends” ε0 = {x ∈ ∂θ :
z = 0} and ε1 = {x ∈ ∂θ : z = 1} of the cell. Problem (4.4)–(4.6) is obtained from the
Dirichlet problem on the quasicylinder Θ via the Gelfand transformation [27]

u(y, z) �→ U(y, z; η) =
1√
2π

∑
j∈Z

exp(−ijη)u(y, z − j)

(for the properties of this transformation, see, e.g., [26]–[29]). Observe that (y, z) ∈ Θ
on the left-hand side of (4.1), while (y, z) ∈ θ on the right-hand side.

As an ingredient of the integral identity

(4.7) (∇xU,∇xW )θ = Λ(U,W )θ, W ∈ H̊1
η−per(θ; ∂θ \ (ε0 ∪ ε1)),

which serves problem (4.4)–(4.6), we have the subspace of functions of the Sobolev class
H1(θ) that satisfy the Dirichlet condition (4.5) and the first quasiperiodicity condition
in (4.6). Since the embedding H1(θ) ⊂ L2(θ) is compact (the Lipschitz domain θ is
bounded) and the sesquilinear form on the left in (4.7) is positive, the spectrum of the
model problem turns out to be discrete, forming an unboundedly increasing positive se-
quence (4.3) of eigenvalus. The functions η �→ Λk(η) are continuous (see [30, Chapter 9])
and 2π-periodic (for obvious reasons). Therefore, the sets Υk (see (4.2)) are indeed closed
and connected segments.

The band-gap structure (4.2) of the spectrum implies that some lacunas may arise,
i.e., some intervals having ends in the essential spectrum σe but only containing points
of the discrete spectrum σd (see the surveys [27, 31, 21]). However, like in the preceding
sections, here our goal is the search of eigenvalues below the threshold

(4.8) λ† = min
{

Λ1(η)
∣∣∣ η ∈ [0, 2π)

}

of the essential spectrum. Due to the Dirichlet boundary conditions, the threshold (4.8)
is positive. It is also known that the minimum in (4.8) is attained at the point η = 0,
but this observation, in essence, will never be used in what follows (see Remark 4.1).

2. Extension of the variational method. Let λ† = Λ1(0) and U†(x) = U1(x; 0) be
an eigenvalue and an eigenfunction of problem (4.7) (or problem (4.4)–(4.6)) for η = 0.
The function z �→ U†(y, z) is 1-periodic; it can be chosen to be real and positive in the
cell θ. As in (1.20), we put

(4.9) uε(x) =

®
U†(y, z) if z < 0,

exp(−εz)U†(y, z) if z ≥ 0,

and plug this test function into formula (1.19) for the lower bound of the spectrum of the
operators A corresponding to problem (1.1), (1.4) (cf. Subsection 1 of §2) in the domain



376 S. A. NAZAROV

Ω in Figure 11b. We have

‖uε;L2(Ω)‖2 = ‖uε;L2(Ω \ Θ+)‖2 + ‖uε;L2(Θ
+)‖2,

‖uε;L2(Ω \ Θ+)‖2 = ‖U†;L2(Ω \ Θ+)‖2,

‖uε;L2(Θ
+)‖2 =

∞∑
j=0

∫
θj

exp(−2εz)|U†(y, z)|2 dy dz

=
∞∑
j=0

exp(−2εj)

Å
‖U†;L2(θ)‖2 − 2ε

∫
θj

|U†(y, ζ)|2 dy dζ + O(ε2)

ã
.

(4.10)

We have used the Taylor formula

exp(−2ε(z − j)) = exp(−2εζ) = 1 − 2εζ + O(ε2), ζ ∈ (0, 1).

Making a similar transformation, we get

‖∇xu
ε;L2(Ω)‖2 = ‖∇xu

ε;L2(Ω \ Θ+)‖2 + ‖∇xu
ε;L2(Θ

+)‖2,
‖∇xu

ε;L2(Ω \ Θ+)‖2 = ‖∇xU†;L2(Ω \ Θ+)‖2,

‖uε;L2(Θ
+)‖2 =

∞∑
j=0

∫
θj

exp(−2εz)
(
|∇xU†(y, z)|2

+ 2εU†(y, z)∂zU†(y, z) + ε2|U†(y, z)|2
)
dy dz

=
∞∑
j=0

exp(−2εj)

Å
‖∇xU†;L2(θ)‖2

− 2ε

∫
θj

(
ζ|U†(y, ζ)|2 − U†(y, ζ)∂ζU†(y, ζ)

)
dy dζ + O(ε2)

ã
.

(4.11)

Finally, we observe that, first,

E :=
∞∑
j=0

exp(−2εj) =
1

2ε
+

∞∑
j=0

∫ j+1

j

(exp(−2εj) − exp(−2εz) dz

=
1

2ε
+

∞∑
j=0

exp(−2εj)
(
− 2ε

∫ j+1

j

(z − j) dz + O(ε2)
)

=
1

2ε
+ O(1),

and second, by (4.4)–(4.6), for U = U† and Λ = λ† we have

‖∇xU†;L2(θ)‖2 = λ†‖U†;L2(θ)‖2,

0 = −
∫
θ

z(ΔxU†(y, z) − λ†U†(y, z))U†(y, z) dy dz

=

∫
θ

z(λ†|U†(y, z)|2 − |∇xU†(y, z)|2) dy dz +

∫
θ

U†(y, z)∂zU†(y, z) dy dz.

(4.12)
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Combining the above formulas, we find that

σ ≤ ‖∇xu
ε;L2(Ω)‖

‖uε;L2(Ω)‖

≤
E
(
‖∇xU†;L2(θ)‖2 − 2ε

∫
θ
(z|∇xU†|2 − U†∂zU†)dx

)
+ ‖∇xU†;L2(Ω \ Θ+)‖2 + cε

E
(
‖U†;L2(θ)‖2 − 2ε

∫
θ
z|U†|2 dx

)
+ ‖U†;L2(Ω \ Θ+)‖2 − cε

≤ λ†

(
1 − 2ε‖∇xU†;L2(θ

+)‖−2

∫
θ

(
z(|U†|2 − λ†|U†|2) − U†∂zU†

)
dx

+ 2ε‖∇xU†;L2(θ
+)‖−2

(
‖∇xU†;L2(Ω \ Θ+)‖2 − λ†‖U†;L2(Ω \ Θ+)‖2

))
+ Cε2

= λ† + 2ελ†‖∇xU†;L2(θ
+)‖−2

(
‖∇xU†;L2(Ω \ Θ+)‖2 − λ†‖U†;L2(Ω \ Θ+)‖2

)
+ Cε2.

So, we have established the next statement.

Theorem 4.1. Suppose that, for η = 0, the first eigenvalue λ† and the corresponding
eigenfunction U† of problem (4.7) on the periodicity cell satisfy the inequality

(4.13)

∫
Ω\Θ+

F†(y, z) dy dz < 0,

where

(4.14) F†(y, z) = |∇xU†(y, z)|2 − |U†(y, z)|2.
Then the operator A of the Dirichlet problem (1.1), (1.4) in the domain Ω with a periodic
exit to infinity has an eigenvalue λ ∈ σd lying below the continuous spectrum (see formulas
(4.2) and (4.8)).

Remark 4.1. The calculations in (4.10) and (4.11) remain valid if we ignore the relations
λ† = Λ1(0) and U†(x) = U1(x; 0). In the situation7 where λ† = Λ1(η†), η

† ∈ (0, 2π), and
U†(x) = U1(x; η†), it suffices to replace U†(y, z) in (4.9) by the product exp(iη†j)U†(y, z)
on the cells θj .

3. Cranked and branching periodic waveguides. By (4.12), the function (4.14) has
zero mean over the entire cell θ. Since F†(x) > 0 for x ∈ ∂θ\(ε0∪ε1), this function is not
identically zero; hence, there exist semibounded periodic waveguides with a nonempty
discrete spectrum to the left of its essential spectrum.

If, for some waveguide Ω+ = Ω, the integral in (4.13) happens to be positive, then for
the periodic waveguide Ω− = Θ \ sΩ, directed oppositely, the sufficient condition (4.13) is
fulfilled. The author does not know of any specific quasicylinder Θ that can be split into
two semibounded waveguides Ω± such that each of them has eigenvalues λ±

1 < λ† (cf.
Remark 1.2). In accordance with Theorem 4.1, the separating surface Υ must possess
the following two properties: first, the integral of F†(x) over the part of the cell θ cut by
Υ is zero, and second, the derivative ∂νU† is not identically zero.

Whenever the waveguide depicted in Figure 20b satisfies (4.8), the cranked waveguide
in Figure 21a also has nonempty discrete spectrum, for the same reasons as in Sub-
section 1 of §2. Under easily foreseeable conditions, a similar conclusion can be made
also for the branching waveguide of Figure 21b, with the help of the arguments used in
Subsection 4 of §2. Nevertheless, we were not able to make these results unconditional,
because the first eigenfunction U† of the model problem (4.4)–(4.6) (or (4.8)) depends on
all n spatial variables, and what this function looks like is unknown provided the form
of the cell is nontrivial.

7This situation is impossible for the Helmholtz operator, but can occur, e.g., in the case of the system
of elasticity theory equations, for which claims of the type of Theorem 4.1 can be checked along the same
lines (see [3] for the case of a domain with half-strips-like exits to infinity).
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a) b)

Figure 21. Cranked and branching periodic waveguides.
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